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NONLINEAR PERTURBATIONS OF THE KIRCHHOFF
EQUATION

MANUEL MILLA MIRANDA, ALDO T. LOUREDO, LUIZ A. MEDEIROS

Communicated by Jerome A. Goldstein

Abstract. In this article we study the existence and uniqueness of local so-

lutions for the initial-boundary value problem for the Kirchhoff equation

u′′ −M(t, ‖u(t)‖2)∆u+ |u|ρ = f in Ω× (0, T0),

u = 0 on Γ0×]0, T0[,

∂u

∂ν
+ δh(u′) = 0 on Γ1×]0, T0[,

where Ω is a bounded domain of Rn with its boundary constiting of two disjoint
parts Γ0 and Γ1; ρ > 1 is a real number; ν(x) is the exterior unit normal vector

at x ∈ Γ1 and δ(x), h(s) are real functions defined in Γ1 and R, respectively.

Our result is obtained using the Galerkin method with a special basis, the
Tartar argument, the compactness approach, and a Fixed-Point method.

1. Introduction

Frist we do some preliminary considerations to justify the mixed problem we
want to study. Milla Miranda and Medeiros [20] analyzed the existence of solutions
for problem

u′′ − µ(t)∆u = 0 in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

µ(t)
∂u

∂ν
+ δ(x)u′ = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

(1.1)

When µ is a positive constant, existence and uniqueness of global solutions for
(1.1) has been proved by Komornik and Zuazua [5], Lasiecka and Triggiane [9] and
Quinn and Russell [22], Goldstein [4] applying semigroup theory. This method does
not work for (1.1) because the boundary condition (1.1)3 brings serious difficulties.
For this reason, the authors of [20] defined a special basis of the space where lie the
approximations of the initial data and apply the Galerkin method. This approach
works well for problem (1.1).
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Motivated by (1.1), Milla Miranda and Jutuca [21] analized the initial-boundary
value problem for the Kirchhoff equation

u′′ −M
(
t,

∫
Ω

|∇u|2dx
)

∆u = f in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

µ(t)
∂u

∂ν
+ δ(x)u′ = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

(1.2)

Following the ideas in [20] but having much more difficulty, the authors of [21],
succeeded in the construction of a special basis and the Galerkin method works
well for (1.2). They proved existence and uniqueness of solutions for (1.2). See also
[3, 7].

An extensive list of references about the Kirchhoff equation can be found in
Medeiros, Limaco and Menezes [17]. In Medeiros et al. [16] was investigated the
existence and uniqueness of global solutions for the problem

u′′ −∆u+ |u|ρ = f in Ω× (0,∞)

u = 0 on Γ× (0,∞)

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω

(1.3)

There, Galerkin method and Tartar argument [23] were applied.
Motivated by the studies of (1.1)-(1.3), we investigate the existence and unique-

ness of local solutions of the initial value problem for the nonlinear mixed problem
of Kirchhoff type:

u′′ −M
(
t,

∫
Ω

|∇u|2dx
)

∆u+ |u|ρ = f in Ω× (0, T0),

u = 0 on Γ0 × (0, T0),
∂u

∂ν
+ δ(x)h(u′) = 0 on Γ1 × (0, T0),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

(1.4)

By applying the Galerkin method with a special basis, a modification of the Tar-
tar approach, compactness method and fixed-point theorem, we obtain our result.

Note that the existence of global solutions for (1.4) without the term |u|ρ = 0,
null Dirichlet boundary condition on Γ and u0 ∈ H1

0 (Ω) ∩H2(Ω), u1 ∈ H1
0 (Ω) is a

open question.

2. Notation and statement of main results

Let Ω be bounded open set of Rn with boundary Γ of class C2. It is assumed that
Γ is constituted by two disjoint parts Γ0 and Γ1, Γ0 and Γ1 with positive measures,
such that Γ0 ∩ Γ1 = ∅. By ν(x) represents the unit normal vector at x ∈ Γ1.

We denote by Hm(Ω) the Sobolev space of order m and by (u, v) and |u|, the
scalar product and norm, respectively, in L2(Ω). We define the Hilbert space

V = {v ∈ H1(Ω) : v = 0 on Γ0},
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equipped with the scalar product

((u, v)) =
n∑
i=1

∫
Ω

∂u

∂xi
(x)

∂v

∂xi
(x) dx

and norm ‖u‖2 = ((u, u)). All scalar functions considered in this article will be
real-valued. To state our main result, we introduce the following hypotheses:

(H1) The function M(t, λ) satisfies M ∈ W 1,∞
loc ([0,∞[2), M(t, λ) ≥ m0 > 0 for

all {t, λ} ∈ ([0,∞[)2 with m0 constant.
(H2) The function h is a Lipschitz continuous, h(0) = 0, and h is strongly mo-

notonous, that is, for a positive constant d0,

(h(r)− h(s))(r − s) ≥ d0(r − s)2, ∀r, s ∈ R.

(H3) δ ∈W 1,∞(Γ1) and δ(x) ≥ δ0 for all x ∈ Γ1 and a positive constant δ0.
(H4) The real number ρ satisfies the following restrictions

ρ > 1 if n = 1, 2;
n+ 1
n
≤ ρ ≤ n

n− 2
if n ≥ 3. (2.1)

Let h : R → R be a Lipschitz continuous function with h(0) = 0. In Marcus
and Mizel [14] (see also [2]) it is shown that h(v) ∈ H1/2(Γ1) for v ∈ H1/2(Γ1) and
h : H1/2(Γ1)→ H1/2(Γ1), v 7→ h(v), is continuous.

Remark 2.1. Consider the trace of order zero γ0 : V → H1/2(Γ1). Then the map

h̃ = h ◦ γ0, h̃ : V → H1/2(Γ1)

is continuous.

Throughout the article, to facilitate the notation, the mapping h̃(v), v ∈ V , will
be denoted by h(v).

Remark 2.2. Let δ : Γ1 → R be a function such that δ ∈ W 1,∞(Γ1). Then
δv ∈ H1/2(Γ1) for v ∈ H1/2(Γ1), and the linear operator

δ : H1/2(Γ1)→ H1/2(Γ1), v 7→ δv

is continuous.
Also, the linear operators

δ : H1(Γ1)→ H1(Γ1), v 7→ δv,

δ : L2(Γ1)→ L2(Γ1), v 7→ δv

are continuous. The statements in this remark follow from the theory of interpola-
tion of Hilbert spaces, see Lions-Magenes [12].

Next, we state our main result.

Theorem 2.3. Assume that hypotheses (H1)–(H4) are satisfied. Consider {u0, u1}
in V ∩H2(Ω)× V satisfying the compatibility condition

∂u0

∂ν
+ δh(u1) = 0, (2.2)

and the norm condition

‖u0‖ < λ∗ :=
( m0

3kρ+1
0

) 1
ρ−1

, (2.3)
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where k0 is the immersion constant of V in Lρ+1(Ω), and

f ∈ L1(0, T ;L2(Ω)), f ′ ∈ L1(0, T ;L2(Ω)) . (2.4)

Then there exist a real number 0 < T0 ≤ T , and a unique function u with

u ∈ L∞(0, T0;V ∩H2(Ω)),

u′ ∈ L∞(0, T0;V ),

u′′ ∈ L∞(0, T0;L2(Ω)) ∩ L2(0, T0;L2(Γ1)),

(2.5)

such that u satisfies

u′′ −M(·, ‖u‖2)∆u+ |u|ρ = f in L∞(0, T0;L2(Ω)), (2.6)

∂u

∂ν
+ δh(u′) = 0 in L2(0, T0;H1/2(Γ1)),

∂u′

∂ν
+ δh′(u′)u′′ = 0 in L2(0, T0;L2(Γ1)),

(2.7)

and
u(0) = u0, u′(0) = u1, (2.8)

Remark 2.4. By Remarks 2.1 and 2.2, the function δh(u1) belongs to H1/2(Γ1).
Then condition (2.2) makes sense.

3. Existence of Solutions

To apply Banach Fixed-Point Theorem in the proof of our result, we introduce
an auxiliary problem related to (1.4).

3.1. Auxiliary Problem. Consider the problem

u′′ − µ∆u+ |u|ρ = f in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),
∂u

∂ν
+ δh(u′) = 0 on Γ1 × (0,∞),

u(0) = u0, u′(0) = u1 in Ω.

(3.1)

Where µ(t), h(s) and δ are real functions defined in [0,∞), R and Γ1, respectively.
The existence of solutions of (3.1) is derived by applying the Galerkin method

with a special basis of V ∩ H2(Ω) and a modification of the Tartar method. To
obtain this basis we introduce some results.

Lemma 3.1. Let m and n be functions in L1(0, T ) with m(t) ≥ 0 and n(t) ≥ 0
a.e. t in (0, T ) and let a ≥ 0 be a constant. Consider ϕ : [0, T ] → R continuous,
ϕ(t) ≥ 0, for all t ∈ [0, T ], and satisfying

1
2
ϕ2(t) ≤ 1

2
a2 +

∫ t

0

m(τ)ϕ(τ)dτ +
∫ t

0

n(τ)ϕ2(τ)dτ, ∀t ∈ [0, T ].

Then

ϕ(t) ≤
(
a+

∫ T

0

m(τ)dτ
)

exp
(∫ t

0

n(τ)dτ
)
, ∀t ∈ [0, T ].

The above result is a consequence of a lemma provided in Brezis [1, p. 157].
Milla Miranda and Medeiros [20] showed the following three results:
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Proposition 3.2. Let us consider f ∈ L2(Ω) and g ∈ H1/2(Γ1). Then, the solution
u of the problem

−∆u = f in Ω,
u = 0 on Γ0,

∂u

∂ν
= g on Γ1,

(3.2)

belongs to V ∩H2(Ω) and satisfies

‖u‖2H2(Ω) ≤ c
[
|f |2 + ‖g‖2H1/2(Γ1)

]
,

where the constant c > 0 is independent of u, f and g.

Proposition 3.3. In V ∩H2(Ω) the norms H2(Ω) and[
|∆u|2 + ‖∂u

∂ν
‖2H1/2(Γ1)

]1/2
,

are equivalent.

We equipp V ∩H2(Ω) with the preceding norm.

Remark 3.4. The space V ∩H2(Ω) is dense in V . In fact, we consider the operator
A = −∆ defined by the triplet {V,L2(Ω), ((u, v))}. Then its domain D(−∆) is

D(−∆) =
{
v ∈ V ∩H2(Ω);

∂v

∂ν
= 0 on Γ1

}
,

is dense in V (see [11]). As D(−∆) is contained in V ∩ H2(Ω), the conclusion
follows.

Lemma 3.5. Consider a function δ satisfying hypothesis (H3), and a Lipschitz
continuous function h(s), s ∈ R, with h(0) = 0. Take u0 ∈ V ∩H2(Ω) and u1 ∈ V
satisfying the condition

∂u0

∂ν
+ δh(u1) = 0 on Γ1. (3.3)

Then, for each ε > 0, there exist w and z in V ∩H2(Ω) such that

‖w − u0‖V ∩H2(Ω) < ε, ‖z − u1‖ < ε,

∂w

∂ν
+ δh(z) = 0 on Γ1.

With respect to the function µ we make the following assumptions:

µ ∈W 1,1
loc (0,∞), 0 < µ0 ≤ µ(t) ≤ µ1, ∀t ≥ 0, µ′ ∈ L1(0,∞) (3.4)

for some constants µ0, µ1.
Consider the real number ρ satisfying the restrictions (H4). Then

V ↪→ Lp
∗
(Ω) ↪→ L2ρ(Ω) ↪→ Lρ+1(Ω) ↪→ Lρ(Ω) (3.5)

where p∗ = 2n
n−2 , n ≥ 3. In what follows X ↪→ Y denotes that injection of the space

X into the space Y is continuous. Note that when p > 1 and n = 1 or n = 2, the
continuous injections (3.5) without Lp

∗
(Ω) is true.

With respect to the above injections, we introduce the following notation:
‖v‖Lρ+1(Ω) ≤ k0‖v‖, ‖v‖Lρ(Ω) ≤ k1‖v‖,
‖v‖L2ρ(Ω) ≤ k2‖v‖, ‖v‖L(ρ−1)n(Ω) ≤ k3‖v‖,

‖v‖Lp∗ (Ω) ≤ k4‖v‖
(3.6)
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for all v ∈ V .
Consider

‖u0‖ < λ∗1 :=
( µ0

3kρ+1
0

) 1
ρ−1

, (3.7)

G(s) =
1

ρ+ 1
|s|ρs. (3.8)

Recall that G(s) =
∫ s

0
|τ |ρdτ . With the above assumptions, we have the following

result.

Theorem 3.6. Assume hypotheses (H1), (H3), (H4) and (3.4). Consider

u0 ∈ V ∩H2(Ω), u1 ∈ V, f ∈ L1(0,∞;L2(Ω)), f ′ ∈ L1
loc(0,∞;L2(Ω)) (3.9)

satisfying (2.2) and

‖u0‖ < λ∗1,( 2
µ0

)1/2[(2N)1/2 +
∫ ∞

0

|f(t)|dt
]

exp
( 2
µ0

∫ ∞
0

|µ′(t)|dt
)
< λ∗1,

(3.10)

where

N =
1
2
|u1|2 +

1
2
µ(0)‖u0‖2 +

kρ+1
0

ρ+ 1
‖u0‖ρ+1. (3.11)

and the real number λ∗1 defined in (3.7). Then there exists a function u with

u ∈ L∞(0,∞;V ), u′ ∈ L∞(0,∞;L2(Ω)) ∩ L∞loc(0,∞;V )

u′′ ∈ L∞loc(0,∞;L2(Ω)), u′ ∈ L∞(0,∞;L2(Γ1));

u′′ ∈ L∞loc(0,∞;L2(Γ1))

(3.12)

satisfying

u′′ − µ∆u+ |u|ρ = f in L2
loc(0,∞;L2(Ω)), (3.13)

∂u

∂ν
+ δh(u′) = 0 in L2

loc(0,∞;H1/2(Γ1)), (3.14)

∂u′

∂ν
+ δh′(u′)u′′ = 0 in L2

loc(0,∞;L2(Γ1)), (3.15)

u(0) = u0, u′(0) = u1. (3.16)

Proof of Theorem 3.6. By Lemma 3.5, we obtain sequences (u0
l ), (u

1
l ) of vectors

of V ∩H2(Ω) satisfying

lim
l→∞

u0
l = u0 in V ∩H2(Ω)

lim
l→∞

u1
l = u1 in V

∂u0
l

∂ν
+ δh(u1

l ) = 0 on Γ1, ∀l ∈ N.

(3.17)

We construct a special basis of V ∩H2(Ω) as follows: Fix l ∈ N. Consider the basis

{wl1, wl2, . . . , wlj , . . . },

of V ∩ H2(Ω) satisfying u0, u1 ∈ [wl1, w
l
2], where [wl1, w

l
2] denotes the subspace

generated by wl1, w
l
2. With this basis determine approximate solutions ulm(t) of
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Problem (3.1), that is,

ulm(t) =
m∑
j=1

gjlm(t)wlj ,

(u′′lm(t), v) + µ(t)((ulm(t), v)) + (|ulm(t)|ρ, v)

+ µ(t)
∫

Γ1

δh(u′lm(t))vdΓ = (f(t), v), ∀v ∈ V lm,

ulm(0) = u0
l , u′lm(0) = u1

l ,

(3.18)

where V lm is the subspace generated by wl1, w
l
2, . . . , w

l
m.

The above finite-dimensional system has a solution ulm defined in [0, tlm). The
following estimates allow us to extend this solution to the interval [0,∞)

First Estimate. Set v = u′lm in (3.18)1. We have
1
2
d

dt
|u′lm(t)|2 +

1
2
d

dt

[
µ(t)‖u′lm(t)‖2

]
+
d

dt

∫
Ω

G(ulm(t))dx

+ µ(t)
∫

Γ1

δh(u′lm(t))u′lm(t)dΓ

= (f(t), u′lm(t)) +
1
2
µ′(t)‖u′lm(t)‖2.

Integrating on [0, t], 0 < t < tlm, we obtain

1
2
|u′lm(t)|2 +

µ(t)
2
‖u′lm(t)‖2 +

∫
Ω

G(ulm(t))dt

+
∫ t

0

∫
Γ1

µ(t)h(u′lm(τ))u′lm(τ)dΓdτ

=
∫ t

0

(f(τ), u′lm(τ))dτ +
1
2

∫ t

0

µ′(τ)‖u′lm(τ)‖2dτ

+
1
2
|u1
l |2 +

µ(0)
2
‖u0

l ‖2 +
∫

Ω

G(u0
l )dx.

(3.19)

Using (3.8), it follows that∣∣ ∫
Ω

G(ulm(t))dx
∣∣ ≤ 1

ρ+ 1
kρ+1

0 ‖ulm(t)‖ρ+1,∣∣ ∫
Ω

G(u0
l )dx

∣∣ ≤ 1
ρ+ 1

kρ+1
0 ‖u0

l ‖ρ+1.

Taking into account the last two inequalities in (3.19), and using hypotheses (3.4)2

and the fact hl(s)s ≥ d0, we find
1
2
|u′lm(t)|2 +

µ0

2
‖ulm(t)‖2 − 1

ρ+ 1
kρ+1

0 ‖ulm(t)‖ρ+1

≤ 1
2
|u′lm(t)|2 +

µ(t)
2
‖ulm(t)‖2 +

∫
Ω

G(ulm(t))dx

+ µ0d0

∫ t

0

∫
Γ1

[u′lm(τ)]2dΓdτ

≤
∫ t

0

|f(τ)||u′lm(τ)|dτ +
1
2

∫ t

0

|µ′(τ)|‖u′lm(τ)‖2dτ +N1l

(3.20)
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where

Nl =
1
2
|u1
l |2 +

µ(0)
2
‖u0‖2 +

1
ρ+ 1

kρ+1
0 ‖u0‖ρ+1. (3.21)

Motivated by the expression

µ0

2
‖ulm(t)‖2 − 1

ρ+ 1
kρ+1

0 ‖ulm(t)‖ρ+1

we introduce the function

J(λ) =
1
4
µ0λ

2 − 3
2
kρ+1

0

ρ+ 1
λρ+1, λ ≥ 0. (3.22)

That is,

J ′(λ) =
1
2
µ0λ−

3
2
kρ+1

0 λρ.

We are interested in λ ≥ 0 such that J ′(λ) ≥ 0, that is,

3
2
kρ+1

0 λρ−1 ≤ 1
2
µ0 (3.23)

or
0 ≤ λρ−1 ≤ µ0

3kρ+1
0

. (3.24)

This inequality is equivalent to 0 ≤ λ ≤ λ∗1, where λ∗1 was defined in (2.3). Thus

J(λ) ≥ 0 for λ ∈ [0, λ∗1]. (3.25)

As consequence of (3.25) and hypothesis (2.3)1, we obtain

µ0

4
‖ulm(t)‖2 − 3

2
kρ+1

0

ρ+ 1
‖ulm(t)‖ρ+1 ≥ 0, (3.26)

for ‖ulm(t)‖ < λ∗1, t ∈ [0, tlm). Inequality (3.26) implies

1
4
µ0‖ulm(t)‖2 +

1
2
kρ+1

0

ρ+ 1
‖ulm(t)‖ρ+1 ≤ 1

2
µ0‖ulm(t)‖2 − kρ+1

0

ρ+ 1
‖ulm(t)‖ρ+1.

Taking into account this inequality and (3.26), we have

1
2
|u′lm(t)|2 +

1
4
µ0‖ulm(t)‖2 +

1
2
kρ+1

0

ρ+ 1
‖ulm(t)‖ρ+1

≤ 1
2
|u′lm(t)|2 +

µ(t)
2
‖ulm(t)‖2 +

∫
Ω

G(ulm(t))dx

+ µ0d0

∫ t

0

∫
Γ1

[u′lm(τ)]2dΓdτ

≤
∫ t

0

|f(τ)||u′lm(τ)|dτ +
1
2

∫ t

0

|µ′(τ)|‖ulm(τ)‖2dτ +Nl.

(3.27)

Note that
Nl < N for all l ≥ l0 (3.28)

where N was introduced in (3.11).
We set

ϕ(t) = |u′lm(t)|2 +
1
2
µ0‖ulm(t)‖2 +

kρ+1
0

ρ+ 1
‖ulm(t)‖ρ+1.
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Then taking into account (3.28) in (3.27) and noting that 1
µ1
≤ 1

µ0
, we obtain

ϕ2(t) ≤ [(2N)1/2]2

2
+
∫ t

0

|f(τ)||ϕ(τ)|dτ +
∫ t

0

2
|µ′(τ)|
µ0

ϕ2(τ)dτ.

Then by Lemma 3.1, we obtain

ϕ(t) ≤
[
(2N)1/2 +

∫ ∞
0

|f(t)|dt
]

exp
( 2
µ0

∫ ∞
0

|µ′(t)|dt
)

= P. (3.29)

So

|u′lm(t)| ≤ P and ‖ulm(t)‖ ≤
( 2
µ0

)1/2
P (3.30)

for each t ∈ [0, tlm) and ‖ulm(t)‖ < λ∗1. The following result ensures that inequali-
ties (3.30) hold for all t ∈ [0,∞).

Lemma 3.7. Let [0, tlm) be an interval of existence of the solution ulm(t) of (3.18).
Then

‖ulm(t)‖ < λ∗1, ∀t ∈ [0,∞), ∀l ≥ l0, ∀m.

Proof. First, we note that by hypothesis (2.3), we have

‖ulm(0)‖ = ‖u0
l ‖ < λ∗1, ∀l ≥ l0, ∀m.

Reasoning by contradiction, we assume that there exists t1 ∈ (0, tlm) such that
‖ulm(t1)‖ = λ∗1. Let

t∗ = inf{t1 ∈ (0, tlm) : ‖ulm(t1)‖ = λ∗1}.

By the continuity of ‖ulm(t)‖, we obtain ‖ulm(t∗)‖ = λ∗1. Note that 0 < t∗ < tlm.
Consider t ∈ [0, t∗). Then ‖ulm(t)‖ < λ∗1. So inequality (3.30) provides

‖ulm(t)‖ ≤
( 2
µ0

)1/2

P, ∀t ∈ [0, t∗)

that implies

λ∗1 = ‖ulm(t∗)‖ ≤
( 2
µ0

)1/2

P

But this is a contradiction because by hypothesis (2.3)2,
(

2
µ0

)1/2
P < λ∗1. This

concludes the proof. �

Lemma 3.7 provides the estimates

|u′lm(t)| ≤ P, ‖ulm(t)‖ ≤
( 2
µ0

)1/2

P, ∀t ∈ [0,∞), ∀l ≥ l0, ∀m. (3.31)

Also inequalities (3.29), (3.31) and (3.20) gives us∫ ∞
0

‖u′lm(t)‖L2(Γ1)dt ≤ K, ∀t ∈ [0,∞), ∀l ≥ l0, ∀m. (3.32)
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Second Estimate. In this part, to facilitate the notation we do not write the
variable t and the subscripts l and m. Differentiating with respect to t equation
(3.18)1 and then setting w = u′′, we obtain

1
2
d

dt
|u′′|2 +

1
2
d

dt
[µ‖u′‖2] + µ′((u, u′′)) + (ρ|u|ρ−2uu′, u′′)

+ µ

∫
Γ1

δh′(u′)[u′′]2dΓ + µ′
∫

Γ1

h(u′)u′′dΓ

= (f ′, u′′) +
1
2
µ′‖u′‖2.

Considering w = µ′

µ u
′′ in approximate equation (3.18)1, we find

µ′((u, u′′) + µ′
∫

Γ1

h(u′)u′′dΓ =
(
f ′,

µ′

µ
u′′
)
−
(
u′′,

µ′

µ
u′′
)
−
(
|u|ρ, µ

′

µ
u′′
)
.

Combining the last two equalities, we have

1
2
d

dt
|u′′|2 +

1
2
d

dt

[
µ‖u′‖2

]
+ µ

∫
Γ1

δh′(u)[u′′]2dΓ

= (f ′, u′′) +
1
2
µ′‖u‖2 −

(
f,
µ′

µ
u′′
)

+
(
u′′,

µ′

µ
u′′
)

+
(
|u|ρ, µ

′

µ
u′′
)
− (ρ|u|ρ−2uu′, u′′).

(3.33)

Fix a real number T > 0. We bound the last terms of the second member of (3.33).
By C = C(T ) > 0 is denoted a generic constant which is independent of l and m.
By (3.8), (3.6)1 and estimate (3.33), we obtain∣∣(|u|ρ, µ′

µ
u′′
)∣∣ ≤ kρ2‖u‖ρ |µ′|µ0

|u′′| ≤ C |µ
′|

µ0
|u′′|.

By (3.6)2, (3.6)3, estimates (3.31) and noting that 1
n + 1

p∗ + 1
2 = 1 (p∗ introduced

in (3.5)), we find

|(ρ|u|ρ−2uu′, u′′)| ≤ ρkρ−1
3 k4‖u′‖|u′′| ≤ C‖u′‖|u′′| ≤

C

2
‖u′‖2 +

C

2
|u′′|2.

Taking into account the last two inequalities (3.33) and integrating on [0, t], we
obtain

1
2
|u′′lm(t)|2 +

1
2
µ(t)‖u′lm(t)‖2 + µ0d0

∫ t

0

∫
Γ1

[u′′lm(τ)]2dΓdτ

≤
∫ t

0

[
|f ′(τ)|+ |µ

′(τ)|
µ0

|f(τ)|+ C|µ′(τ)|
µ0

]
|u′′lm(τ)|dτ

+
∫ t

0

C

2
|u′′lm(τ)|2dτ +

∫ t

0

C

2
‖u′lm(τ)‖2dτ

+
1
2

∫ t

0

|µ′(τ)|
µ0

µ(τ)‖u(τ)‖2dτ +
1
2
|u′′lm(0)|2 +

µ(0)
2
‖u1

l ‖2.

(3.34)

For this inequality provides an estimate, we need to bound |u′′lm(0)|. This is possible
thanks to the choice of the special basis of V ∩H2(Ω) and (3.17)3.
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We bound |u′′lm(0)|. Set t = 0 in approximate equation (3.18)1 and then take
v = u′′lm(0). The Gauss theorem and (3.17)3 gives us

|u′′lm(0)|2 + µ(0)(−∆u0
l , u
′′
lm(0)) + (|u0

l |ρ, u′′lm(0)) = (f(0), u′′lm(0)).

This equality and (3.17) gives us

|u′′lm(0)|2 ≤ K1.

Taking into account this inequality in (3.34) and using Lemma 3.7, follows that

‖u′lm(t)‖ ≤ C, ∀t ∈ [0, T ], ∀l ≥ l0, ∀m
|u′′lm(t)| ≤ C, ∀t ∈ [0, T ], ∀l ≥ l0, ∀m∫ t

0

‖u′′lm(t)‖L2(Γ1) ≤ C, ∀t ∈ [0, T ], ∀l ≥ l0, ∀m
(3.35)

Passage to the Limit in m. Estimates (3.31), (3.32), (3.35) and diagonal process
allows to find a function uk and a subsequence of (ulm), still denoted by (ulm), such
that

ulm → ul weak star in L∞(0,∞, V );

u′lm → u′l weak star in L∞(0,∞, L2(Ω)) ∩ L∞loc(0,∞, V );

u′′lm → u′′l weak star in L∞loc(0,∞, L2(Ω));

u′lm → u′l weak star in L∞(0,∞, L2(Γ1));

u′′lm → u′′l weak star in L∞loc(0,∞, L2(Γ1)).

(3.36)

Estimates (3.36)1, (3.36)2 and Aubin-Lions Theorem provides us

ulm(x, t)→ ul(x, t) a.e. in Q = Ω× (0, T ).

Then
|ulm(x, t)|ρ → |ul(x, t)|ρ a.e. in Q = Ω× (0, T ). (3.37)

By (3.8), (3.6)2 and (3.31), we find∫
Ω

|ulm|2ρdx ≤ k2ρ
2 ‖ulm‖2ρ ≤ C. (3.38)

Expressions (3.37), (3.38), Lions Lema [10] and diagonal process provide

|ulm|ρ → |ul|ρ weak star in L∞loc(0,∞;L2(Ω)). (3.39)

Estimate (3.36)3 yields

u′lm → u′l weak star in L∞(0,∞;H1/2(Γ1)).

This, convergence (3.36)5 and Aubin-Lions Theorem and fact h Lipchitizian func-
tion gives us

h(u′lm(x, t))→ h(u′l(x, t)) a.e. in Q

and by trace theorem and (3.36), we obtain

(h(u′lm)) bounded in L∞loc(0,∞;H1/2(Γ1)).

Therefore, by Lions Lemma, we conclude that

h(u′lm)→ h(u′l) weak star in L∞loc(0,∞;H1/2(Γ1)). (3.40)
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Convergences (3.36), (3.39)-(3.40) allows us to pass to the limit in approximate
equation (3.18)1. Then by density of V ∩H2(Ω) in V , we obtain∫ ∞

0

(u′′l (t), v)θ(t)dt+ µ

∫ ∞
0

((ul(t), v))θ(t)dt+
∫ ∞

0

(|ul(t)|ρ, v)θ(t)dt

+
∫ ∞

0

∫
Γ1

µ(t)δh(u′l(t))vθ(t)dΓdt

=
∫ ∞

0

(f(t), v)θ(t)dt, v ∈ V, ∀θ ∈ C∞0 (Ω).

(3.41)

Taking v ∈ D(Ω) in (3.41), and observing the regularities of u′′l , |ul|ρ and f , follows
that

u′′l − µ∆ul + |ul|ρ = f in L2
loc(0,∞;L2(Ω)). (3.42)

This equation provides ∆ul ∈ L∞(0,∞;L2(Ω)) and (3.36)1, ul ∈ L∞(0,∞;V ).
Then

∂ul
∂ν
∈ L∞loc(0,∞;H1/2(Γ1)). (3.43)

Multiply both sides of (3.42) by vθ, v ∈ V and θ ∈ C∞0 (0,∞), and integrate on
Ω× (0,∞). Using regularity (3.43) of ∂u

∂ν , we conclude∫ ∞
0

(u′′l (t), v)θ(t)dt+ µ

∫ ∞
0

((ul(t), v))θ(t)dt−
∫ ∞

0

µ(t)〈∂ul
∂ν

, v〉θ(t)dt

+
∫ ∞

0

(|ul(t)|ρ, v)θ(t)dt

=
∫ ∞

0

(f(t), v)θ(t)dt, v ∈ V, ∀θ ∈ C∞0 (Ω).

where 〈·, ·〉 denotes the duality paring between H−
1
2 (Γ1) and H1/2(Γ1). Comparing

this equality with (3.41) and observing the regularity of h(u′l), we find (see [19])

∂ul
∂ν

+ δh(u′l) = 0 in L2
loc(0,∞;H1/2(Γ1)). (3.44)

Passage to the Limit in l. Estimates (3.31), (3.32), (3.35) and convergence (3.36)
provide

|u′l(t)| ≤ P, ‖ul(t)‖ ≤
( 2
µ0

)1/2

∀t ∈ [0,∞), ∀l ≥ l0,∫ ∞
0

‖u′′l (t)‖2L2(Γ1)dt ≤ C, ∀t ∈ [0,∞), ∀l ≥ l0;

‖u′l(t)‖ ≤ C, |u′′l (t)| ≤ C ∀t ∈ [0, T ], ];∀l ≥ l0,∫ t

0

‖u′′l (τ)‖2L2(Γ1)dτ ≤ C, ∀t ∈ [0, T ], ∀l ≥ l0.

(3.45)
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These estimates allows to obtain similar convergence to those obtained in (3.36).
So there exists a function u and subsequence of (ul), still denoted by (ul), such that

ul → u weak star in L∞(0,∞, V );

u′l → u′ weak star in L∞(0,∞, L2(Ω)) ∩ L∞loc(0,∞;V );

u′′l → u′′ weak star in L∞loc(0,∞, L2(Ω));

u′l → u′ weak in L2(0,∞, L2(Γ1));

u′′l → u′′ weak in L2
loc(0,∞, L2(Γ1)).

(3.46)

By arguments similar to those used for (3.39), we find

|ul|ρ → |u|ρ weak in L2
loc(0,∞;L2(Ω)). (3.47)

This convergence, (3.46)3 and (3.42) provide

∆ul → ∆u weak in L2
loc(0,∞;L2(Ω)) (3.48)

and therefore
u′′ − µ∆u+ |u|ρ = f in L2

loc(0,∞;L2(Ω)). (3.49)

Also convergences (3.46)1 and (3.48) provide us with

∂ul
∂ν
→ ∂u

∂ν
weak in L2

loc(0,∞;H−
1
2 (Γ1)). (3.50)

As done in (3.40), we find

δh(u′l)→ δh(u′) weak star in L∞loc(0,∞;H1/2(Γ1)). (3.51)

So these two convergences and (3.44), we met

∂u

∂ν
+ δh(u′) = 0 in L2

loc(0,∞;H1/2(Γ1)). (3.52)

From the regularity

u ∈ L∞loc(0,∞;V ), ∆u ∈ L∞loc(0,∞;L2(Ω)),
∂u

∂ν
∈ L∞loc(0,∞;H1/2(Γ1))

and by Proposition 3.2, we obtain

u ∈ L∞loc(0,∞;V ∩H2(Ω)). (3.53)

Also, by estimate (3.46)4 and noting that h is a Lipschitz continuous function
we find

∂u′

∂ν
+ δh′(u′)u′′ = 0 in L2

loc(0,∞;L2(Γ1)). (3.54)

The verification of initial conditions follows in the usual way.
In what follows, we prove the uniqueness of solutions. Let u and v two functions

in class (3.12) which satisfy equations (3.13), (3.14) and initial conditions (3.16).
Consider w = u− v. Then

w′′ − µ∆w + |u|ρ − |v|ρ = 0 in L∞(0, T ;L2(Ω)),
∂w

∂ν
+ δ[h(u′)− h(v′)] = 0 in L∞(0, T ;H1/2(Γ1)),

w(0) = 0, w′(0) = 0

(3.55)
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Multiplying both sides of (3.55)1 by w′ integrating on Ω and using Gauss Theorem,
we obtain

1
2
d

dt
|w′(t)|2 +

1
2
‖w(t)‖2 +

∫
Γ1

δ[h(u′(t))− h(v′(t))]dΓ

= −(|u(t)|ρ − |v(t)|ρ, w′(t)).
(3.56)

We have
|u(x, t)|ρ − |v(x, t)|ρ = ρ|ξ|ρ−2ξw(x, t)

where ξ is between u(x, t) and v(x, t). Then

||u(x, t)|ρ − |v(x, t)|ρ| = ρ|ξ|ρ−1|w(x, t)|
that provides

||u(t)|ρ − |v(t)|ρ| ≤ ρ[|u(x, t)|+ |v(x, t)|]ρ−1|w(x, t)|
≤ C(ρ)[|u(x, t)|ρ−1|w(x, t)|+ |v(x, t)|ρ−1|w(x, t)|].

(3.57)

We obtain∫
Ω

|u(x, t)|ρ−1|w(x, t)||w′(x, t)|dx ≤ ‖u(t)‖ρ−1
L(ρ−1)n(Ω)

‖w(t)‖Lp∗ (Ω)|w′(t)|

≤ k3k4‖u(t)‖ρ−1‖w(t)‖|w′(t)|.
Thus

|(|u(t)|ρ − |v(t)|ρ, w′(t))| ≤ C‖w(t)‖|w′(t)| ≤ C

2
‖w(t)‖2 +

C

2
|w′(t)|2.

This inequality, (3.56) and property of monotony of h, imply

1
2
d

dt
|w′(t)|2 +

1
2
d

dt
‖w(t)‖2 + δ0d0

∫
Γ1

w′(t)2dΓ ≤ C

2
‖w(t)‖2 +

C

2
|w′(t)|.

Then the Gronwall inequality provides w′(t) = 0 and w(t) = 0. This concludes the
proof of Theorem 3.6.

3.2. Proof of Theorem 2.3. We introduce some notation to apply the Banach
Fixed-Point Theorem. Consider a real number R > 0 such that

R > M0 (3.58)

where M0 = max{M1,M2} is defined in (3.71), M1, M2 are defined by (3.65) and
(3.69) respectively. Let

R2
1 = N2

1 = |u1|2 +M(0, ‖u0‖2)‖u0‖2 +
1

ρ+ 1
k0‖u0‖ρ+1, (3.59)

R2
2 = M(0, ‖u0‖2)‖u1‖2 +M(0, ‖u0‖2)|∆u0|+ |u0|ρ + |f(0)|. (3.60)

We define BR,T0 as the set of vectors

BR,T0 =
{
u : u ∈ L∞(0, T0;V ), u′ ∈ L∞(0, T0;V ) ∩ C0([0, T0];L2(Ω)),

‖u‖L∞(0,T0;V ) + ‖u′‖L∞(0,T0;V ) ≤ R,

u(0) = u0, u′(0) = u1.
}

The real number T0 with 0 < T0 ≤ 1 will be determined later. We equipped BR,T0

with the metric

d(u, v) = ‖u− v‖L∞(0,T0;V ) + ‖u′ − v′‖C0([0,T0];L2(Ω))
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where u and v belong to BR,T0 . In [21] is proved that (BR,T0 , d(u, v)) is a complete
metric space.

Consider the map S : BR,T0 → H, z 7→ S(z) = ϕ, where H denotes the set of
solutions ϕ, of the problem

ϕ′′ −M(·, ‖z‖2)∆ϕ+ |ϕ|ρ = f in Ω× (0, T0)

ϕ = 0 on Γ0 × (0, T0)
∂ϕ

∂ν
+ δh(ϕ′) = 0 on Γ1 × (0, T0)

ϕ(0) = u0, ϕ′(0) = u1 in Ω

(3.61)

We prove that the map S is well defined. Set

K = max
{∣∣∂M

∂t
(t, λ)

∣∣, ∣∣∂M
∂λ

(t, λ)
∣∣; t ∈ [0, 1], λ ∈ [0, R2]

}
. (3.62)

Consider

µ(t) = M(t, ‖z(t)‖2), t ∈ [0, T0]. (3.63)

We have that µ ∈W 1,∞(0, T0). In fact,

µ′(t) =
∂M

∂t
(t, ‖z(t)‖2) +

∂M

∂λ
(t, ‖z(t)‖2)

d

dt
‖z(t)‖2.

As z ∈ BR,T0 , we find that

|µ′(t)| ≤ K(1 + 4R2), a.e. t ∈]0, T0[. (3.64)

Thus, µ ∈W 1,∞(0, T0) with µ0 = m0. Theorem 3.6 says that there exists a unique
solution ϕ of system (3.61) and this solution has the regularity of the vectors of
BR,T0 .

Our objective now is to show that S(BR,T0) is contained BR,T0 and that S is a
strict contraction.

Let ϕ be a solution of the problem (3.61) given by the Theorem 3.6 with µ(t)
defined in (3.63). Let ϕlm be the approximate solution given in the proof of Theorem
3.6. Then by first a priori estimate given the proof of Theorem 3.6, we obtain

‖ϕlm(t)‖2 ≤M1 exp
( 2
m0

∫ t

0

|µ′(τ)|dτ
)
, 0 ≤ t ≤ T0,

where

M1 = (2R1)1/2 +
∫ T0

0

|f(t)|dt. (3.65)

This and (3.64) gives

‖ϕlm(t)‖ ≤M1 exp(K1T0), 0 ≤ t ≤ T0, for m ≥ 2 and l ≥ l0(1). (3.66)

where

K1 =
2K(1 +R2)

m0
. (3.67)

The second priori estimates Theorem 2.3 gives us

‖ϕ′lm(t)‖ ≤M2 exp (K2T0) , 0 ≤ t ≤ T0, for m ≥ 2 and l ≥ l0(1). (3.68)
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where

M2 = 2R1/2
2 +

∫ T0

0

[
|f ′(t)|+ |µ

′(t)|
m0

|f(t)|+ C

m0
|µ′(t)|

]
dt

≤ 2R1/2
2 +

∫ T0

0

[
|f ′(t)|+ K(1 + 4R2)

m0
|f(t)|+ C

m0
K(1 + 4R2)

]
dt

(3.69)

and

K2 =
(2 +m0)K(1 + 4R2)

2m0
+

3C
2
. (3.70)

Consider
M0 = max{M1,M2}, K = max{K1,K2}. (3.71)

From (3.66), (3.68) and (3.71) and taking the maximum on [0, T0] of both of mem-
bers the (3.66) and (3.68) and then the limit inferior, first with respect to m and
later with respect to l, we obtain

‖ϕ‖L∞(0,T0;V ) + ‖ϕ′‖L∞(0,T0;V ) ≤M0exp(KT0). (3.72)

We will choose T0 > 0 so that the second member of the preceding inequality be
less than or equal to R. In fact, set

q(t) = M0e
Kt, t ≥ 0.

Then q is continuous, increasing, q(t) → ∞ when t → ∞ and q(0) = M0 < R (see
(3.58)). Then by the Intermediate Value Theorem there exists T ∗1 > 0 such that
q(T ∗1 ) = R, that is,

T ∗1 =
1
K

ln
( R

M0

)
. (3.73)

We choose
0 < T0 ≤ min{1, T ∗1 }. (3.74)

Then expression (3.72) with T0 given by (3.74) satisfies

‖ϕ‖L∞(0,T0;V ) + ‖ϕ′‖L∞(0,T0;V ) ≤ R.

Therefore ϕ belongs to BR,T0 . Thus S(BR,T0) is contained in BR,T0 .
In the sequel we prove that S is a strict contraction. Set r1, y1 ∈ BR,T0 and

S(r1) = r, S(y1) = y. Introduce the notation

ϕ = r − y. (3.75)

We have

ϕ′′ −M(·, ‖r1‖2)∆r +M(·, ‖y1‖2)∆y + |r|ρ − |y|ρ = 0 in Ω×]0, T0[,

ϕ = 0, ψ = 0 on Γ0×]0, T0[,
∂ϕ

∂ν
+ δ[h(r′)− h(y′)] = 0 on Γ1×]0, T0[,

ϕ(0) = 0, ϕ′(0) = 0 in Ω.

(3.76)

Taking the scalar product in L2(Ω) of (3.76)1 with ϕ′(t) we obtain

1
2
d

d
|ϕ′(t)|2 −M(t, ‖r1(t)‖2)(∆r(t), ϕ′(t))

+M(t, ‖y1(t)‖2)(∆y(t), ϕ′(t)) + (|r|ρ − |y|ρ, ϕ′(t)) = 0.
(3.77)
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We modify (3.77), to obtain

1
2
d

d
|ϕ′(t)|2 −M(t, ‖r1(t)‖2)(∆ϕ(t), ϕ′(t))

= [M(t, ‖r1(t)‖2)−M(t, ‖y1(t)‖2)](∆y(t), ϕ′(t))− (|y|ρ − |r|ρ, ϕ′(t)).

We abbreviate the notation and write this expression in the form
1
2
d

dt
|ϕ′(t)|2 +A(t) = B(t). (3.78)

• Analysis of A(t). Using the Green’s Theorem and the boundary condition in
(3.76)3, we find that

A(t) = M(t, ‖r1(t)‖2)
1
2
d

dt
‖ϕ(t)‖2

+M(t, ‖r1(t)‖2)
∫

Γ1

δ[h(r′(t))− h(y′(t))]ϕ′(t)dΓ.

Note that, δ(x) ≥ δ0 > 0 and ϕ′(t) = r′(t)− y′(t) then by the strong monotonicity
of h, follows that ∫

Γ1

δ[h(r′(t))− h(y′(t))]ϕ′(t)dΓ ≥ 0.

Combining the last two expressions we conclude that

A(t) ≥M(t, ‖r1(t)‖2)
1
2
d

dt
‖ϕ(t)‖2 a.e. t ∈]0, T0[. (3.79)

• Analysis of B(t). To facilitate the notation in this part we do not write the
variable t. We have

B =
[
M(·, ‖r1‖2)− (M(·, ‖y1‖2)

]
(∆y(t), ϕ′(t))− (|y|ρ − |r|ρ, ϕ′(t)). (3.80)

• As M ∈ C1 we have∣∣M(·, ‖r1‖2)−M(·, ‖y1‖2)
∣∣ ≤ 2KM0‖r1 − y1‖,

where K and M0 were defined in (3.62) and (3.71), respectively.
• Analysis of (|y(t)|ρ − |r(t)|ρ, ϕ′(t)). We have

|y(x, t)|ρ − |r(x, t)|ρ = ρ|ξ|ρ−2ξϕ(x, t)

where ξ is between y(x, t) and r(x, t). Then

||y(x, t)|ρ − |r(x, t)|ρ| ≤ ρ|ξ|ρ−1|ϕ(x, t)|

which implies

||y(x, t)|ρ − |r(x, t)|ρ| ≤ C[|y(x, t)|ρ−1 + |r(x, t)|ρ−1]|ϕ(x, t)|.

Thus

|(|y(t)|ρ − |r(t)|ρ, ϕ′(t))| ≤ C‖y(t)‖ρ−1
L(ρ−1)n(Ω)

‖ϕ(t)‖Lp∗ (Ω)|ϕ′(t)|.

By (3.6), we find that

‖y(t)‖ρ−1
L(ρ−1)n(Ω)

≤ kρ−1
3 ‖y(t)‖ρ−1 ≤ C, ∀t ∈ [0, T0],

‖r(t)‖ρ−1
L(ρ−1)n(Ω)

≤ C, ∀t ∈ [0, T0].
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Combining the last tree inequalities, we obtain

|(|y(t)|ρ − |r(t)|ρ, ϕ′(t))| ≤ C‖ϕ(t)‖|ϕ′(t)| ≤ C

2
‖ϕ(t)‖2 +

C

2
|ϕ′(t)|2.

Taking into account the last two inequalities in (3.80), we obtain

|B(t)| ≤ C|∆y(t)||ϕ′(t)|d(r1, y1) +
C

2
‖ϕ(t)‖2 +

C

2
|ϕ′(t)|2. (3.81)

Next we find a bound for |∆y(t)|. We have

ϕ′′ −M(·, ‖z‖2)∆ϕ+ |ϕ|ρ = f in L∞(0, T0;L2(Ω)).

By estimates (3.66), (3.68) and following the same reasoning used for (3.68), we
obtain

|y′′(t)| ≤M0 exp(KT0) a.e. t ∈]0, T0[. (3.82)

Hence,
|M(t, ‖z(t))‖||∆ϕ(t)| ≤ |f(t)|+ |u(t)|ρ + |ϕ′(t)|

≤
(C1 + C2

m0

)
+
M0

m0
exp(KT0).

(3.83)

These last two expressions give

|∆y(t)| ≤M3 +M3exp(KT0) a.e. t ∈]0, T0[, (3.84)

where

M3 = max
{C1 + C2

m0
,
M0

m0

}
.

Note that eKT0 > 1, therefore M3 ≤ M3e
KT0 . Hence Combining (3.81)and(3.84)

we derive
|B(t)| ≤ P0[exp(KT0)]|ϕ′(t)|d(r1, y1) a.e. t ∈]0, T0[ (3.85)

where
P0 = 4KM0M3. (3.86)

Combining (3.79) and (3.85) with (3.78), we obtain

1
2
d

dt
|ϕ′(t)|2 +M(t, ‖r1(t)‖2)

1
2
d

dt
‖ϕ(t)‖2

≤ P0[exp(KT0)]2d2(r1, y1) + |ϕ′(t)|2 a.e t ∈]0, T0[.
(3.87)

We have

M(·, ‖r1‖2)
1
2
d

dt
‖ϕ‖2 =

1
2
d

dt
[M(·, ‖r1‖2)‖ϕ(t)‖2]

− 1
2

[∂M
∂t

(·, ‖r1‖2) +
∂M

∂λ
(·, ‖r1‖2)

d

dt
‖r1‖2

]
‖ϕ‖2.

Substituting this equality in (3.87), and using boundedness (3.62) and (3.60), we
find

1
2
d

d

[
|ϕ′(t)|2 +M(t, ‖r1(t)‖2)‖ϕ(t)‖2

]
≤ K(1 + 2R2)

2
‖ϕ(t)‖2 + P 2

0 [exp(KT0)]2d2(r1, y1) + |ϕ′(t)|2 a.e. t ∈]0, T0[.
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Integrating on [0, t], 0 < t ≤ T0, and noting that M(t, λ) ≥ m0 and ϕ(0) = ϕ′(0) =
0, we obtain

1
2

[|ϕ′(t)|2 +m0‖ϕ(t)‖2]

≤ P1

∫ t

0

‖ϕ(s)‖2ds+ T0P
2
0 [exp(KT0)]2d2(r1, y1) +

∫ t

0

|ϕ′(s)|2ds,
(3.88)

where

P1 =
K(1 + 2R2)

2
. (3.89)

Considering

b21 =
P0[exp(KT0)]2

min{ 1
2 ,

m0
2 }

, b2 =
max{P1, 1}
min{ 1

2 ,
m0
2 }

, (3.90)

where P0 was defined in (3.86), we have

‖ϕ(t)‖2 + |ϕ′(t)|2 ≤ b21T0d
2(r1, y1) + b2

∫ t

0

[‖ϕ(s)‖2 + |ϕ′(s)|2]ds.

Then Gronwall’s lemma gives

‖ϕ(t)‖2 + |ϕ′(t)|2 ≤ 4b21T0d
2(r1, y1) exp(b2T0),

which implies

‖ϕ(t)‖+ |ϕ′(t)| ≤ 2b1T
1/2
0 d(r1, y1) exp(b2T0),

Recalling that S(r1) = r, S(y1) = y and ϕ = r − y, from the above inequality it
follows that

d(S(r1), S(y1)) ≤ [2b1T
1/2
0 exp(b2T0)]d((r1, y1). (3.91)

Note that K given in (3.62) is independent of T0, therefore K, P0 and P1 defined
in (3.71), (3.86) and (3.89) respectively, are independent of T0. Thus the constants
b1 and b2 given in (3.90) are also independent of T0.

Consider ψ(t) = 2b1t exp(b2t), t ≥ 0. Then ψ is continuous, increasing and
ψ(0) = 0. So there exists T ∗2 > 0 such that ψ(T ∗2 ) < 1. Take

T0 = min{1, T ∗1 , T ∗2 } > 0,

where T ∗1 was defined in (3.73). Then T0 satisfies (3.74) and

2b1T0 exp(b2T0) = α0 < 1.

Substituting this constant in (3.91), we conclude that

d(S(r1), S(y1)) ≤ α0d(r1, y1), ∀r1, y1 ∈ BR,T0 .

Thus d is a strict contraction. By the Banach Fixed-Point Theorem there exists a
unique point u ∈ BR,T0 such that S(u) = u. This fixed point satisfies all conditions
required in the theorem.

The uniqueness of solutions follows as in [21].
The existence of global solutions to problem (2.6) and their asymptotic behavior

with small data will be published in a future article.
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