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HÖLDER CONTINUITY OF BOUNDED GENERALIZED
SOLUTIONS FOR NONLINEAR FOURTH-ORDER ELLIPTIC
EQUATIONS WITH STRENGTHENED COERCIVITY AND

NATURAL GROWTH TERMS

MYKHAILO V. VOITOVYCH

Communicated by Pavel Drabek

Abstract. In this article we extend the author’s previous results on the ex-

istence of bounded generalized solutions of a Dirichlet problem for nonlinear

elliptic fourth-order equations with the principal part satisfying a strength-
ened coercivity condition, and a lower-order term having a “natural” growth

with respect to the derivatives of the unknown function. Namely, we prove the

Hölder continuity of bounded generalized solutions of such equations.

1. Introduction

Let Ω be a bounded domain of Rn, n ≥ 3. Then we consider the nonlinear
fourth-order elliptic equations of divergent form∑

|α|=1,2

(−1)|α|DαAα(x, u,∇2u) +B(x, u,∇2u) = 0 in Ω, (1.1)

where α = (α1, . . . , αn) is an n-dimensional multiindex with nonnegative integer
components αi, i = 1, . . . , n, |α| = α1 + · · · + αn, Dα = ∂|α|/∂xα1

1 . . . ∂xαnn and
∇2u = {Dαu : |α| = 1, 2}.

The main structural requirements for the coefficients Aα and B are the following
strengthened coercivity condition: for a. e. x ∈ Ω and for every s ∈ R and ξ =
{ξα ∈ R : |α| = 1, 2},∑

|α|=1,2

Aα(x, s, ξ)ξα ≥ C
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}
− f1(x), (1.2)

and the natural growth condition: for a. e. x ∈ Ω and for every s ∈ R and ξ =
{ξα ∈ R : |α| = 1, 2}

|B(x, s, ξ)| ≤ b(|s|)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ f2(x), (1.3)
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where C > 0, p ∈ (1, n/2), q ∈ (2p, n), b : R+ → R+ is a continuous nondecreasing
function, f1,2 ≥ 0 and f1,2 ∈ Lτ (Ω), τ > n/q.

We recall that the strengthened coercivity condition goes back to Skrypnik [25],
used because of the regularity problem of generalized solutions from the class
Wm,p(Ω) for nonlinear elliptic equations of the divergent form∑

|α|≤m

(−1)|α|DαAα(x, u, . . . , Dmu) = 0 in Ω. (1.4)

In this problem the relation n = mp is important. If n < mp, the Hölder
continuity of solutions is a simple consequence of the embedding theorem (see,
e.g., [12, Section 7.7]). For n ≥ mp, the embedding theorems do not ensure the
boundedness of an arbitrary solution u ∈Wm,p(Ω).

In the case m = 1 and n ≥ p, the properties of the boundedness and the continu-
ity of generalized solutions are well known (see, e.g., [1, 2, 10, 13, 14], [19, Chapter
IV, §7, and Chapter IX, §2]).

For m ≥ 2 and n = mp, the boundedness of solutions is established in [11, 32, 33],
and the continuity is proved in [24, Chapter II, § 3], [28, 34].

Eventually, in the case where m ≥ 2 and n > mp, there are examples of equations
of the form (1.4) with the smooth coefficients Aα and unbounded solutions (see,
e.g., [8, 21]). In this case, Skrypnik [25] separated a subclass of equations of the
form (1.4) whose all generalized solutions are bounded and Hölder continuous.
The separated subclass of equations is characterized by the strengthened coercivity
condition under which the natural energy space is the space Wm,p(Ω) ∩W 1,q(Ω)
with q > mp. In particular, for m = 2, the structure of this class of equations is
determined by the inequality of the form (1.2).

Article [25] initiated a research on local properties of solutions for nonlinear
high-order elliptic equations with strengthened coercivity and sufficiently regular
data. For example, there were established sufficient conditions for regularity of a
boundary point [26] and for the removability of isolated singularities of solutions [7],
obtained pointwise estimates for solutions of some model problems [5, 27], proved
the Harnack inequality [6, 23].

At the same time, in the cited papers on the equations with the strengthened
coercivity it was assumed that the coefficients Aα satisfy the standard growth
conditions for the space W 1,q

m,p(Ω) = Wm,p(Ω) ∩ W 1,q(Ω). In this situation, the
solvability of equation (1.4) is equivalent to the solvability of the operator equation
Au = 0 where the nonlinear operator A : W 1,q

m,p(Ω)→ [W 1,q
m,p(Ω)]∗ is defined by the

equality

〈Au, v〉 =
∑
|α|≤m

∫
Ω

Aα(x, u, ..., Dmu)Dαvdx.

So, the standard theory of equations with pseudomonotone operators (see, e.g., [20])
is applicable. The case where the lower-order term has the natural (q, p)-growth
like (1.3) is beyond the scope of this theory and requires separate consideration.
In this regard, we refer to [29], [30], [31] where the existence and L∞-estimates of
solutions of the Dirichlet problem for nonlinear high-order elliptic equations with
the strengthened coercivity and natural growth terms were established.

Existence and L∞-estimates of bounded solutions of nonlinear second-order ellip-
tic equations with natural growth lower-order terms were established for instance
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in [3, 9], and the Hölder continuity of the solutions was proved in [19, Chapter
IX, §2]).

In the present article, we strengthen and supplement our previous results in [29],
[30]. Namely, we prove the Hölder continuity in Ω of every generalized solution
u ∈ W 1,q

2,p (Ω) ∩ L∞(Ω) of equation (1.1) under the conditions (1.2), (1.3). For the
proof, we use an analogue of Moser’s method (see [19, Chapter IX], [22]) proposed in
[25]. This method is based on obtaining of uniform Lk-estimates (at k → +∞) for
an auxiliary function φ(u) such that its boundedness implies the Hölder continuity
of the solution u. The new point in the proof (compared to [25]) is an additional
requirement on the power exponent k in the test function in [25]. Namely, the use
of the condition k ≥ k0 with a suitable k0 = k0(data) > 0 leads to the absorption
of the lower-order term of natural growth by the coercive principal part of the
equation. In this regard, to complete the proof we need some further integral
estimates of the solution associated with the use of the Lemma of John-Nirenberg
[15].

We remark that a theory of existence and properties of solutions of nonlinear
fourth-order elliptic equations with coefficients satisfying the strengthened coerciv-
ity condition and L1-right-hand sides was developed in [16, 17], [18, Part I, Section 2]
(see also [4] for equations with natural growth terms).

This article is organized as follows. In Section 2, we give the statement of the
problem and present the main result (Theorem 2.3). In the same section, we provide
examples of equations that satisfy all the hypotheses. In Section 3, we present some
auxiliary results needed to the proof of Theorem 2.3 which is set out in Section 4.

2. Preliminaries and the statement of the main result

Let n ∈ N, n > 2, and let Ω be a bounded domain of Rn.
We shall use the following notation: R+ = [0,+∞); ∂S is the boundary of the

set S ⊂ Rn, S = S ∪ ∂S is the closure of S; Λ is the set of all n-dimensional multi-
indices α such that |α| = 1 or |α| = 2; Rn,2 is the space of all mappings ξ : Λ→ R;
if u ∈ W 2,1(Ω), then ∇2u : Ω → Rn,2, and for every x ∈ Ω and for every α ∈ Λ,
(∇2u(x))α = Dαu(x). If τ ∈ [1,+∞], then ‖ · ‖τ is the norm in Lτ (Ω). For every
measurable set E ⊂ Rn we denote by |E| n-dimensional Lebesgue measure of the
set E.

Let p ∈ (1, n/2) and q ∈ (2p, n). We denote by W 1,q
2,p (Ω) the set of all functions

in W 1,q(Ω) that have the second-order generalized derivatives in Lp(Ω). The set
W 1,q

2,p (Ω) is a Banach space with the norm

‖u‖ = ‖u‖W 1,q(Ω) +
( ∑
|α|=2

∫
Ω

|Dαu|pdx
)1/p

.

We denote by W̊ 1,q
2,p (Ω) the closure of the set C∞0 (Ω) in W 1,q

2,p (Ω).
We consider the equation∑

α∈Λ

(−1)|α|DαAα(x, u,∇2u) +B(x, u,∇2u) = 0 in Ω (2.1)

under the following assumptions:
(A1) For every α ∈ Λ, Aα : Ω × R × Rn,2 → R and B : Ω × R × Rn,2 → R

are Carathéodory functions, i.e. for every (s, ξ) ∈ R × Rn,2, the functions
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Aα(·, s, ξ) and B(·, s, ξ) are measurable on Ω and, for almost every x ∈ Ω,
the functions Aα(x, ·, ·) and B(x, ·, ·) are continuous in R× Rn,2.

(A2) For almost every x ∈ Ω and for every (s, ξ) ∈ R × Rn,2 the following
inequalities hold:∑

α∈Λ

Aα(x, s, ξ)ξα ≥ a(|s|)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}
− g0(x), (2.2)

∑
|α|=1

|Aα(x, s, ξ)|q/(q−1) ≤ a1(|s|)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g1(x), (2.3)

∑
|α|=2

|Aα(x, s, ξ)|p/(p−1) ≤ a2(|s|)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g2(x), (2.4)

|B(x, s, ξ)| ≤ b(|s|)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g3(x), (2.5)

where a : R+ → (0,+∞) is a continuous nonincreasing function, a1, a2, b :
R+ → R+ are continuous nondecreasing functions, g0, g1, g2, g3 are nonneg-
ative summable functions on Ω.

Assumptions (A1) and (A2) provide the correct setting for the following definition.

Definition 2.1. A generalized solution of (2.1) is a function u ∈W 1,q
2,p (Ω)∩L∞(Ω)

such that for every function v ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω),∫

Ω

{∑
α∈Λ

Aα(x, u,∇2u)Dαv +B(x, u,∇2u)v
}
dx = 0. (2.6)

Remark 2.2. Note that if in addition to assumptions (A1) and (A2) the functions
a, a1, a2 are positive constants, the inequalities∑

α∈Λ

[Aα(x, s, ξ)−Aα(x, s, ξ′)](ξα − ξ′α) > 0,

B(x, s, ξ)s ≥ −g4(x), g4(x) ≥ 0
(2.7)

hold for almost every x ∈ Ω and any s ∈ R and ξ, ξ′ ∈ Rn,2, ξ 6= ξ′, and the
functions g0, g1, g2, g3, g4 belong to Lτ (Ω) with τ > n/q, then there exists a
generalized solution u ∈ W̊ 1,q

2,p (Ω) ∩ L∞(Ω) of equation (2.1). This follows from
[29, Theorem 2.1]. The result remains true if instead of (2.7), we assume that
the function b in (2.5) is bounded and the left-hand side of equation (2.1) has an
absorption term like c|u|q−2u, c > 0 (see [30, Theorem 2.2]).

The main result of the present article is a theorem on the local Hölder conti-
nuity of any generalized solution u ∈ W 1,q

2,p (Ω) ∩ L∞(Ω) of equation (2.1) under
assumptions (A1) and (A2). Following [12, Chapter 4], we recall that a function
f : D → R, D ⊂ Rn is uniformly Hölder continuous with exponent ε ∈ (0, 1) in D if
the quantity

[f ]ε;D = sup
x,y∈D,x 6=y

|f(x)− f(y)|
|x− y|ε

is finite; and locally Hölder continuous with exponent ε ∈ (0, 1) in the domain D if
f is uniformly Hölder continuous with exponent ε ∈ (0, 1) on compact subsets of
D. We denote by C0,ε(D) the set of all functions that are locally Hölder continuous
with exponent ε ∈ (0, 1) in D.
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Now let us state the main result of this paper.

Theorem 2.3. Assume that conditions (A1) and (A2) are satisfied with the func-
tions g0, g1, g2, g3 belonging to Lτ (Ω), τ > n/q. Let u ∈ W 1,q

2,p (Ω) ∩ L∞(Ω) be a
generalized solution of equation (2.1) and M = ‖u‖∞. Then u ∈ C0,ε(Ω) and for
any domain Ω′ such that Ω′ ⊂ Ω, we have

[u]ε,Ω′ ≤ C

where ε = ε(data) and C = C(d, data) are positive constants, d = dist(Ω′, ∂Ω) and
data ≡

(
n, p, q, τ, |Ω|,M, a(M), a1(M), a2(M), b(M),max0≤i≤3 ‖gi‖τ

)
.

Before proving Theorem 2.3, we give several auxiliary results and quote some
examples where all the hypotheses are verified.

Example 2.4. Let b, λ1, λ2 : R+ → R+ be continuous nondecreasing functions
and let µ : R+ → (0,+∞) be a continuous nonincreasing function. For every n-
dimensional multiindex α, |α| = 1, 2, we define the functions Aα : Ω×R×Rn,2 → R
and B : Ω× R× Rn,2 → R as follows:

Aα(x, s, ξ) =



(
µ(|s|) + λ1(|s|)

)(∑
|β|=1 ξ

2
β

)(q−2)/2

ξα,

if (x, s, ξ) ∈ Ω× R× Rn,2, |α| = 1,(
µ(|s|) + λ2(|s|)

)(∑
|β|=2 ξ

2
β

)(p−2)/2

ξα,

if (x, s, ξ) ∈ Ω× R× Rn,2, |α| = 2,

B(x, s, ξ) = b(|s|)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}
, (x, s, ξ) ∈ Ω× R× Rn,2.

These functions satisfy assumptions (A1) and (A2). Suppose that there exists a
generalized solution u0 ∈W 1,q

2,p (Ω) ∩ L∞(Ω) of the equation∑
|α|=2

Dα
[(
µ(|u|) + λ2(|u|)

)( ∑
|β|=2

|Dβu|2
)(p−2)/2

Dαu
]

−
∑
|α|=1

Dα
[(
µ(|u|) + λ1(|u|)

)( ∑
|β|=1

|Dβu|2
)(q−2)/2

Dαu
]

+ b(|u|)
( ∑
|α|=2

|Dαu|p +
∑
|α|=1

|Dαu|q
)

= 0 in Ω.

Then applying Theorem 2.3 to the solution u0, we obtain that u0 ∈ C0,ε(Ω) with
some ε depending only on n, p, q, |Ω|, M = ‖u0‖∞, µ(M), λ1(M), λ2(M) and b(M).

Example 2.5. We consider the equation∑
|α|=2

Dα
[( ∑
|β|=2

|Dβu|2
)(p−2)/2

Dαu
]
−
∑
|α|=1

Dα
[( ∑
|β|=1

|Dβu|2
)(q−2)/2

Dαu
]

+ ub1(|u|)
( ∑
|α|=2

|Dαu|p +
∑
|α|=1

|Dαu|q
)

= f(x) in Ω

(2.8)
where f ∈ Lτ (Ω), τ > n/q and b1 : R+ → R+ is a continuous nondecreasing
function, for example, b1(s) = sκ, κ > 0, or b1(s) = es.
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The coefficients and the right-hand side of this equation satisfy the conditions
(A1), (A2) and all the assumptions in [29, Theorem 2.1] (see Remark 2.2). There-
fore, there exists a generalized solution u1 ∈ W̊ 1,q

2,p (Ω) ∩ L∞(Ω) of equation (2.8)
such that ‖u1‖∞ ≤ C, where C is a positive constant depending only on n, p, q, τ ,
‖f‖τ and |Ω|. By Theorem 2.3, we have that u1 ∈ C0,ε(Ω) with some ε depending
only on n, p, q, τ , ‖f‖τ and |Ω|.

Example 2.6. We consider the equation∑
|α|=2

Dα
[( ∑
|β|=2

|Dβu|2
)(p−2)/2

Dαu
]
−
∑
|α|=1

Dα
[( ∑
|β|=1

|Dβu|2
)(q−2)/2

Dαu
]

+ c|u|q−2u+ b2(x)
( ∑
|α|=2

|Dαu|p +
∑
|α|=1

|Dαu|q
)

= f(x) in Ω

where c > 0, b2 ∈ L∞(Ω), f ∈ Lτ (Ω) with τ > n/q.
By [30, Theorem 2.2] (see also Remark 2.2) there exists a generalized solution

u2 ∈ W̊ 1,q
2,p (Ω)∩L∞(Ω) of this equation such that ‖u2‖∞ ≤ C, where C is a positive

constant depending only on n, p, q, c, τ , ‖f‖τ , ‖b2‖∞ and |Ω|. By Theorem 2.3, we
have that u2 ∈ C0,ε(Ω) with some ε depending only on n, p, q, c, τ , ‖f‖τ , ‖b2‖∞
and |Ω|.

3. Auxiliary results

The following is the well-known Sobolev inequality for functions in W̊ 1,q(Ω); see
for example [12, Theorem 7.10].

Lemma 3.1. Set q∗ = nq/(n − q). Then W̊ 1,q(Ω) ⊂ Lq∗(Ω). Furthermore, there
exists a positive constant cn,q depending only on n and q such that, for every func-
tion u ∈ W̊ 1,q(Ω),(∫

Ω

|u|q
∗
dx
)1/q∗

≤ cn,q
( ∑
|α|=1

∫
Ω

|Dαu|qdx
)1/q

. (3.1)

We denote by Bρ(y) := {x ∈ Rn : |x − y| < ρ} the open ball with center y and
radius ρ > 0; when not important, or clear from the context, we shall omit denoting
the center as follows: Bρ ≡ Bρ(y).

Lemma 3.2. Let f ∈W 1,q(Bρ). Suppose there exists a measurable subset G ⊂ Bρ
and positive constants C ′ and C ′′ such that

|G| ≥ C ′ρn, max
G
|f | ≤ C ′′.

Then ∫
Bρ

|f |qdx ≤ Cρ q
( ∑
|α|=1

∫
Bρ

|Dαf |qdx+ ρn−q
)

where C is a positive constant depending only on n, q, C ′, C ′′.

The proof of the above lemma is given in [24, Chapter 1, §2, Lemma 4].
The following lemma is due to John and Nirenberg [15] (see also [12, Theorem

7.21]).
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Lemma 3.3. Let f ∈W 1,1(O) where O is a convex domain in Rn. Suppose there
exists a positive constant K such that∑

|α|=1

∫
O∩Bρ

|Dαf |dx ≤ Kρn−1 for all balls Bρ.

Then there exist positive constants σ0 and C depending only on n such that∫
O

exp
( σ
K
|f − (f)O|

)
dx ≤ C(diamO)n

where σ = σ0|O|(diamO)−n, (f)O = 1
|O|
∫
O fdx.

The following result is discussed in [12, Lemma 8.23].

Lemma 3.4. Let ω be a non-decreasing function on an interval (0, R0] satisfying,
for all R ≤ R0, the inequality

ω(ϑR) ≤ θω(R) + ϕ(R)

where ϕ is also non-decreasing function and 0 < ϑ, θ < 1. Then, for any δ ∈ (0, 1)
and R ≤ R0, we have

ω(R) ≤ C
(( R

R0

)ε
ω(R0) + ϕ(RδR1−δ

0 )
)

where C = C(ϑ, θ) and ε = ε(ϑ, θ, δ) are positive constants.

4. Proof of Theorem 2.3

Suppose that conditions (2.2)–(2.5) hold with the functions

g0, g1, g2, g3 ∈ Lτ (Ω), τ > n/q.

Let u ∈ W 1,q
2,p (Ω) ∩ L∞(Ω) be a generalized solution of equation (2.1). We set

M = ‖u‖∞, thus
|u| ≤ M < +∞ on Ω. (4.1)

By ci, i = 0, 1, . . . , we shall denote positive constants depending only on

data ≡
(
n, p, q, τ, |Ω|, M, a(M), a1(M), a2(M), b(M), max

0≤i≤3
‖gi‖τ

)
.

Furthermore, let Ω′ be an arbitrary open subset of Ω such that Ω′ ⊂ Ω and
d = dist(Ω′, ∂Ω). We fix x0 ∈ Ω′. For every R ∈

(
0,min{1, d/4}

)
, we set

µ(R) = min
BR(x0)

u, M(R) = max
BR(x0)

u, ω(R) = M(R)− µ(R).

Here the symbols min and max of course stands for essential infimum and supre-
mum.

We fix a positive number r such that

r < min
{

1− n

qτ
,
q − 2p
q − p

}
. (4.2)

For every R ∈
(
0,min{1, d/4}

)
, we shall establish the inequality

ω(R) ≤ θω(2R) +Rr (4.3)

with a constant θ ∈ (0, 1) depending only on data. This inequality and Lemma 3.4
imply the validity of Theorem 2.3.
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To prove (4.3), we fix R such that 0 < R < min{1, d/4} and set

G1(R) =
{
x ∈ B3R/2(x0) : u(x) ≤ µ(2R) +M(2R)

2

}
,

G2(R) = B3R/2(x0) \G1(R),

and define a function v0 : B2R(x0)→ R as follows:

v0(x) =

1 + ln 2ω(2R)
M(2R)−u(x)+Rr if |G1(R)| ≥ |B3R/2(x0)|

2 ,

1 + ln 2ω(2R)
u(x)−µ(2R)+Rr if |G2(R)| ≥ |B3R/2(x0)|

2 .
(4.4)

It is easy to see that (4.3), and hence Theorem 2.3, follows from the estimate

‖v0‖L∞(BR(x0)) ≤ c0, (4.5)

For definiteness we assume that the function v0 is defined by the first line in (4.4).
We can also assume that

ω(2R) ≥ eRr

2
, (4.6)

and therefore, v0 ≥ 1 a. e. in B2R(x0), otherwise inequality (4.3) holds.
To derive inequality (4.5), we need some integral estimates of the solution u. We

set

Φ =
∑
|α|=1

|Dαu|q +
∑
|α|=2

|Dαu|p.

Lemma 4.1. Let Bρ ⊂ Ω and let ζ ∈ C∞0 (Ω) be a function such that

ζ = 0 in Ω \Bρ and 0 ≤ ζ ≤ 1. (4.7)

Then there exists a positive constant c1 such that∫
Bρ

Φ ζqdx ≤ c1ρn
(

1 + ρ−q + max
Bρ

{ ∑
|α|=1

|Dαζ|q +
∑
|α|=2

|Dαζ|p
})
. (4.8)

Proof. For every x ∈ Ω we set v1(x) = eλu(x)ζq(x) where

λ = 2b(M)/a(M). (4.9)

Simple calculations show that v1 ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω) and the following assertions

hold:

(a) for every n-dimensional multi-index α, |α| = 1,

Dαv1 = λeλuζqDαu+ qeλuζq−1Dαζ a. e. in Ω,

(b) for every n-dimensional multi-index α, |α| = 2,

|Dαv1 − λeλuζqDαu|

≤ λ2eλuζq
∑
|β|=1

|Dβu|2 + 2qλeλuζq−1
{ ∑
|β|=1

|Dβu|
}{ ∑
|β|=1

|Dβζ|
}

+ q(q − 1)eλuζq−2
∑
|β|=1

|Dβζ|2 + qeλuζq−1|Dαζ| a. e. in Ω.
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Since v1 ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω), by (2.6), we have∫

Ω

{∑
α∈Λ

Aα(x, u,∇2u)Dαv1 +B(x, u,∇2u)v1

}
dx = 0.

From this equality, using (2.2), (2.5), (4.1), (4.7), (4.9) and assertions (a) and (b),
we deduce that

b(M)
∫
Bρ

Φeλuζqdx ≤ I1 + I2 + I3 + I4 + eλM

∫
Bρ

(g3 + λg0)dx (4.10)

where

I1 = q
∑
α∈Λ

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ| eλuζq−1dx,

I2 = λ2
∑
|α|=2

∑
|β|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dβu|2 eλuζqdx,

I3 = q2
∑
|α|=2

∑
|β|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dβζ|2 eλuζq−2dx,

I4 = 2λq
∑
|α|=2

∑
|β|=1

∑
|γ|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dβu| |Dγζ| eλuζq−1dx.

Let us obtain suitable estimates for the addends in the right-hand side of (4.10).

Estimate for I1. Using the Young’s inequality with the exponents q/(q − 1) and q,
(2.3), (4.1) and (4.7), we obtain

q
∑
|α|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ| eλuζq−1dx

≤ b(M)
16

∫
Bρ

Φeλuζqdx+ c2

∫
Bρ

g1dx+ c2ρ
n max

Bρ

∑
|α|=1

|Dαζ|q.

Using the Young’s inequality with the exponents p/(p − 1) and p, (2.4), (4.1) and
(4.7), we obtain

q
∑
|α|=2

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ| eλuζq−1dx

≤ b(M)
16

∫
Bρ

Φeλuζqdx+ c3

∫
Bρ

g2dx+ c3ρ
n max

Bρ

∑
|α|=2

|Dαζ|p.

We set
Φζ =

∑
|α|=1

|Dαζ|q +
∑
|α|=2

|Dαζ|p.

From the last two inequalities it follows that

I1 ≤
b(M)

8

∫
Bρ

Φeλuζqdx+ c4

∫
Bρ

(g1 + g2)dx+ c4ρ
n max

Bρ
Φζ . (4.11)
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Estimates for I2, I3 and I4. It is obvious that
p− 1
p

+
2
q

+
q − 2p
qp

= 1, q − 1 = (p− 1)
q

p
+ (

q

p
− 1). (4.12)

Using this equalities, the Young’s inequality, (2.4), (4.1) and (4.7), we obtain

I2 ≤
b(M)

8

∫
Bρ

Φeλuζqdx+ c5

∫
Bρ

g2dx+ c5ρ
n, (4.13)

I3 ≤
b(M)

8

∫
Bρ

Φeλuζqdx+ c6

∫
Bρ

g2dx+ c6ρ
n max

Bρ
Φζ + c6ρ

n, (4.14)

I4 ≤
b(M)

8

∫
Bρ

Φeλuζqdx+ c7

∫
Bρ

g2dx+ c7ρ
n max

Bρ
Φζ + c7ρ

n, (4.15)

From (4.10), (4.11), (4.13)–(4.15) it follows that

b(M)
2

∫
Bρ

Φeλuζqdx ≤ c8
(∫

Bρ

gdx+ ρn max
Bρ

Φζ + ρn
)

where g = g0 + g1 + g2 + g3. By Hölder’s inequality and the inequality τ > n/q we
have ∫

Bρ

gdx ≤ ‖g‖τ |Bρ|(τ−1)/τ ≤ c9ρn−q.

The last two inequalities and (4.1) imply inequality (4.8). The proof is complete.
�

Lemma 4.2. Let Bρ ⊂ B2R(x0) and let ζ ∈ C∞0 (Ω) be a function such that condi-
tion (4.7) be satisfied. Then there exists a positive constant c10 such that∫

Bρ

Φ ζqdx

(M(2R)− u+Rr)q

≤ c10ρ
n
(
ρ−q + max

Bρ

{ ∑
|α|=1

|Dαζ|q +
∑
|α|=2

|Dαζ|p
}

+ ρ2p−q max
Bρ

∑
|α|=2

|Dαζ|p + ρ−q(q−2p)/(q−p) max
Bρ

∑
|α|=1

|Dαζ|qp/(q−p)
)
.

(4.16)

Proof. For every x ∈ B2R(x0), we set U(x) = M(2R)− u(x) +Rr,

v2(x) =

{
ζq(x)[U(x)]1−q if x ∈ B2R(x0),
0 if x ∈ Ω \B2R(x0).

Simple calculations show that

v2 ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω)

and the following assertions hold:
(c) for every n-dimensional multi-index α, |α| = 1,

Dαv2 = qU1−qζq−1Dαζ + (q − 1)U−qζqDαu a. e. in B2R(x0),

(d) for every n-dimensional multi-index α, |α| = 2,∣∣∣Dαv2 − (q − 1)U−qζqDαu
∣∣∣

≤ q U1−qζq−1|Dαζ|+ q(q − 1)U1−qζq−2
∑
|β|=1

|Dβζ|2
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+ 2q(q − 1)U−qζq−1
{ ∑
|β|=1

|Dβu|
}{ ∑
|β|=1

|Dβζ|
}

+ q(q − 1)U−1−qζq
∑
|β|=1

|Dβu|2 a. e. in B2R(x0).

Putting the function v2 into (2.6) instead of v and using (2.2), (2.5), (4.1), (4.7)
and assertions (c) and (d), we obtain

a(M)
∫
Bρ

ΦU−qζqdx

≤ I ′1 + I ′2 + I ′3 + I ′4 + I ′5 +
∫
Bρ

(g0 + (2M + 1)g3)U−qdx,
(4.17)

where

I ′1 = q
∑
α∈Λ

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ|U1−qζq−1dx,

I ′2 = q
∑
|α|=2

∑
|β|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dβu|2U−1−qζqdx,

I ′3 = q
∑
|α|=2

∑
|β|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dβζ|2U1−qζq−2dx,

I ′4 = 2q
∑
|α|=2

∑
|β|=1

∑
|γ|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dβu| |Dγζ|U−qζq−1dx,

I ′5 = b(M)
∫
Bρ

ΦU1−qζqdx.

Next we obtain suitable estimates for I ′1, I ′2, I ′3, I ′4, I ′5.

Estimate for I ′1. Using the Young’s inequality with the exponents q/(q − 1) and q,
(2.3), (4.1) and (4.7), we obtain

q
∑
|α|=1

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ|U1−qζq−1dx

≤ a(M)
20

∫
Bρ

ΦU−qζqdx+ c11

∫
Bρ

g1U
−qdx+ c11ρ

n max
Bρ

∑
|α|=1

|Dαζ|q.
(4.18)

We use the Young’s inequality with the exponents p/(p− 1) and p, (2.4), (4.1) and
(4.7) to obtain

q
∑
|α|=2

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ|U1−qζq−1dx

≤ a(M)
20

∫
Bρ

ΦU−qζqdx+ c12

∫
Bρ

g2U
−qdx+ c12

∑
|α|=2

∫
Bρ

|Dαζ|pUp−qζq−pdx,
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whence, taking into account the inequalities U ≥ Rr, ρ/2 < R < 1 and (4.2), we
derive

q
∑
|α|=2

∫
Bρ

|Aα(x, u,∇2u)| |Dαζ|U1−qζq−1dx

≤ a(M)
20

∫
Bρ

ΦU−qζqdx+ c12

∫
Bρ

g2U
−qdx+ c13ρ

n−q+2p max
Bρ

∑
|α|=2

|Dαζ|p.

(4.19)
Summing inequalities (4.18) and (4.19), we obtain

I ′1 ≤
a(M)

10

∫
Bρ

ΦU−qζqdx+ c14

∫
Bρ

(g1 + g2)U−qdx

+ c14ρ
n max

Bρ

∑
|α|=1

|Dαζ|q + c14ρ
n−q+2p max

Bρ

∑
|α|=2

|Dαζ|p.
(4.20)

Estimate for I ′2. We use (4.1), the first equality in (4.12), Young’s inequality, (2.4)
and (4.7) to obtain

I ′2 ≤
a(M)

10

∫
Bρ

ΦU−qζqdx+ c15

∫
Bρ

g2U
−qdx+ c15

∫
Bρ

U−q(q−p)/(q−2p)ζqdx.

Estimating the last integral in this inequality by means of the inequalities U ≥ Rr,
ρ/2 < R < 1 and (4.2), we obtain

I ′2 ≤
a(M)

10

∫
Bρ

ΦU−qζqdx+ c15

∫
Bρ

g2U
−qdx+ c16ρ

n−q. (4.21)

Estimates for I ′3 and I ′4. Using the reasoning similar the proof of (4.21), we obtain

I ′3 ≤
a(M)

10

∫
Bρ

ΦU−qζqdx+ c17

∫
Bρ

g2U
−qdx

+ c17ρ
n max

Bρ

∑
|α|=1

|Dαζ|q + c17ρ
n−q,

(4.22)

I ′4 ≤
a(M)

10

∫
Bρ

ΦU−qζqdx+ c18

∫
Bρ

g2U
−qdx

+ c18ρ
n−q(q−2p)/(q−p) max

Bρ

∑
|α|=1

|Dαζ|qp/(q−p).
(4.23)

Estimate for I ′5. We use Young’s inequality and Lemma 4.1, to obtain

I ′5 ≤
a(M)

10

∫
Bρ

ΦU−qζqdx+ c19ρ
n
(
ρ−q + max

Bρ

{ ∑
|α|=1

|Dαζ|q +
∑
|α|=2

|Dαζ|p
})
.

Collecting (4.17), (4.20)–(4.23) and the above inequality, we obtain

a(M)
2

∫
Bρ

ΦU−qζqdx

≤ c20ρ
n−q + c20ρ

n max
Bρ

{ ∑
|α|=1

|Dαζ|q +
∑
|α|=2

|Dαζ|p
}
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+ c20ρ
n−q+2p max

Bρ

∑
|α|=2

|Dαζ|p + c20ρ
n−q(q−2p)/(q−p) max

Bρ

∑
|α|=1

|Dαζ|qp/(q−p)

+ c20

∫
Bρ

gU−qdx

where g = g0 + g1 + g2 + g3. Finally, to obtain (4.16), we estimate the last integral
in this inequality by means of Holder’s inequality and the relations (4.2), U ≥ Rr

and ρ/2 < R < 1. The proof is complete. �

Lemma 4.3. For every κ ≥ 1 there is a positive constant c = c(data, κ) such that
limk→+∞ c(data, κ) = +∞ and∫

B3R/2(x0)

vκ0dx ≤ cRn. (4.24)

Proof. First, we estimate from above the average integral

(v0)B3R/2(x0) =
1

|B3R/2(x0)|

∫
B3R/2(x0)

v0dx

by a constant depending only on data. For this purpose we choose a function
ζ1 ∈ C∞0 (Ω) such that

0 ≤ ζ1 ≤ 1 in Ω, ζ1 = 1 in B3R/2(x0), ζ1 = 0 in Ω \B2R(x0),

|Dαζ1| ≤ K1R
−|α| for |α| = 1, 2,

where K1 is an absolute constant, not depending on R. Taking into account the
facts that 1 ≤ v0 ≤ 1 + ln 4 on G1(R) and |G1(R)| ≥ |B3R/2(x0)|/2, and using
Holder’s inequality, Lemmas 3.2 and 4.2 and the properties of the function ζ1, we
obtain

(v0)B3R/2(x0) ≤ c21R
−n/q

(∫
B3R/2(x0)

vq0dx
)1/q

≤ c22R
1−n/q

(∫
B3R/2(x0)

Φζq1dx
(M(2R)− u+Rr)q

+Rn−q
)1/q

≤ c23.

(4.25)

Next, let B2ρ ⊂ B2R(x0), and let ζ2 ∈ C∞0 (Ω) be a function such that

0 ≤ ζ2 ≤ 1 in Ω, ζ2 = 1 in Bρ, ζ2 = 0 in Ω \B2ρ,

|Dαζ2| ≤ K2ρ
−|α| for |α| = 1, 2,

where K2 is an absolute constant, not depending on ρ. Using Holder’s inequality,
Lemma 4.2 and the properties of the function ζ2, we derive that∑

|α|=1

∫
Bρ

|Dαv0|dx ≤ c24ρ
n−n/q

( ∑
|α|=1

∫
Bρ

|Dαv0|qdx
)1/q

≤ c24ρ
n−n/q

(∫
B2ρ

Φ ζq2dx

(M(2R)− u+Rr)q
)1/q

≤ c25ρ
n−1.

Hence, by Lemma 3.3, we have∫
B3R/2(x0)

exp
(
c26| v0 − (v0)B3R/2(x0)|

)
dx ≤ c27R

n. (4.26)
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Now let κ ≥ 1. Then inequalities (4.25) and (4.26) imply (4.24). The proof is
complete. �

Now we are ready to prove inequality (4.5).

Lemma 4.4. There is a positive constant c0 such that inequality (4.5) holds.

Proof. We proceed the proof in four steps.
Step 1. We fix a function ψ0 ∈ C∞0 (R) such that

0 ≤ ψ0 ≤ 1 on R, ψ0 = 1 in [−1, 1], ψ0 = 0 in R \ (−3/2, 3/2).

For any x ∈ Ω we set ψ(x) = ψ0

( |x−x0|
R

)
,

ṽ(x) =

{
[v0(x)]kψt(x)[U(x)]1−q if x ∈ B2R(x0),
0 if x ∈ Ω \B2R(x0),

where U = M(2R)− u+Rr,

k ≥ k := max{q, (4M + 1)b(M)/a(M)}, (4.27)

ν := max{q, 2qp/(q − 2p)} < t ≤ C0k, (4.28)

and C0 = C0(n, p, q, τ) > 1 is a constant that will be specified below. Simple
calculations show that

ṽ ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω)

and the following assertions hold:
(a1) for every α ∈ Λ, |α| = 1,

|Dαṽ − (q − 1)vk0ψ
tU−qDαu− kvk−1

0 ψtU−qDαu| ≤ c28kv
k
0ψ

t−1

RUq−1
a. e. in Ω,

(a2) for every α ∈ Λ, |α| = 2,

|Dαṽ − (q − 1)vk0ψ
tU−qDαu− kvk−1

0 ψtU−qDαu|

≤ c28k
2vk0ψ

t−2

Uq−1

{ 1
R2

+
∑
|β|=1

|Dβu|2

U2

}
a. e. in Ω,

where c28 > 0 depends only on C0, maxR |ψ′0| and maxR |ψ′′0 |.
Putting the function ṽ in (2.6) instead of v and using (2.2), (2.5), and assertions
(a1) and (a2), we obtain

(q − 1)a(M)
∫
B2R(x0)

ΦU−qvk0ψ
tdx+ ka(M)

∫
B2R(x0)

ΦU−qvk−1
0 ψtdx

≤ b(M)
∫
B2R(x0)

ΦU1−qvk0ψ
tdx+

∫
B2R(x0)

kg4v
k
0ψ

tU−qdx+ I1 + I2,

(4.29)

where g4 = 2g0 + (2M + 1)g3,

I1 =
c28k

R

∑
|α|=1

∫
B2R(x0)

|Aα(x, u,∇2u)|U1−qvk0ψ
t−1dx, (4.30)

I2 = c28k
2
∑
|α|=2

∫
B2R(x0)

|Aα(x, u,∇2u)|U1−qvk0ψ
t−2
{ 1
R2

+
∑
|β|=1

|Dβu|2

U2

}
dx.

(4.31)
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Step 2. We show that the first term in the right-hand side of inequality (4.29) is
absorbed by the second term in its left-hand side. For this we need the inequality

Uv0 ≤ 4M + 1 a. e. in B2R(x0). (4.32)

To prove it, we consider the function

χ(s) = (s+Rr) ln
2ω(2R)
s+Rr

, s ∈ [0, ω(2R)].

By (4.6), we have that χ ≥ 0 in [0, ω(2R)] and ŝ := 2e−1ω(2R) − Rr ∈ [0, ω(2R)].
By standard techniques of differential calculus we obtain

max
s∈[0, ω(2R)]

χ(s) = χ(ŝ) = 2e−1ω(2R) ≤ 2M.

Now inequality (4.32) follows from the relations R ≤ 1 and

Uv0 = M(2R)− u+Rr + χ(M(2R)− u) ≤ 4M + 1 a. e. in B2R(x0).

Using (4.32), the first term on the right-hand side of inequality (4.29) is estimated
in the following way

b(M)
∫
B2R(x0)

ΦU1−qvk0ψ
tdx ≤ (4M + 1)b(M)

∫
B2R(x0)

ΦU−qvk−1
0 ψtdx. (4.33)

Now (4.27), (4.29) and (4.33) imply the inequality

(q − 1)a(M)
∫
B2R(x0)

ΦU−qvk0ψ
tdx ≤ k

∫
B2R(x0)

g4v
k
0ψ

tU−qdx+ I1 + I2 . (4.34)

Step 3. Let us estimate from above the quantities I1 and I2, which are defined by
(4.30) and (4.31) respectively. We use (2.3) and the Young’s inequality

|yz| ≤ ε|y|q/(q−1) + ε1−q|z|q,

where

y = |Aα(x, u,∇2u)|U1−qψ(q−1)t/q, |α| = 1, z = k ψ(t−q)/q/R,

and ε is an appropriate positive number, to obtain

I1 ≤
(q − 1)a(M)

4

∫
B2R(x0)

ΦU−qvk0ψ
tdx

+ c29

∫
B2R(x0)

g1v
k
0ψ

tU−qdx+
c29k

q

Rq

∫
B2R(x0)

vk0ψ
t−qdx,

(4.35)

where c29 > 0 depends only on c28, q, a(M) and a1(M).
Using the first equality in (4.12), Young’s inequality and (4.2), we establish that

if ε > 0, α, β ∈ Λ, |α| = 2 and |β| = 1, then

|Aα(x, u,∇2u)|U1−qψt−2 · k2R−2

≤ ε|Aα(x, u,∇2u)|p/(p−1)U−qψt + ε(1 + ε−qp/(q−2p))kqR−qψt−2qp/(q−2p) on Ω,
(4.36)

|Aα(x, u,∇2u)|U1−qψt−2 · k2|Dβu|2U−2

≤ ε|Aα(x, u,∇2u)|p/(p−1)U−qψt + ε|Dβu|qU−qψt

+ ε1−qp/(q−2p)k2qp/(q−2p)R−qψt−2qp/(q−2p) on Ω.

(4.37)
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From (2.4), (4.31), (4.36), (4.37), taking into account (4.28) and the suitable choice
of ε, we deduce the estimate

I2 ≤
(q − 1)a(M)

4

∫
B2R(x0)

ΦU−qvk0ψ
tdx

+ c30

∫
B2R(x0)

g2v
k
0ψ

tU−qdx+
c30k

ν

Rq

∫
B2R(x0)

vk0ψ
t−νdx,

(4.38)

where c30 > 0 depends only on c28, q, p, a(M) and a2(M).
From (4.34), (4.35), (4.38), (4.28) and (4.2) it follows that∫

B2R(x0)

ΦU−qvk0ψ
tdx

≤ c31k
ν

Rq

∫
B2R(x0)

vk0ψ
t−νdx+

c31k
ν

Rq−n/τ

∫
B2R(x0)

(g1 + g2 + g4)vk0ψ
t−νdx.

Estimating the last two integrals by Hölder’s inequality with the exponents τ and
τ/(τ − 1) and taking into account (4.27) and (4.28), we obtain that for every k ≥ k
and t ∈ (ν, C0k] the following inequality holds (see also [25, inequality (39)]):∫

B2R(x0)

ΦU−qvk0ψ
tdx ≤ c32k

ν

Rq−n/τ

(∫
B2R(x0)

(vk0ψ
t−ν)τ/(τ−1)dx

)(τ−1)/τ

. (4.39)

Step 4. We set

J(k, t) =
1
Rn

∫
B2R(x0)

vk0ψ
tdx, k ∈ R, t > 0,

θ =
τ

τ − 1
· q
q∗
, ν̃ =

(q + ν)q∗

q
.

The following assertion holds: if k ≥ kq∗/q and ν̃ < t ≤ C0k, then

J(k, t) ≤ c33k
ν̃ [J(kθ, tθ − ν̃)]1/θ. (4.40)

Let k ≥ kq∗/q and ν̃ < t ≤ C0k. Then, applying inequality (3.1) to the function
v
k/q∗

0 ψt/q
∗
, we obtain

J(k, t) ≤ c34k
q∗

Rn

(∫
B2R(x0)

ΦU−qv
kq/q∗

0 ψtq/q
∗−qdx

+
1
Rq

∫
B2R(x0)

v
kq/q∗

0 ψtq/q
∗−qdx

)q∗/q
.

From this inequality, estimating the first addend in the brackets by means of (4.39)
and the second addend by means of Hölder’s inequality, we deduce (4.40).

We choose a number i0 ∈ N such that θ−i0 > kq∗/q and set C0 = ν̃/(1− θ),

ki = θ−i0−i, ti =
ν̃(θ−i0−i − 1)

1− θ
, Ji = J(ki, ti), i = 0, 1, 2, . . . .

Then (4.40) and the inequality θ < 1 imply that for every i = 0, 1, 2, . . . ,

J
1/ki
i ≤ c35J

θi0
0 .
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By Lemma 4.3 we have Jθ
i0

0 ≤ c36. From the last two inequalities it follows that

‖v0‖L∞(BR(x0)) = lim
i→∞

( 1
Rn

∫
BR(x0)

vki0 dx
)1/ki

≤ lim sup
i→∞

J
1/ki
i ≤ c0.

The proof is complete. �

Inequality (4.5) implies (4.3), and hence according to Lemma 3.4, the assertions
of Theorem 2.3 hold.
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[34] K.-O. Widman; Hölder continuity of solutions of elliptic systems, Manuscripta Math., 5

(1971), No. 4, 299–308.

Mykhailo V. Voitovych

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of
Ukraine, Gen. Batiouk Str. 19, 84116 Sloviansk, Ukraine.

Mariupol State University, Budivelnykiv Ave. 129a, 87500 Mariupol, Ukraine.
Vasyl Stus Donetsk National University, 600-richya Str. 21, 21021 Vinnytsia, Ukraine.

E-mail address: voitovichmv76@gmail.com


	1. Introduction
	2. Preliminaries and the statement of the main result
	3. Auxiliary results
	4. Proof of Theorem 2.3
	Acknowledgements

	References

