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SPECTRAL DENSITY ON THE QUATERNIONIC HEISENBERG
GROUP AND A GREEN KERNEL FOR FRACTIONAL POWERS

OF ITS CASIMIR-LAPLACIAN

ZAKARIYAE MOUHCINE

Abstract. In this article, we introduce a new integral representation of the re-
solvent kernel for the Casimir-Laplacian on the quaternionic Heisenberg group

which was obtained in [14] and then find its spectral density. Also we obtain

the Green kernel for fractional powers of the Casimir-Laplace operator.

1. Introduction

Spectral densities associated with partial differential operators are widely applied
in quantum field theory, scattering theory and elsewhere [4]. An explicit expression
for spectral density of the Kohn Laplacian for the Heisenberg group H3 = C × R
was obtained by Askour and Mouayn [6].

The first aim of this paper is to look for such formulae for the spectral density
for the quaternionic Heisenberg groups. These groups are defined by replacing the
complex field C by the field of quaternions H in the definition of H3. More precisely,
we make H × R3 into a nilpotent Lie group of step two by suitably defining the
group operation.

The second aim is to use the explicit formula for the resolvent kernel to give
the Green kernel of the fractional power of the Casimir-Laplace operator L, i.e, Lα
for α ∈]0, 1[, on the quaternionic Heisenberg group. We prove that its formula is
given by a series expansion in terms of the generalized Laguerre polynomials. The
techniques are similar to those used in [18] for sub-Laplacians on the quaternionic
Heisenberg group, which also works for the power of Casimir-Laplacian.

The plan of the article is as follows. In Section 2, a brief summary of the
quaternionic Heisenberg group and some properties of its Casimir-Laplacian are
given. We ends this section by establishing a new integral representation of the
resolvent kernel, that plays a major role in the following sections. The Section
3 deals with the spectral density for the quaternionic Heisenberg group. In the
section 4, we give a formulas for the Green kernel for fractional powers of the
Casimir-Laplace operator.
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2. Resolvent kernel on the quaternionic Heisenberg group

2.0.1. Quaternionic Heisenberg group and associated Casimir Laplacian. Let H be
the set of all quaternions, =H be the imaginary part of H, then =H ' R3. The
standard basis (1, i, j,k) satisfies

ij = −ji and ij = k.

Let x = x01 + x1i + x2j + x3k ∈ H. The real and imaginary parts are <(x) := x0

and =(x) := x1i + x2j + x3k. The related quaternion, x01 − x1i − x2j − x3k, is
known as the quaternion conjugate of x, and is denoted x. Let ω(x, x̃) = 1

2=(x̃x)
be a R3-valued symplectic map on H.

The product space H×=H together with the multiplication, noted by ”.ω”,

(x, z).ω(x̃, z̃) =
(
x+ x̃; z + z̃ + ω(x, x̃)

)
(2.1)

constitutes a Lie group, called the quaternionic Heisenberg group, and denoted by
H7
ω [14]. Its Lie algebra is generated by the left-invariant vector fields

∇e1,0 =
∂

∂x0
+

1
2

(
x1

∂

∂z1
+ x2

∂

∂z2
+ x3

∂

∂z3

)
,

∇e2,0 =
∂

∂x1
+

1
2

(
− x0

∂

∂z1
− x3

∂

∂z2
+ x2

∂

∂z3

)
∇e3,0 =

∂

∂x2
+

1
2

(
x3

∂

∂z1
− x0

∂

∂z2
− x1

∂

∂z3

)
,

∇e4,0 =
∂

∂x3
+

1
2

(
− x2

∂

∂z1
+ x1

∂

∂z2
− x0

∂

∂z3

)
and the canonical vector fields

∇0,ε1 =
∂

∂z1
, ∇0,ε2 =

∂

∂z2
, ∇0,ε3 =

∂

∂z3
,

where (e1, e2, e3, e4) and (ε1, ε2, ε3) are the canonical basis of R4 and R3 respectively.
The commutation relations between the generators are

[∇ei,0,∇0,εr ] = [∇0,εr ,∇0,εs ] = 0; i = 0, . . . , 3; r, s = 1, 2, 3;

[∇ei,0,∇ej ,0] = 2∇0,εk ,

where (ijk) is any circular permutation of (123).
We define the Laplacian L̃ as a Casimir operator on H7

ω by considering

L̃ =
4∑
r=1

∇2
er,0 +

3∑
s=1

∇2
0,ẽs . (2.2)

Explicitly, L̃ takes the form

L̃ =
∂2

∂x2
0

+
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
(

1 +
1
4

(x2
0 + x2

1 + x2
2 + x2

3)
)( ∂2

∂z2
1

+
∂2

∂z2
2

+
∂2

∂z2
3

)
,

+
(
x1

∂

∂x0
− x0

∂

∂x1
+ x3

∂

∂x2
− x2

∂

∂x3
)
∂

∂z1

+
(
x2

∂

∂x0
− x3

∂

∂x1
− x0

∂

∂x2
+ x1

∂

∂x3

) ∂

∂z2

+
(
x3

∂

∂x0
+ x2

∂

∂x1
− x1

∂

∂x2
− x0

∂

∂x3

) ∂

∂z3
.
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It is noted that L̃ can be written in terms of the standard Laplacian on R4,

∆R4
x

=
∂2

∂x2
0

+
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

,

and the one on R3, ∆R3
z

= ∂2

∂z21
+ ∂2

∂z22
+ ∂2

∂z23
, as follows

L̃ = ∆R4
x

+ 〈J(~∂z)x, ~∂x〉+
1
4
‖x‖2∆R3

z
+ ∆R3

z
, (2.3)

which can be also rewritten in terms of the sub-Laplacian L̃sub associated to H7
ω

as follows
L̃ = L̃sub + ∆R3

z
, (2.4)

where 〈·, ·〉 denotes the inner product and where ~∂x and ~∂z denote respectively the
gradient vectors on R4 and R3 given by

~∂x =
( ∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
and ~∂z =

( ∂

∂z1
,
∂

∂z2
,
∂

∂z3

)
,

and J(~∂z) is the operator matrix

J(~∂z) :=


0 ∂

∂z1
∂
∂z2

∂
∂z3

− ∂
∂z1

0 ∂
∂z3

− ∂
∂z2

− ∂
∂z2

− ∂
∂z3

0 ∂
∂z1

− ∂
∂z3

∂
∂z2

− ∂
∂z1

0

 .

Note that J(~∂z) is an skew-symmetric matrix whose square is given by

J(~∂z)2 = −∆R3
z
I4, (2.5)

where I4 is the identity matrix on R4.
Now we consider the operator L := −L̃ which acting on D(L) := C∞0 (H7

ω),
the space of complex-valued C∞- functions with a compact support in H7

ω, as its
natural regular domain is a densely defined symmetric operator. Precisely, we have∫

H7
ω

(Lf)g dm =
∫
H7
ω

f(Lg)dm; f, g ∈ D(L). (2.6)

Here dm(·) denotes the Haar measure of H7
ω. In fact, H7

ω is a unimodular Lie group
on which the Haar measure is just the product of ordinary Lebesgue measures on
R4 and R3.

Let (∇i)1≤i≤7 are the left-invariant vector fields on H7
ω given above. Then, from

(2.2) we have

L = −
4∑
r=1

∇2
er,0 −

3∑
s=1

∇2
0,εs := −

7∑
i=1

∇2
i ,

implying ∫
H7
ω

(Lf)g dm = −
7∑
i=1

∫
H7
ω

(∇2
i f)g dm.

The formula [10, page. 21] help us obtaining∫
H7
ω

(Lf)g dm = −
7∑
i=1

∫
H7
ω

f(∇2
i g)dm =

∫
H7
ω

f(Lg)dm,

which is exactly the symmetry propriety of L.
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By considering the quadratic form defined by

Q(f, g) = 〈Lf, g〉, f, g ∈ D(L), (2.7)

and using the formula [10, p. 21], we have

Q(f, f) = 〈Lf, f〉 =
∫
H7
ω

(Lf)f dm = −
7∑
i=1

∫
H7
ω

(
∇i∇if

)
f dm

=
7∑
i=1

∫
H7
ω

(∇if)(∇if)dm =
7∑
i=1

‖∇if‖2L2(H7
ω,dm) ≥ 0.

It follows that L is a positive operator on L2(H7
ω, dm).

Following the theory of operators associated with forms, the operator L admits
a unique self-adjoint extension (Friedrichs Extension) which is also a non negative
operator (see [5, p. 107] for the general theory). Here this extension will be also
denoted by L.

Positivity of L ensures that its spectrum is a closed unbounded set contained
in the positive real-axis [15, p. 178]. Then, by the general spectral theory for
unbounded self-adjoint operator, L admits a spectral decomposition {Eλ}∞λ=−∞
[5, 8, 9].

The {Eλ}λ is an increasing family of projectors that satisfy

I =
∫ ∞

0

dEλ

where I is the identity operator, and L =
∫∞
0
λdEλ in the week sense; that is,

〈Lf, g〉 =
∫ ∞

0

λd〈Eλf, g〉

for f ∈ D(L) and g ∈ L2(H7
ω, dm), where 〈·, ·〉 is the inner product in L2(H7

ω, dm).
The Casimir-Laplace operator L can be also expressed in the divergence form as

follows

L = −div(M~∇), (2.8)

where div is the vector operator divergence and ~∇ is the gradient vector on R7, i.e.,

~∇ =
( ∂

∂x0
, . . . ,

∂

∂x3
,
∂

∂z1
, . . . ,

∂

∂z3

)t
, (2.9)

and M is the non-degenerate symmetric matrix given by

M :=
(

I4 K
K> (4 + ‖x‖2)/4I3

)
, (2.10)

where I3 and I4 are the identity matrix on R3 and R4 respectively and

K :=
1
2


x2 x3 x4

−x1 −x4 x3

x4 −x1 −x2

−x3 x2 −x1

 (2.11)

and K> is the transpose.
According to Sylvester’s criterion [11], M is a positive definite matrix. Hence,

the operator L is elliptic. The positivity of our operator L also ensures that the
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semi group e−tL is well defined. Its integral kernel was obtained in [14] and it is
given by

kt(x, z; x̃, z̃) =
∫

R3
e−i〈z−z̃,λ〉e−t‖λ‖

2
e−

i
2 〈J(λ) x,x̃〉

×
( ‖λ‖

sinh(t‖λ‖)

)2

e−
‖λ‖
4 coth(t‖λ‖)‖x−x̃‖2 dm(λ),

where x, x̃ ∈ R4 and z, z̃ ∈ R3.

2.0.2. Resolvent of the operator L. It is well known that for a positive self-adjoint
operator A, the resolvent operator R(ζ) := (ζ − A)−1 is related to the the semi
group heat kernel by means of the Laplace transform [7, p. 56]

(ζ −A)−1 =
∫ ∞

0

e−ζs e−sAds; <(ζ) < 0, (2.12)

Thanks to this relation, the resolvent kernel for the operator L was obtained in
[14]. Here, we give a more simple representation of the obtained kernel.

Proposition 2.1. Fix a complex number ζ; <ζ < 0. Then, the resolvent R(ζ) :=
(ζ − L)−1 of the operator L is given by

R(ζ)f(x, z) =
∫
H7
ω

R(ζ; (x, z), (x̃, z̃))f(x̃, z̃) dm(x̃, z̃), (2.13)

where
R(ζ; (x, z), (x̃, z̃))

= −4
√

2π
‖x−x̃‖‖z−z̃−=(x̃x)/2‖

∫ ∞
0

Γ(−ζ2t + t
2 + 1)W ζ

2t−
t
2 ,
−1
2

(t‖x− x̃‖2/2)

× sin
(
‖z − z̃ −=(x̃x)/2‖t

)
t3/2 dt,

(2.14)

where Γ(·) is Euler’s Gamma-function and where Wκ,µ(·) is the Whittaker function
[1, p.505].

Proof. To prove (2.14), we recall first that for ζ ∈ C with <(ζ) > 0, the resolvent
kernel for L̃ has been obtained in [14] as

R̃(ζ; (x, z), (x̃, z̃)) =
√

2
‖x−x̃‖

∫
R3
e−i〈z−z̃,λ〉e−

i
2 〈J(λ)x,x̃〉Γ

(
ζ

2‖λ‖ + ‖λ‖
2 + 1

)
× ‖λ‖1/2W −ζ

2‖λ‖−
‖λ‖
2 ,
−1
2

(‖λ‖‖x− x̃‖2/2) dm(λ).
(2.15)

The Whittaker function can be defined as

Wκ,µ(z) = e−z/2zµ+
1
2U(µ− κ+

1
2
, 1 + 2µ; z), (2.16)

where U(a, b; z) is the Kummer’s Function of the second kind [1, p.504].
This implies that the resolvent kernel for L := −L̃; for <(ζ) < 0, is given by

R(ζ; (x, z), (x̃, z̃)) = −
√

2
‖x−x̃‖

∫
R3
e−i〈z−z̃,λ〉e−

i
2 〈J(λ)x,x̃〉Γ

( −ζ
2‖λ‖ + ‖λ‖

2 + 1
)

× ‖λ‖1/2W ζ
2‖λ‖−

‖λ‖
2 ,− 1

2

(‖λ‖‖x− x̃‖2/2) dm(λ).
(2.17)
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Taking the polar coordinates λ = rω; ω ∈ S2, the above kernel becomes

R(ζ; (x, z), (x̃, z̃)) =
−
√

2
‖x− x̃‖

∫ +∞

0

Γ(−ζ2r + r
2 + 1)Ix,x̃,z,z̃(r)

×W ζ
2r−

r
2 ,−

1
2

(r‖x− x̃‖2/2) r5/2 dr,
(2.18)

where

Ix,x̃,z,z̃(r) =
∫

S2
e−ir〈z−z̃,ω〉e−

ir
2 〈J(ω) x,x̃〉dσ(ω). (2.19)

By a direct calculation, we obtain 〈J(ω)x, x̃〉 = 〈u, ω〉, where u := −=(x̃x) ∈ =H '
R3. Hence, we can rewrite (2.19) as

Ix,x̃,z,z̃(r) =
∫

S2
e−ir〈z−z̃+u/2,ω〉 dσ(ω).

Using the identity [16, p.347]∫
S2
e−i〈v,ω〉 dσ(ω) = 4π

sin(‖v‖)
‖v‖

, for all v ∈ R3,

it follows that

Ix,x̃,z,z̃(r) = 4π
sin(‖z − z̃ + u/2‖r)
‖z − z̃ + u/2‖r

. (2.20)

Substituting (2.20) into the expression of the resolvent kernel in (2.18), we finally
obtain

R(ζ; (x, z), (x̃, z̃))

=
−4
√

2π
‖x− x̃‖‖z − z̃ −=(x̃x)/2‖

∫ ∞
0

Γ(−ζ2t + t
2 + 1)W ζ

2t−
t
2 ,−

1
2

(t‖x− x̃‖2/2)

× sin
(
‖z − z̃ −=(x̃x)/2‖t

)
t3/2 dt,

as required. �

3. Spectral density of the Casimir-Laplace operator L

In this section we shall use the technique developed in [6], to derive an explicit
expression of the spectral density of the Casimir-Laplace operator L of the quater-
nionic Heisenberg group. We denote this spectral density by ”eλ” and it is given
by

eλ =
dEλ
dλ

,

where {Eλ} is the spectral decomposition associated with the self-adjoint operator
L which understood as an operator-valued distribution, i.e., an element of the space
D′(R, L(D(L), L2(H7

ω))). Here L(D(L), L2(H7
ω)) is the space of bounded operators

from D(L) to L2(H7
ω, dm).

Since the operator L is elliptic, its spectral density eλ has an associated kernel
e(λ; ., .), an element of the space D′(R, D′(H7

ω × H7
ω)) [8, 9]. More precisely, we

have the following result.
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Theorem 3.1. The spectral density eλ = dEλ
dλ of L is the operator valued distribu-

tion ϕ→ 〈eλ, ϕ〉 from D(R) to L(D(L), L2(H7
ω)) given by

〈eλ, ϕ〉f(x, z) =
∫
H7
ω

[ ∫ ∞
0

e(λ; (x, z), (x̃, z̃))ϕ(λ)dλ
]
f(x̃, z̃) dm(x̃, z̃),

where

e(λ; (x, z), (x̃, z̃)) =
2
√

2π
‖x− x̃‖‖z − z̃ + =(xx̃)/2‖

×
+∞∑
j=0

[(λ+ j2)1/2 − j] 3
2L

(−1)
j ([(λ+ j2)1/2 − j]‖x− x̃‖2/2)

× (λ+ j2)−
1
2 sin

(
[(λ+ j2)1/2 − j]‖z − z̃ −=(x̃x)/2‖

)
× ([(λ+ j2)1/2 − j]2 − ζ)e−[(λ+j2)1/2−j]‖x−x̃‖2/4

and

L(−1)
n (t) =

−t
n

n−1∑
k=0

(
n

n− 1− k

)
(−t)k

k!
. (3.1)

Proof. By using the recurrence formulas Γ(γ + 1) = γΓ(γ), we can write the resol-
vent kernel of L given in (2.14), as

R(ζ; (x, z), (x̃, z̃))

= −2
√

2π
τρ

∫ ∞
0

(−ζt + t)Γ(−ζ2t + t
2 )W ζ

2t−
t
2 ,−

1
2

(tρ2/2) sin(τt)t3/2 dt,
(3.2)

where

ρ := ‖x− x̃‖ and τ := ‖z − z̃ −=(x̃x)/2‖. (3.3)

Substituting the summation formula [19, p.28]

U(a, b, z) =
1

Γ(a)

+∞∑
j=0

1
j + a

L
(b−1)
j (z)

into the expression of the Whittaker function (2.16), we get

Γ(µ− κ+
1
2

)Wκ,µ(z) = e−z/2 zµ+
1
2

+∞∑
j=0

1
j + µ− κ+ 1

2

L
(2µ)
j (z). (3.4)

For the parameters κ = ζ
2t −

t
2 , µ = − 1

2 and z = tρ2/2, the integral in (3.2) takes
the form

R(ζ; (x, z), (x̃, z̃)) = −4
√

2π
τρ

+∞∑
j=0

∫ ∞
0

e−tρ
2/4L

(−1)
j (tρ2/2)

(t2 − ζ)t1/2

j + −ζ
2t + t

2

sin(τt) dt

= −4
√

2π
τρ

+∞∑
j=0

∫ ∞
0

e−tρ
2/4L

(−1)
j (tρ2/2)

(t2 − ζ)t3/2

2jt+ t2 − ζ
sin(τt) dt,

where the generalized Laguerre polynomials are given in [17, p.102] by

L(−m)
n (x) = (−x)m

(n−m)!
n!

n−m∑
k=0

(
n

n−m− k

)
(−x)k

k!
; m ≥ 1.
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For each fix j ≥ 1, by performing the change of variables λ = 2jt + t2, we rewrite
the above kernel as

R(ζ; (x, z), (x̃, z̃))

= −2
√

2π
τρ

+∞∑
j=0

∫ ∞
0

(
[(λ+ j2)1/2 − j]2 − ζ

)
[(λ+ j2)1/2 − j]3/2e−[(λ+j2)1/2−j]ρ2/4

× (λ+ j2)−
1
2L

(−1)
j ([(λ+ j2)1/2 − j]ρ2/2) sin

(
[(λ+ j2)1/2 − j]τ

) dλ

λ− ζ

= 2
√

2π
τρ

∫ ∞
0

[+∞∑
j=0

(
[(λ+ j2)1/2 − j]2 − ζ

)
[(λ+ j2)1/2 − j]3/2e−[(λ+j2)1/2−j]ρ2/4

× (λ+ j2)−
1
2L

(−1)
j ([(λ+ j2)1/2 − j]ρ2/2) sin

(
[(λ+ j2)1/2 − j]τ

)] dλ

ζ − λ
.

Setting

e(λ; (x, z), (x̃, z̃))

= 2
√

2π
τρ

+∞∑
j=0

([(λ+ j2)1/2 − j]2 − ζ) [(λ+ j2)1/2 − j]3/2e−[(λ+j2)1/2−j]ρ2/4

× (λ+ j2)−
1
2L

(−1)
j ([(λ+ j2)1/2 − j]ρ2/2) sin

(
[(λ+ j2)1/2 − j]τ

)
,

(3.5)

we can write

R(ζ; (x, z), (x̃, z̃)) =
∫ ∞

0

e(λ; (x, z), (x̃, z̃))
ζ − λ

dλ. (3.6)

The convergence of the series given in (3.5) can be seen as follows. For j sufficiently
large, we have∣∣∣([(λ+ j2)1/2 − j]2 − ζ) [(λ+ j2)1/2 − j]3/2e−[(λ+j2)1/2−j]ρ2/4

× (λ+ j2)−1/2L
(−1)
j ([(λ+ j2)1/2 − j]ρ2/2) sin

(
[(λ+ j2)1/2 − j]τ

)∣∣∣
≤ c(λ)j−4L

(−1)
j ([(λ+ j2)1/2 − j]ρ2/2),

(3.7)

where c(λ) is a positive constant. Using the asymptotic formula [13, p.248],

L
(−1)
j ([(λ+ j2)1/2 − j]ρ2/2) = O(j−1),

the inequality (3.7) becomes∣∣∣([(λ+ j2)1/2 − j]2 − ζ)[(λ+ j2)1/2 − j]3/2 (λ+ j2)−1/2e−[(λ+j2)1/2−j]ρ2/4

× L(−1)
j ([(λ+ j2)1/2 − j]ρ2/2) sin

(
[(λ+ j2)1/2 − j]τ

)∣∣∣ ≤ c(λ)j−5.

Hence, the quantity e(λ; (x, z), (x̃, z̃)) defined by the series above makes a sense.
Using the polynomial expression of L(−1)

j ([(λ + j2)1/2 − j]‖x − x̃‖2/2) given
in (3.1), we can prove that the associated kernel e(λ; (x, z), (x̃, z̃)) of the spectral
density eλ is smooth with respect to the spacial variables ((x, z), (x̃, z̃)) ∈ H7

ω×H7
ω.

Now, in view of (3.6) for <(ζ) < 0 and f, g ∈ L2(H7
ω, dm), we have

〈R(ζ)f, g〉
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=
∫ ∞

0

dλ

ζ − λ

∫
H7
ω

[ ∫
H7
ω

e(λ; (x, z), (x̃, z̃))f(x̃, z̃) dm(x̃, z̃)
]
g(x, z) dm(x, z).

On the other hand, by recalling the formula rewritten in the weak sense [15, p. 93]

〈R(ζ)f, g〉 =
∫ ∞

0

1
ζ − λ

d〈Eλf, g〉.

and uniqueness of the spectral measure, we get

d〈Eλ, g〉
dλ

= 〈Kλf, g〉,

where Kλ is the operator

Kλf(x, z) =
∫
H7
ω

e(λ; (x, z), (x̃, z̃))f(x̃, z̃) dm(x̃, z̃), f ∈ L2(H7
ω, dm).

Finally, an interpretation argument of the operator Kλ in terms of the operators
valued distribution see [8, p. 9] completes the proof. �

Remark 3.2. Using the sandwiched resolvent formula [4, p. 57] we have

AR(λ− i0)B −AR(λ+ i0)B = 2iπ AeλB,

where R(·) is the resolvent operator given in (2.13), for all A,B ∈ L2(L2(H7
ω)) the

set of all Hilbert-Schmidt operators.

4. Green kernel for fractional powers of L

For 0 < α < 1 one defines the (fractional) power Lα by the usual functional
calculus. It is still an unbounded self-adjoint positive operator. As application of
the formula obtained for the resolvent kernel of L, we give the Green kernel of the
fractional power operator Lα for α ∈]0, 1[. More precisely, we have the following
result.

Theorem 4.1. Let α ∈]0, 1[. Then the Green kernel of the fractional power oper-
ator Lα is

Gα((x, z), (x̃, z̃)) =
−2
√

2π‖x− x̃‖
‖z − z̃ −=(x̃x)/2‖

∫ ∞
0

e−‖x−x̃‖
2t/4Wα(t)

× sin
(
‖z − z̃ −=(x̃x)/2‖ t

)
t

7
2−α dt,

(4.1)

where

Wα(t) =
∞∑
k=0

(t+ 2k + 2)−αL(1)
k (‖x− x̃‖2t/2). (4.2)

Proof. Since L is a positive self-adjoint operator, its resolvent [12, p.21 or p.83]
satisfies

‖R(−s)‖ ≤ 1
s
. (4.3)

This estimate enables us to define the fractional powers Lα, α ∈]0, 1[ according to
the formula [12, p.127]

Lαg =
sinπα
π

∫ ∞
0

sα−1R(−s)Lg ds, g ∈ D(L). (4.4)
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Thanks to Kato’s formula [12, p.124], the resolvent operator Rα(γ) = (γ − Lα)−1,
απ < | arg γ| < π, is given by

Rα(γ) =
sinπα
π

∫ ∞
0

ζαR(−ζ)
ζ2α − 2ζαγ cosπα+ γ2

dζ. (4.5)

The action of Rα(γ) on a function f ∈ L2(H7
ω) is

Rα(γ)f(x, z) =
sinπα
π

∫ ∞
0

ζαR(−ζ)f(x, z)
ζ2α − 2ζαγ cosπα+ γ2

dζ, dm(x, z)

-almost every where. Then the resolvent kernel of Lα is

Rα(γ; (x, z), (x̃, z̃)) =
sinπα
π

∫ ∞
0

ζαR(−ζ; (x, z), (x̃, z̃))
ζ2α − 2ζαγ cosπα+ γ2

dζ. (4.6)

The limit value γ = 0 in (4.6) gives a Green kernel of Lα:

Gα := Rα(0; (x, z), (x̃, z̃)) =
sinπα
π

∫ ∞
0

ζ−αR(−ζ; (x, z), (x̃, z̃)) dζ. (4.7)

Using the expression in (2.14), we obtain that

Gα =
−2
√

2 sin(πα)
τρ

∫ ∞
0

Nα,ρ(t) sin(τt) t3/2 dt, (4.8)

where ρ, τ are defined in (3.3) and

Nα,ρ(t) =
∫ ∞

0

ζ−αΓ( ζ2t + t
2 + 1)W− ζ

2t−
t
2 ,−

1
2
(tρ2/2) dζ.

By substituting a by tρ2/2 and using the identity Wκ,−µ(a) = Wκ,µ(a) [2, p.265],
the last integral becomes

Nα,ρ(t) =
∫ ∞

0

ζ−αΓ( ζ2t + t
2 + 1)W− ζ

2t−
t
2 ,

1
2
(a) dζ. (4.9)

Next, using the integral representation [3, p.147],

Γ(ν)W 1
2−

p
2−ν,−

p
2

(z) = z1/2−p/2 e
z
2

∫ ∞
0

e−ps(1− e−s)ν−1e−ze
s

ds; <z,<ν > 0.

In our case z = a, ν = ζ
2t + t

2 + 1 and p = −1, and therefore (4.9) reads

Nα,ρ(t) = a ea/2
∫ ∞

0

es(1− e−s)t/2e−ae
s
{∫ ∞

0

ζ−α(1− e−s)ζ/2tdζ
}
ds.

By directly computation, we have∫ ∞
0

ζ−α(1− e−s)ζ/2tdζ = (2t)1−αΓ(1− α)
[
− log(1− e−s)

]α−1

.

It follows that
Nα,ρ(t) = (2t)1−αΓ(1− α)a ea/2 Iα(t), (4.10)

where

Iα(t) =
∫ ∞

0

es (1− e−s)t/2e−ae
s

[− log(1− e−s)]α−1 ds. (4.11)

Making the change of variable e−s = 1− e−y, equation (4.11) becomes

Iα(t) = e−a
∫ ∞

0

yα−1(1− e−y)−2e
− ae−y

1−e−y e−( t2+1)y dy. (4.12)
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By using the identity

(1− w)−β−1e−
zw

1−w =
∞∑
k=0

L
(β)
k (z)wk, β, z ∈ C, |w| < 1 (4.13)

[17, p. 101] for β = 1, w = e−y and z = a, the integral Iα(t) may therefore be
written as

Iα(t) = e−a
∞∑
k=0

L
(1)
k (a)

∫ ∞
0

yα−1e−( t2+k+1)y dy. (4.14)

The change of variables λ = ( t2 + k + 1)y gives

Iα(t) = e−a
∞∑
k=0

L
(1)
k (a)(

t

2
+ k + 1)−α

∫ ∞
0

λα−1e−λ dλ

= e−a Γ(α)
∞∑
k=0

L
(1)
k (a)(

t

2
+ k + 1)−α.

(4.15)

Hence, (4.10) becomes

Nα,ρ(t) = 21−αΓ(α)Γ(1− α)ae−a/2t1−α
∞∑
k=0

L
(1)
k (a)(

t

2
+ k + 1)−α

= 2Γ(α)Γ(1− α)a e−a/2t1−α
∞∑
k=0

L
(1)
k (a)(t+ 2k + 2)−α.

(4.16)

Substituting (4.16) into the expression of Gα in (4.8) and using the Euler’s reflection
formula [20, p. 239]

Γ(γ)Γ(1− γ) =
π

sin (πγ)
for any complex number γ, the integral Gα in (4.8) becomes

Gα =
−2
√

2πρ
τ

∫ ∞
0

e−ρ
2t/4
{ ∞∑
k=0

(t+ 2k + 2)−αL(1)
k (ρ2t/2)

}
t

7
2−α sin(τt)dt,

where

Wα(t) =
∞∑
k=0

(t+ 2k + 2)−αL(1)
k (ρ2t/2). (4.17)

Using the asymptotic formula [13, p.248]

L
(1)
k (ρ2t/2) = O(k), (4.18)

we see that the series expansion in (4.17) is well defined. This completes the
proof. �

Remark 4.2. When α approaches 1 in (4.1), we recover the expression of the
Green function which was obtained in [14]. We hope to return to the case α > 1 in
a future work.
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