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GLOBAL WELL-POSEDNESS AND DECAY RESULTS FOR 3D
GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS IN
CRITICAL FOURIER-BESOV-MORREY SPACES

AZZEDDINE EL BARAKA, MOHAMED TOUMLILIN

ABSTRACT. This article concerns the Cauchy problem of the 3D generalized in-
compressible magneto-hydrodynamic (GMHD) equations. By using the Fourier
localization argument and the Littlewood-Paley theory as in [5} [31], we obtain
global well-posedness results of the GMHD equations with small initial data
belonging to the critical Fourier-Besov-Morrey spaces. Moreover, we prove
that the corresponding global solution decays to zero as time approaches in-
finity.

1. INTRODUCTION

We investigate the generalized magneto-hydrodynamic equations in the whole
space R3,

ug +u-Vu+ p(=A)*u —b-Vb+Vr =0 in (0,+00) x R?,
V-u=0, V:-b=0,
bi+u-Vb+v(=A)*b—b-Vu=0 in (0,+00) x R?,
(u,0)|1=0 = (uo, bo),

where u = u(t,z) € R3 denotes the velocity field of the flow, b(¢,z) denotes the
magnetic field, 7(,2) : R®> — R represents the pressure function, > 0 and v > 0
are real positive parameters, V -« = 0 and V - b = 0 represent the incompressible
conditions, and uy and by are for given initial velocity and initial magnetic field
with V -4y = 0 and V - by = 0, respectively. The operator (—A)?* is the Fourier
multiplier with symbol [£]?.

The GMHD system plays a fundamental role in applied sciences such as astro-
physics, geophysics, and plasma physics. The first equation of system reflects
the conservation of momentum, the third equation of system is the magnetic
induction equation, and the second equation of system specifies the conserva-
tion of mass.

When a = 1, the GMHD system becomes the usual MHD equations, which
describes the macroscopic behavior of the electrically conducting incompressible
fluids in a magnetic field; when o« = 1 and b = 0, the GMHD equations reduce

(1.1)
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to the Navier-Stokes equations. The study of the generalized equations will
improve our understanding of the Navier-Stokes equations and the MHD equations,
which has drawn much attention during the past twenty more years. Let’s take this
opportunity to briefly quote some works; Duvaut and Lions [TT] constructed a global
Leray-Hopf weak solution and a local strong solution of the 3D incompressible MHD
system, C. Cao, J. Wu [§] proved global regularity of classical solutions for the MHD
equations with mixed partial dissipation and magnetic diffusion, and they also give
the global existence, conditional regularity and uniqueness of a weak solution for
2D MHD equations with only magnetic diffusion. For more results in this direction,
see [0, @] and reference therein.

On the other hand, there are numerous important progresses on the fundamental
issue of the blow-up criteria or regularity criteria to the system (see [ITI, [7),
101, [14) [16], 151 22], 27, B2, [36] and the references cited therein for more details).

For the GMHD system 7 the global-in-time weak solution for any given
divergence free initial value (ug,bg) € L?(R™) was proved by Wu [29], the local-in-
time existence and uniqueness of smooth solution for any sufficient smooth initial
data (ug, bg) was established by Yuan [33], and Liu, Zhao and Cui [2I] obtained the
global existence and stability of solutions for system with small initial data
(up, bo) belonging to the pseudomeasure space PM®*, where PM® is defined by

PM = {f €8 [ € Line(R®), | flpase = esssupeeps [€]°1f(€)] < 00}

Recently, Wang and Wang [28] and Ye [37] obtained the global existence results for
classical 3-D MHD (a = 1) and GMHD (4 < a < 1), respectively.

To give a clearer introduction to our results in this paper, we first note that
system (1.1]) enjoys scaling properties. Clearly, if (u(t,x),b(t, x)) is a solution to
system , then (u(t,z),b(t,)) is also a solution of (1.1) corresponding to the
initial data (u), b)), where

uMt, ) = )\zo‘flu(/\zo‘t,)\z), Wt x) = )\za*lb()\%‘t,)\a:),
ud () = N2 tug(Ax), by (x) := N2 Thy(\x).

In this article, we use FAN ;7 A,q t0 denote the homogenous Fourier Besov-Morrey
spaces, C' will denote constants which can be different at different places, U < V
means that there exists a constant C' > 0 such that U < CV, and p’ is the conjugate
of p satisfying % + i =1forl<p<oo.

Motivated by the works [37, BT 14} 2], the aim of this article is to prove the global

existence and the decay property of the system ((1.1)) in the Fourier Besov-Morrey
—2a+5 42
P P

1
spaces FN (R3).

2. PRELIMINARIES AND STATEMENT OF MAIN RESULT

The proofs of the results presented in this paper are based on a dyadic parti-
tion of unity in the Fourier variables, the so-called, homogeneous Littlewood-Paley
decomposition. We recall briefly this construction below. We start with a dyadic
decomposition of R™.

Suppose x € C5°(R"™), ¢ € C5°(R™ \ {0}) satisfying

4
suppx C {{ € R": [¢{| < g},
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supptpC{SER”'*<|£\ },

O+ e@7¢ =1, ¢eR",
7>0

277 =1, €eR"\{0},

JEZL

and denote ¢;(£) = p(277¢) and P the set of all polynomials. The space of tem-
pered distributions is denoted by S’. The homogeneous dyadic blocks A; and the
homogeneous low-frequency cutoff operators S; are defined for all j € Z by

Aju= (277 D)u = 27" / h(2y)u(z — y) dy,

= Y Awu=x@ D)= 2J"/h (2iy)ulz — y) dy,
k<j—1
where h = F~lp and h = F1y.
First, we recall the definition of Morrey spaces which are a complement of L?
spaces.

Definition 2.1 ([I7, 25]). For 1 < p < oo, 0 < A < n, the Morrey space M;‘ =
M, (R™) is defined as the set of functions f € Lj (R") such that

loc

| £llay = sup supr ™| £l o(Ba.ry) < o0, (2.1)
xoER™ >0

where B(xg,r) denotes the ball in R™ with center xy and radius r. the space M;}
endowed with the norm Hf||M£ is a Banach space. In the case p =1, M;} should
be understood as a space of Radon measures and || f||11 (B(x,r)) denoting the total
variation of f on B(zg,r). For various reasons we find it convenient to include
L*° among the Morrey spaces, but the indices in the notation M;} will always be
restricted to 1 < p < 00, 0 < X < n, notwithstanding that makes sense for
A = n and the resulting space is equivalent to L (irrespective of the value of p).
It is not difficult to see that the relation M’\ — MF, provided “ > "p—lk and
p2 < p1, and MY = LP.

If 1 <p1,p2,p3s < oo and 0 < Aq, Ao, A3 < m with 1%3 = pil—i—p% and ;‘—3 = %—i—%,
then we have the Hélder type inequality

1792 < 1 lygss ol
Also, for 1 <p < ooand 0 < \ < n,

o+ glhay < lellza gl (2.2)

forall p € L' and g € M;}.

Definition 2.2 (homogeneous Besov-Morrey spaces). Let s € R, 1 < p < 400,
1 < g <400, and 0 < A < n, the space N;’A)q(R”) is defined by

Ny a®) = {u € Z®): lully, oy <o}
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Here _ )
{ Tz A5l }* for g <o,
[l s, @y =
SUp j ez SUP27 A, U”M)\ for ¢ = o0
The space Z'(R™) denotes the topological dual of the space
R") = {f € S(R"); 8° £(0) = 0 for every multi-index at,
and it can be identified to the quotient space S’'(R™)/P, where P denotes the set
of all polynomials on R™. We refer to [34], chap. 8] for more details.
Definition 2.3 (homogeneous Fourier- Besov—Morrey spaces). Let s e R, 0 < A <

n,1 <p< +4ooand 1 < q < +o00. The space .7:/\/' 2q(R™) denotes the set of all
u € Z'(R™) such that

fullrs gy = { S 2% 1Al } " < +oc, (2:3)
JEZ

with suitable modification made when ¢ = oo

Note that the space fN 4(R™) equipped with the norm is a Banach
space. We also notice that the Fourier-Besov-Morrey spaces are independent of
the choice of ¢;, and the advantage of working in these spaces lies in they are
more adapted than the classical Besov-Morrey-spaces for estimating the bilinear
paraproduct using Holder’s inequality directly, instead of Bernstein’s inequality.
Now, we recall the definition of the mixed space-time spaces used in [5] B1].
Definition 2.4. Let se R, 1 <p<o0,1<¢q,p<o0,0< A< n,and I =1[0,T),
T € (0,00]. The space-time norm is defined on u(t, z) by

@) o1, 7n

pAsg)
= {2 Bl gy}

JEZ
and denote by £°(I, f/\fp A,q) the set of distributions in S"(R x R™)/P with finite
||.H£p(1,prmq) norm.

Our first main result is the following theorem.
Theorem 2.5. Let 1 <p<o0,1<qg<2,0<\<3, andl<a<1+2§,+;p
1-2a+ 542

Then there exists a constant Co(a, p, q) such that, for any (ug,by) € pr A
satisfying V - ug =V - by = 0 and

||(u0ab0)” . 1—2@«}»%«}»% S CO min{u,u},

P,A.q
the Cauchy problem (1.1) admits a unique global solution
1-2a+3 42 1+5+3

(u,b)eC([ )]—'J\/'pAq )ﬂ£1([ ).7-'/\/
and it satisfies

[ (w, )] sat 3
fx([O,OO);FN P

")

sl

?)net ([O,oo),f/\./;t\%Jr )

P, q

16
< 2(1 + (g)a) (0 b) | 4 sarsia -
FN LA

P,A,q
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Remark 2.6. Theorem extends the result of [20] from Fourier-Herz spaces to
Fourier-Besov-Morrey spaces, in fact, for A = 0, ]-"./\./io . FBiq = BZ where 5’;
is the homogeneous Fourier-Herz spaces (see definition .

In addition, this result also holds in the Fourier-Besov spaces, in fact, for A = 0,
FN ;)Qq = FB;q where FB;yq is the homogeneous Fourier-Besov spaces.

We also remark that for general o and b = 0, the equation of system

becomes the Fractional Navier-Stokes equations.

Our second purpose of this paper is to prove the non-blowup at large time and
cl-2a+5 42 P
the norm of global solution in FAN A goes to zero at infinity.

A
Theorem 2.7. Let 1 < p,g <2,0< A< %, and % + % < a < 1. Assume
~172a+%+A

that (u,b) € C(]0, 00); FNp a g ") is a global solution of system (L.1)) given by
Theorem [2.5, then

Jim sup ()] 1aegon + 10O 1awisin ) =0,
—oo FN,ovg O 7 FN,ovg O F
Recently, Zhuan [37] obtained the same property in the space x® = FBi1 =
FN i,071' Therefore, Theorem improves and extends his result.

: A2tk TA g e
Remark 2.8. The Fourier-Besov-Morrey space FN oxg (R®) is critical for

(TI). For this, set uo.(€) = 7~ ug(y€), then Go5(€) = 722~ 4p(y~2€). Next,
setting

£1(&) = (27t losnlTlos 16y 555 (¢,
we can obtain

j(1—2a+3 42
22 £
:2j(172a+5+%) sup Sup,rf)\/PH(p(2*j+[log2’Y]*logQ’Yé‘)u/o’\’y(é‘)”Lp(B(xﬂm))
.'L'()E]R3 r>0

— g(llogy 7] —logy v)(1—2a+ 5 +3) o (i —[logo M) (1 =20+ 5 +5) | (277 oz )\]77)775(77)”M;

i—[lo —2a+3 42 —j+[lo e
o 9li—llog; ) (1-20+ 5 +‘”)H<P(2 J+ g?’\]n)uO(U)\|Mg~

This implies

j(1-2a+ 242 Y
{20 ) S ol s

JEZ F. A,

and since

0O~ = > ©i(©)f(9)

[k—j]<2
we easily get
HUO,’Y ‘ ,1—2u+§+% ~ ||UOH ,1—2n+%+% .
PiA,q PiA,q
Similarly,
HbO,WH .1—2a+%+% ~ HbO” .1—2a+§+%7
PA.q F. PyA,q
A—2a+5 4+ 2

thus FN 5 , P is a critical space for the GMHD equations (1.1
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Now we introduce the Fourier-Besov spaces which contain some known spaces
applied in studying Navier-Stokes equations. The norm of Fourier-Besov spaces
FB; [31] is defined as follows.

Definition 2.9. For s e R, 1 < p,q < o0, set

. T~ 1/q
(Z]‘ez zquHAjUH%p) for g < oo,

SUp;ez, 2% || A jul| o for ¢ = oo

||UHFBI§,Q =

One defines the homogenous Fourier-Besov spaces FB by
P}, = {u € SE)/P: lulpg,, < oc).

Particularly, for p = 1 Cannone and Wu introduced the Fourier-Herz spaces B;
[5] with the norm associated

(zjezmqsnAJ ul|2,)Y? for ¢ < oo,
Supjez, 27 HAJUHU for ¢ = o0

Clearly, we have BS = Fqu. The space x ! introduced by Lei and Lin [I8] is
P fue S [ € falde < oc).
R

We have x~! = FB;% = B;'. We finish this section with a Bernstein type
lemma in Fourier variables in Morrey spaces.

Lemma 2.10 ([I3]). Let 1 < ¢ < p < 00, 0 < A\, Ay < 7, ”—Iﬁl < "—q*’-’, and
let v be a multiindex. If supp(f) C {|¢| < A2} then there is a constant C > 0
independent of f and j such that

16 Fllyge <

n)\]

|17 [AYEeR (2.4)
Note that

1€ Fllype < CPPLFlpse <
which gives ([2.4)).

_n—A
p

)Hf”M;lﬂ

3. WELL-POSEDNESS

First, we consider the linear nonhomogeneous dissipative equation
g+ (=A% = f(t,z) (t,r) € RT x R
u(0,7) = ug(z) =€ R?,
for which we recall the following result.
Lemma 3.1 ([I2]). Let I =1[0,T7),0<T <00, s€R, 0<A<n,1<p< oo, and

1 < g < o0. Assume that ug € ]—"./\fp Ag and [ € L3I, .7:./\./;,/\7,1). Then the solution

u(t,x) to the Cauchy problem (3.1) satisfies

||u||,ew<f,m;,x,q> +pllull gr g parszey

16, (32)
< A+ ()Mol gy, + M lerazxr )

If in addition q is finite, then u belongs to C(I pr Ag)-

(3.1)



EJDE-2017/65 MAGNETO-HYDRODYNAMIC EQUATIONS 7

Proof. Inequality (3.2)) was proved in [I2]. Now, we shall briefly present the proof
of the continuity of u(t,z) in time ¢ when 1 < ¢ < co. By using the definition of
the Fourier-Besov-Morrey spaces, we have

lu(ts) — ult2)[I%
is | A A TN 3.3
< @iy (h) — ) lae)? +2 30 @y () o)t )
J<N >N
where 1; = ;0. For any small constant € > 0, let NV be large enough such that
Z 2]Sq||u ||Loo I MA) < Z (34)
>N
By using Taylor’s formula, we obtain
D@0y (t) = (t2) )
J<N

<t —to]? Z 2jquatﬁj(t)Hqu(1,M*)
J<N ’

/S |t1 - t2|q||atu( )||£1 I]:./\/ ) (3 5)

<t — t2|Q(uq||(— ) UIILI ey T e q>)
< _ qa(,q q .
~ |t1 t2| (ILL ||u||£1 I.F./\/5+2a + ||f||£1(17'7:N;)\,q))

Sttt (24 () (ol 410y p )

Combining (3.3]), (3.4), and (3.5), we obtain the continuity of w in time ¢. The
proof is complete. [l

Lemma 3.2 ([12]). Let 1 <p<o0,1<p<o0,1<q¢<2,

1 2+ ]% + %
2S4S T T
P
0< A< 3, and set
1-2a+% 43 1—2a+% 2242
X = £°°(I]:NpAq yn £°(1, }'NpAq ”y,
with the norm
Jullx = [[ull T + min{s, v} ull A-zat B 2oy A
FNove T LP(LFN, v, " )

There ezists a constant C = C(«a,p,q) > 0 depending on «,p,q such that

[V.(u® o) e g e2e sy < Clmin{p, )™ Hlullx flo]lx -
£e(I,FN

PiX.q )

Proof of Theorem [2.5. We use the Banach fixed point theorem to ensure the exis-
tence of global mild solutions with small initial data. Note that the functions here
are vector fields, whose norm is the sum of the norms of the three components.
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According to Duhamel’s principle, the mild solution (u,b) for system (L.1)) can be
represented as

t
uw=e ATy, — / e M)A PY L (u@u— b @ b) (-, 7) dr = 1 (u, b),
0

t
b=e A "py — / e VENEAPY L (u@b—b@ u) (-, 7) dr = 1y (u, b),
0

(3.6)
where P = Id — VA~!V is the Leray-Hopf projector, which is a pseudo differential
operator of order 0. Let

. 1—2&—&-&—5—% . 1+%+%>
PA.q

X = £°°([o,oo);fj\fmq )ﬁ.ﬁl([O,oo),fN
For u,b € X, we define the norm of vector (u,b) as
[[(u, 0)l[x = llullx + bl x-
Let

t
B, (u,v) ::/ e PEDERTPY (4 @ ) (1, z)dr.
0

It is clear that the system (3.6)) can be rewritten as
(U7 b) = (1;[}1 (’U,, b)7 ¢2(U7 b)) = (b(uv b)

We note that B, (u,b) can be thought as the solution to the heat equation with
up = 0 and force f = PV.(u®wv). According to Lemmawith s=1-2a+ % + %
and Lemma[3.2)with p = 1, and the fact that P is an homogeneous Fourier multiplier
of degree 0, we obtain

1Bab)lx < 1+ COMPY.edl g
9 E£ULFN, v, 70 7) (3.7)
16

< (14 () ") Clmin{p, v}~ ful x b] x -

We also notice that e #(=2)%y is the solution to the dissipative equation with
up = ugp and f = 0. So, Lemma [3.1] yields

e 16, o
le™CH uollx < (14 () uoll_ 1-ausger - (3:8)
FN P

P,A.q

By using the estimates (3.7) and (3.8)), we obtain

16, a
9a(b)lx < (1 () woll 1w
FNpxa (3.9)

FO(1+ ()" mingge )~ (el + 013

Similarly, letting

t
B, (u,v) ::/ e V=R PY (u @ v) (7, x)dT,
0
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we obtain
16«
[42(u, b) || x < (1+ (3) )lboll EECE TS
y FNpxa (3.10)
+20(1+ (g)a)(min{ﬂ, v lullx bl x -
Since [[(uo,bo)|l 1 2ar3 +» < Comin{p,v}, define
P,X.q
16« )
E = {(ub)l(ub) € X, | (u,b)llx <2(1+ (5)")Comin{p,v}},

where Cj is a constant which can be chosen later. Combining (3.8), (3.9)), and
(3.10]), it follows that for (u,b) € E we have

19w, b) ]| x
16 [e} 16 [e% . —1 2
< (4 () M@os o)l sayen +C(1+ (5)7) (mindp, 1) (w,0)[1%
9 FN, . T 9
16, o . 16\ a3 2 .
< (14 ( 9 )")Comin{p, v} +4C(1+ (5) )" C§ min{p, v},
which implies that ®(u,b) € E when we choose Cj small enough such that Cy <
1
160 (14(26)")"

On the other hand, for any (uq,b1), (u2,b2) € E, we have
[0 (u1, b1) — Y1 (u2, b2) | x
< [[Bulur, ur) = By(uz, uz)||x + || Bu (b1, b1) — Byu(bz, ba)l|x
< |1 Bu(ur, ur — ug) + Bu(ur — uz, uz)||x + || Bu(br — b2, b2) + Bu(b1, b1 — ba)||x
<O+ (%)a)(min{u»V})_l((||u1||x + [luallx)llua — uzllx
+ (b1l x =+ [[b2llx) 1b1 — b2 x)

16\«
<4C(1+ (5)") Colllur — uzllx + llor = ballx)

1
< Z(HW — Uz||x + ||br — ba|x)-

Similarly,
[[th2(ur,b1) — Ya(uz, ba)l x
< [[By(uz, b2) = By (u1,b1)|[x + [| By (b2, uz) — By (b, u1)llx
<40(1+ ()" Colllur — wllx + 1 — bal1x)
< 3l —wallx + o = ballx).
Consequently,

1
19 (ur, b1) = @(uz, ba)llx < 5 (Jlur —uzllx +[lbr = baflx)-

From the above estimate, we obtain that ® is a contraction mapping from F to E.
By the Banach fixed point theorem, we conclude that ® has a unique fixed point
(u,b) € E which is the solution of system (1.1]). The proof is complete. |
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4. DECAY PROPERTY

In this section, we first introduce the following interpolation inequality which
have their own interest in the sequel.

Lemma 4.1. Leta<g+%, s>g—2a—|—%, and 1 < p,q < 2. Then we have

1_5/2=2a4X/p 5/2—2a+\/p
I acsarsia Sl = @)l -
PiX,q
Proof. By definition of Fourier Besov-Morrey spaces and Hélder’s inequality we
have

[Jull 2o 54 S
A9
_ {Z2j(1—2a+§+%)q”%ﬁ“§“}1/q
jez '
(193 A 3y.\ 47 1/4
{20 sup supr P pjillia 25 727) )
. onRs r>0
JEZ
(5 _ogt A . 1/a (59t A —s\gai . 1/q
S{ 3 P il | {3 2R ) )
J<M G>M
1/2 s N ) R 1/2
S 202NN pjalfaen - +20 723NN g R )
jez jeL

Taking M such that 2M = (HUHHS/HUHL?)US, using FB;)2 = 35,2 = H* and
ng = L?, we obtain

ol .\ 2 E ol 7.\ 2
U\ frs s Ul g s
ol sosoe oy S () lulsg, + (o) el
A q
17%7204«#% 3-2a+2
Slullpe = ullg,
Similarly,
1_%72a+A S-2a42
[l iczargen Slvl ol
JIRNY)
Finally,
Hu” .1—2a+§+%+”v” 2ot 342
PiX.q P\.q
17%720&A $-2a4+2 17%720&% 3-2a+2
Slulle = ully, = +llvllge loll . °
This completes the proof. O

Lemma 4.2. Let % <a<landl1l<p,q<2. Then we have

fuvllpee < Cllullallol_oargoy + Clldlgallol_sswegey - (4

P\,q P\, q
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Proof. The argument of this lemma is similar to the proof of Lemma [3.2] In fact,
let us introduce some notations about the standard localization operators. We set
u; = Aju, Sju = Z Aju, Aju = Z Aju, VjeZ.

k<j—1 [k—jl<1

Using Bony’s paraproduct decomposition and the quasi-orthogonality property for
the Littlewood-Paley decomposition, for fixed j, we have

Aj(uv) = Z Aj(Sk,luAkv) + Z Aj (Sk,ﬂ)Aku) + Z Aj (Ak’LLAkU)
|k—j]<4 |k—jl<4 k>j-3
=1 +11; +111;.
For the proof of this lemma, we can write

) ~ 1/2 , _ 1/2
luwll e < {20255+ { D PO IT ) |

JEL JEL
. — 1/2
+ {20 T 3. }
JEZ
The terms I; and I; are symmetrical. Using Young’s inequality, and Lemma
with |y| = 0, we obtain

(4.2)

~ el
Gl < S 18 1wl ol e
|k—j|<4
< >0 Bkl D e
|k—j|<4 1<k—2
~ SBpAy o
S 2 Mol D0 297 g
|k—j|<4 1<k—2
ERPN ~
< Z ||i}\kHL2 Z 21(‘”/+")2_l(2a_1)2l(2a_1)HUlHM;
|k—j|<4 1<k—2
< Y POV Glull sy
[k—j|<4 ‘7:'/\/10,%,41
Consequently
J(1—a)2( 7.2 1/2
{20252 S ollgallull o auisiy - (4.3)
JEL }-Np)\,q

To estimate the term I1;, we make a minor modification to get

—

T2 < > I1Sk-1vAgul o
k—g| <4
< 3 arle Y 6z
|k—7|<4 I<k—2
k(3 42) )~ ~
S D0 2P ey D Nl
|k—j|<4 I<k—2

So we have . s
I 2k (342~
T2 £ 30 25Dy ol
|k—j|<4 ’
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This leads to

ey 1/2
[P} Sl ey Belae (4.4)

JEZ F. P, X,q

Now, we estimate the last term, let

1
IIIjk = AJ( Z Aﬂ)Aku) = Z Aj(AkuAi+k'U).

li—k|<1 i=—1

The estimate of the so-called “remainder term” requires a different approach. First

we use the Young inequality (2.2)) in Morrey spaces, and Lemma with |y| =0,
we obtain

29 =TT Iy | .2
1
< ) 270072 | o |63k |

i=—1
1
< Z 2ja2(1—Qa)(j—k:)2(2a—1)i2(1—2a)i2(1—2a)kH,&kHL2
i=—1
ERPYy .
% 2(pl+p)(z+k)||vi+k||M;\
1

= E 2jo<2(1 20)(J k)2(2a 1)i2(1 2 5/ 2)(1' k)||ﬂk||L2||ﬁi+k||M>\-
D
i=—1

Taking the I2—norm on both sides in the above estimate, and using the Holder’s
inequalities for series, we obtain

) — 1/2
{3202 I 3. }

JEZ
j 1—2a+4 3 +2)(j—1 241/2
< {Z (223a2(172a)l2( —2a+5+5)(— )Hﬂjfl”L?”@jfl”M;) }
JEZ 1<3
S DD 2dep 22t DG a6 ey (4.5)
JEZ I3
o 1/2
< Z 2(17a)l{ Z 92a(j l)HUj—l”%Z} lo]| R
1<3 jez FNpaz
5 ||u||H0<||UH _1—20&»%4»% s
PN

where we have used the fact that 1 < ¢ < 2 implies

cA—2a+5 42 cl-2a+5 42
P P P P
FN —FN, 2o

P,A.q
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and Fng2 = H*®. For the case o = 1, we have

(S i)

JEZ
1
< Z( > lei©) x > *ﬁkHHLZ)
JEL k>j—3 i=—1
1
<sup (Y0 0i(€)) DI Y e w B o
£ ez keZ i=—1
1
< 3> el eellowillon
i=—1k€eZ
) o (4.6)
< 3032 s [0l
i=—1k€eZ
1
< 37 S22 g a2 BTG 5y g
i=—1k€EZ
<O 2 g 22" iy
kEZ
< Cllullglloll 502
P2
< Cllullgalloll sy -
P\,q

Estimates (4.2), (4.3)), (4.4), and [4.6) yield (4.1)). O

Proof of Theorem[2.7. The proof is largely based on the idea from the work of
Gallagher-Iftimie-Planchon [I4] and (see also [37, 2, BI] and [I9, chap. 11]). Let
€ > 0 be any constant small enough such that ¢ < Cymin{y, v}, where Cy is the
constant given in Theorem and pu,v are the viscosity coefficient in . For
k € N, define

A = {€ € R €] < k and |io| + [bo| < k}.
-1 - -1 7 . Sl-2a+ 542
Clearly (F~'(xa,%0), F~"(xa,bo)) converge to (ug,bo) in FN "
Then, there is k € N such that

_ . _ 5 €
luo = FH (xar @)l 1ozarsen + 1100 = FHxabo)l 1izarsia <5
P P F P P 2
PA.q P,\,q
Put
uok = F (xato),  bok =F (xabo),
wo i = o — FH(xanlo), dog =bo — F (xabo)-
cA-2a+5 42
Then ug k, bo x € ]:Np,k,t? """ N L2 and we have shown that
€
||w0,k|| 1-2a43 42 T HdO,k” 1—2a43 42 <5 (4~7)
p’ P p’ TP 2

PA.q piA,q
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Now, we consider the system

wy +w -V + p(—A)*w —d-Vd+ V=0 in (0,400) x R?,
V-w=0, V-d=0,
: 3 (4.8)
di +w-Vd+v(-A)*d—d-Vu=0 in (0,400) x R’,

(w,d)|t=0 = (wo,k, do,k)-

Since £ < C mm{;‘ v < Comin{u, v}, we deduce from Theorem [2.5that the system
(4.8) has a unique global solution

(wn,di) € C([0, 00); FN, 0¥ 5y 1y £1([0, 00), FAL 57T

P,A,q ) ?
such that

om0}

1-2a+ 543 1+ 542
o Y ([0,000, 7K, 7 7)
< CH(wo,kydO,k)H 1-2a4 3,42 -

pra B ? ’

£ ([0,00):F N

Moreover, for any ¢ > 0 we have

lwe I oas 2 + [[de(@)]]
FN AN

3 A
1—2 B LA
. a+ -3+
P,N,q

P, A,q
e + vl|di|
£ (0. 7n0 )

qu

+ il | (o) (4.9)
) A

7
q
< Cllworll  i-zarsia +Clldol

A .
1—-2a+4 3 4+ 2
A2t B S
PiX,q

PiX,q

Next, we take into consideration the difference up = u — wy, b = b — di, which
satisfies

(un br) € ([0, 00); FNL T )£ (po,
Opug + p(=A)ug + (u - Vug + (ug - Vwg + Vo — Vg = (b V)bg, + (b - V)d,
Bibr + (= A) by, + (w - V)by, + (up - V)dy = (b V)ug + (b - V)wp,
V-u,=0, V-b,=0,

where 7 and 7, are the correspond pressures to the solutions v and wy, respectively.

Taking the inner products of the first equation with u; and of the second equation
with b, and integrating by parts, we can show that
1d

5 sl + 13) + pll(—8) B3 + v(~2) B3

‘/ ug - V)wy, - ukdm’Jr‘/ )dk.ukdx’
R3

+‘/ (uk~V)dk-bkdm’+‘/ (bk-V)wk~bkdx‘
R3 R3
=hLh+L+13+1,

where we have used the cancelation property

R3 R3

Integrating by parts, Holder’s inequality, and Lemma [£.2] yield
I = (V. (ux @ wy), ug,)|

)]__NJr +)7

PA.q

(4.10)
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1

< I(=A)27% (ug @ wi) | 2]l (—A) Z g | 2
< Clluk @ wi|l gra—o llukl o

15

< Ollurllzallon]| _omvegoy el + Ol 0nll a3
P,X.q A, q v
6C?
<—|\uk||L2||wkH v god + azllunl o+ Cllunlalloell L auis

p/\q

PX.q

By (4.7) and (4.9) we have HwkH 1osar 312 < C5. We further assume ¢ small
FN, v, U7

enough such that C%e < thus

1%
6C?
L < 7\\Ukl\%2llwkll2

2
Nl a+~r+’\ + 12||U/k||

P,A.q

To estimate Is, we have
I = [(V.(bx @ d), ur)|
< H(=A)27% (b ® dio) || 22| (—A) F g 2

(4.11)

< Cllonlleldn| oo oo Tl + CMokllga il sy Nkl

P,A.q F. P,A.q

6C? 6C

<—||bk||L2||dkH oo +f|\uku2a+—|\bkn S A P

2wl

P,A.q

By (4.9), we have ||dx|| a-zar 3y S C5. We take sufficiently small ¢ such that

PN, q
1/2,.1/2
C?% < 2l:ff , we obtain

6C?

2 2 H 2
I < 7||bk||L2||dk|| e + 2|\bk|\ 1o 1 15 1wl -

P,A,q

Similarly,

6C° 2 2 v 2 K 2
I3 < T"ukHL?”dk” .l—a+%+% + EkuH 7o T E”uk”HQ )

PiX.q
6C? v
I < —gllZellwell” _orson + 5 l1bel o
p’ TP 12

}-Np,k,q

Combining (4.10), (4.11)), (4.12), (4.13), and (4.14)), we obtain

d

%(HukH%Z + 16k 1172) + pellwn 3 + 110k (17,
12C? 12C?

< max(

P,A.q

+ ||d/€||2 '1—a+l,+A) .
N L

PX.q

(4.12)

(4.13)

(4.14)

2 2 2
=) (el + 1oz (el s
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Integrating in time and using Gronwall’s lemma we obtain

t t
g2 + [Bel22 + p / il + v / 1522,

< ( 72) exp { max (1202 , 121/02) (4.15)

/||wk||2 s +A+/ L +)}

Since ¢ < 2, by Holder’s inequality, we obtain

/||wk|| o3

p/\q

o 372/4
<t [ty

JEZL

2/q

1-20+ 3 4+2)8 51+ 3+2

< {Z2j( “ »)2gll )2”%wk||Loc ([0,8), MA)”%wk”Ll [0,6), MA)}
JEZ

< HwkH ,k2a+p%+,A ”wk”

143 A .
£([0,t),FN

£1(10,6),FN, P 7)

P\, q

Similarly,

/HdkHQ e S ] BN

Noag N s £1([0t)]-'/\/'pkq !

With the aid of (4.9]), we obtain

t t
st f+/ R
0 ]:Np)\,q Juq

< Jwg | ‘1 2045 +* ||wk|| 14342
£22([0,t),FN |, 5\ 4 L1([0,1), NpAq ")

+||dkH A-zat S +* ”d H

2545
£2(00),FN, v, O F) £1([0,t),FN

pkq )

< g (lhel? sers R s
WFN, . D) £1((0,t),FN

p/\q )
+ oo (Idel? s as V] v )
£°°([Ot) FNpse 700 £1([0,4),FN, 7 7)

< max( B + ||dk|| 1-2a+5 42

[
)< L2([0,6),FN, 5 g 7 ) £0([0,t),FN

P,\,q )
2
+ | aesea vl s )
1[0,6),FN, T ) £1([0,t),FN )

p/\q
2 2

c: C
< - — dox)|? :
- maX(Q,U/’ 2V)||(w0’k’ O*k)H N1—2a+%+%

P\, q
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17
Consequently,
t t
k2 + ]2 + g / il + v / X
0 0
6C* 6C* 6C*
§ (HUO’]CH%Z + ||b0’k||%2) exXp { max (W’ ?, 7) (416)

X ||(w0,k7d07k)||2 '172a+§+%}

PX,q

Qv

2
o

Now, noting ¢ = 2=2a+2\/p
]:j\_/_172u+%+% + ”bk” . 172a+%+%)

5 and using Lemma H we obtain
PyA,q FN

t
/ (el
0 P, q

2 t (1=2) 2
SCU/O (a2 + 106122) 7 (lunll gre + B8]l )
Now (4.16|) yields

1-0
(lukl|Z2 + [1bx]|72) =)

1—0

)

-4 6C* 60* 6C*
S (luoelz + lo.cl3) = exp { max

vl v p? )(
Nk dos s}

P,A,q
Thus
t 2 2
Jl? g s )
0 FN, v, 7 FN, v, O F
2 2 2\ (129) 6C* 6C* 60*\ 1 -0
S C% (ol + ol F) 7 e {max (T, T =5 ) (47
t
2
<o do)P g b [ el + el
FN v, 07 0
Using again (4.16)),

t
2
/0 (Il o + el 72)

) _ 6C* 6C* 6C*
< (mingye, v} ™ (o[22 + [bo.sl3) exp { max (2=, 2

v v 2 )
X |(wo k. do.i)|1? ,1,2a+§+%}
PyA.q
Finally
> E= e avi] e e avel
| el =57+ I T )
0 FN,ag FN

PiA.q

4o . _ da
< CF=atni/p (mln{,u7 y}) 1 (Huo,k”L? + HbO,k‘”L2) 5—Zat2N/p

6C* 6C* 6C* 2a 2
X exp { max (W’ i ?) (m) Il (wo, x> do,x) |l

. 1—2a+p%+% } :
‘FNp,k,q
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I . 204 5+ . .
So by continuity of u; and by in FNP g . there exists a time tg such that
9
Huk(tO)” izap 342 ku(tO)” 1-2a+3 42 <.
o’ P p’ P 2
PA.q PiA.q
Then we have
[[u(to)ll 12ap 342 T [b(to)l l-2a43 42
P P P P
PiA,q PA,q
< Huk(tO)H Ll-2a4 3 42 + Hwk(to)” Ll-—2a4 3 42
P P P P
PA,q PA,q
F 10kt v sar g a Fllde(to)ll 1 says i
P P N P P
PiA,q PiA,q
<,
-2 2

Now, we consider the generalized magneto-hydrodynamic equations starting at ¢t =
lo,
u +u-Vu+ p(—A)*u—b-Vb+ Vr =0,
V-u=0, V-b=0,
by +u-Vb+v(=A)*b—b-Vu=0,
u(to,x) = u(to), blto,z) = b(to).

By Theorem 2.5 and using the method described in the proof of (4.9)), we immedi-
ately obtain

@l s oy + O scaes gy
P,A,q P,A,q

+ ulul gy +olb IR
£1<[t0,t),]-'./\/ P p) £1<[to,t),fN v p)

PyA.q PA.q

< C”U(to)” . 1—2a+%+% + CHb(tO)H ‘172a+§+% < Ce,
P, q F. P,A.q

for all £ > ty. This completes the proof. ([l
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