Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 77, pp. 1–21. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONLINEAR PERTURBATIONS OF THE KIRCHHOFF EQUATION

MANUEL MILLA MIRANDA, ALDO T. LOUREDO, LUIZ A. MEDEIROS

Communicated by Jerome A. Goldstein

ABSTRACT. In this article we study the existence and uniqueness of local solutions for the initial-boundary value problem for the Kirchhoff equation

$$u'' - M(t, ||u(t)||^2)\Delta u + |u|^{\rho} = f \quad \text{in } \Omega \times (0, T_0),$$
$$u = 0 \quad \text{on } \Gamma_0 \times]0, T_0[,$$
$$\frac{\partial u}{\partial \nu} + \delta h(u') = 0 \quad \text{on } \Gamma_1 \times]0, T_0[,$$

where Ω is a bounded domain of \mathbb{R}^n with its boundary constiting of two disjoint parts Γ_0 and Γ_1 ; $\rho > 1$ is a real number; $\nu(x)$ is the exterior unit normal vector at $x \in \Gamma_1$ and $\delta(x), h(s)$ are real functions defined in Γ_1 and \mathbb{R} , respectively. Our result is obtained using the Galerkin method with a special basis, the Tartar argument, the compactness approach, and a Fixed-Point method.

1. INTRODUCTION

Frist we do some preliminary considerations to justify the mixed problem we want to study. Milla Miranda and Medeiros [20] analyzed the existence of solutions for problem

$$u'' - \mu(t)\Delta u = 0 \quad \text{in } \Omega \times (0, \infty),$$

$$u = 0 \quad \text{on } \Gamma_0 \times (0, \infty),$$

$$\mu(t)\frac{\partial u}{\partial \nu} + \delta(x)u' = 0 \quad \text{on } \Gamma_1 \times (0, \infty),$$

$$u(x, 0) = u_0(x), \quad u'(x, 0) = u_1(x), \quad x \in \Omega.$$

(1.1)

When μ is a positive constant, existence and uniqueness of global solutions for (1.1) has been proved by Komornik and Zuazua [5], Lasiecka and Triggiane [9] and Quinn and Russell [22], Goldstein [4] applying semigroup theory. This method does not work for (1.1) because the boundary condition (1.1)₃ brings serious difficulties. For this reason, the authors of [20] defined a special basis of the space where lie the approximations of the initial data and apply the Galerkin method. This approach works well for problem (1.1).

²⁰¹⁰ Mathematics Subject Classification. 35L15, 35L20, 35K55, 35L60, 35L70.

Key words and phrases. Kirchhoff equation; nonlinear boundary condition;

existence of solutions.

^{©2017} Texas State University.

Submitted January 24, 2017. Published March 21, 2017.

Motivated by (1.1), Milla Miranda and Jutuca [21] analized the initial-boundary value problem for the Kirchhoff equation

$$u'' - M\left(t, \int_{\Omega} |\nabla u|^2 dx\right) \Delta u = f \quad \text{in } \Omega \times (0, \infty),$$

$$u = 0 \quad \text{on } \Gamma_0 \times (0, \infty),$$

$$\mu(t) \frac{\partial u}{\partial \nu} + \delta(x)u' = 0 \quad \text{on } \Gamma_1 \times (0, \infty),$$

$$u(x, 0) = u_0(x), \quad u'(x, 0) = u_1(x), \quad x \in \Omega.$$
(1.2)

Following the ideas in [20] but having much more difficulty, the authors of [21], succeeded in the construction of a special basis and the Galerkin method works well for (1.2). They proved existence and uniqueness of solutions for (1.2). See also [3, 7].

An extensive list of references about the Kirchhoff equation can be found in Medeiros, Limaco and Menezes [17]. In Medeiros et al. [16] was investigated the existence and uniqueness of global solutions for the problem

$$u'' - \Delta u + |u|^{\rho} = f \quad \text{in } \Omega \times (0, \infty)$$

$$u = 0 \quad \text{on } \Gamma \times (0, \infty)$$

$$u(x, 0) = u^{0}(x), \quad u'(x, 0) = u^{1}(x), \quad x \in \Omega$$
(1.3)

There, Galerkin method and Tartar argument [23] were applied.

Motivated by the studies of (1.1)-(1.3), we investigate the existence and uniqueness of local solutions of the initial value problem for the nonlinear mixed problem of Kirchhoff type:

$$u'' - M\left(t, \int_{\Omega} |\nabla u|^2 dx\right) \Delta u + |u|^{\rho} = f \quad \text{in } \Omega \times (0, T_0),$$

$$u = 0 \quad \text{on } \Gamma_0 \times (0, T_0),$$

$$\frac{\partial u}{\partial \nu} + \delta(x)h(u') = 0 \quad \text{on } \Gamma_1 \times (0, T_0),$$

$$u(x, 0) = u^0(x), \quad u'(x, 0) = u^1(x), \quad x \in \Omega.$$
(1.4)

By applying the Galerkin method with a special basis, a modification of the Tartar approach, compactness method and fixed-point theorem, we obtain our result.

Note that the existence of global solutions for (1.4) without the term $|u|^{\rho} = 0$, null Dirichlet boundary condition on Γ and $u^0 \in H_0^1(\Omega) \cap H^2(\Omega)$, $u^1 \in H_0^1(\Omega)$ is a open question.

2. NOTATION AND STATEMENT OF MAIN RESULTS

Let Ω be bounded open set of \mathbb{R}^n with boundary Γ of class C^2 . It is assumed that Γ is constituted by two disjoint parts Γ_0 and Γ_1 , Γ_0 and Γ_1 with positive measures, such that $\overline{\Gamma_0} \cap \overline{\Gamma_1} = \emptyset$. By $\nu(x)$ represents the unit normal vector at $x \in \Gamma_1$.

We denote by $H^m(\Omega)$ the Sobolev space of order m and by (u, v) and |u|, the scalar product and norm, respectively, in $L^2(\Omega)$. We define the Hilbert space

$$V = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_0 \},\$$

equipped with the scalar product

$$((u,v)) = \sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_i}(x) \frac{\partial v}{\partial x_i}(x) \, dx$$

and norm $||u||^2 = ((u, u))$. All scalar functions considered in this article will be real-valued. To state our main result, we introduce the following hypotheses:

- (H1) The function $M(t,\lambda)$ satisfies $M \in W^{1,\infty}_{\text{loc}}([0,\infty[^2), M(t,\lambda) \ge m_0 > 0$ for all $\{t,\lambda\} \in ([0,\infty[)^2 \text{ with } m_0 \text{ constant.}$
- (H2) The function h is a Lipschitz continuous, h(0) = 0, and h is strongly monotonous, that is, for a positive constant d_0 ,

$$(h(r) - h(s))(r - s) \ge d_0(r - s)^2, \quad \forall r, s \in \mathbb{R}.$$

- (H3) $\delta \in W^{1,\infty}(\Gamma_1)$ and $\delta(x) \ge \delta_0$ for all $x \in \Gamma_1$ and a positive constant δ_0 .
- (H4) The real number ρ satisfies the following restrictions

$$\rho > 1 \text{ if } n = 1, 2; \quad \frac{n+1}{n} \le \rho \le \frac{n}{n-2} \text{ if } n \ge 3.$$
(2.1)

Let $h : \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function with h(0) = 0. In Marcus and Mizel [14] (see also [2]) it is shown that $h(v) \in H^{1/2}(\Gamma_1)$ for $v \in H^{1/2}(\Gamma_1)$ and $h : H^{1/2}(\Gamma_1) \to H^{1/2}(\Gamma_1), v \mapsto h(v)$, is continuous.

Remark 2.1. Consider the trace of order zero $\gamma_0: V \to H^{1/2}(\Gamma_1)$. Then the map $\widetilde{I} = I = -\widetilde{I} = U = - H^{1/2}(\Gamma_1)$

$$h = h \circ \gamma_0, \quad h : V \to H^{1/2}(\Gamma_1)$$

is continuous.

Throughout the article, to facilitate the notation, the mapping $\tilde{h}(v), v \in V$, will be denoted by h(v).

Remark 2.2. Let $\delta : \Gamma_1 \to \mathbb{R}$ be a function such that $\delta \in W^{1,\infty}(\Gamma_1)$. Then $\delta v \in H^{1/2}(\Gamma_1)$ for $v \in H^{1/2}(\Gamma_1)$, and the linear operator

$$\delta: H^{1/2}(\Gamma_1) \to H^{1/2}(\Gamma_1), \quad v \mapsto \delta v$$

is continuous.

Also, the linear operators

$$\begin{split} \delta &: H^1(\Gamma_1) \to H^1(\Gamma_1), \quad v \mapsto \delta v, \\ \delta &: L^2(\Gamma_1) \to L^2(\Gamma_1), \ v \mapsto \delta v \end{split}$$

are continuous. The statements in this remark follow from the theory of interpolation of Hilbert spaces, see Lions-Magenes [12].

Next, we state our main result.

Theorem 2.3. Assume that hypotheses (H1)–(H4) are satisfied. Consider $\{u^0, u^1\}$ in $V \cap H^2(\Omega) \times V$ satisfying the compatibility condition

$$\frac{\partial u^0}{\partial \nu} + \delta h(u^1) = 0, \qquad (2.2)$$

and the norm condition

$$||u^{0}|| < \lambda^{*} := \left(\frac{m_{0}}{3k_{0}^{\rho+1}}\right)^{\frac{1}{\rho-1}},$$
(2.3)

where k_0 is the immersion constant of V in $L^{\rho+1}(\Omega)$, and

$$f \in L^1(0,T; L^2(\Omega)), \quad f' \in L^1(0,T; L^2(\Omega)).$$
 (2.4)

Then there exist a real number $0 < T_0 \leq T$, and a unique function u with

$$u \in L^{\infty}(0, T_0; V \cap H^2(\Omega)),$$

$$u' \in L^{\infty}(0, T_0; V),$$
(2.5)

$$u'' \in L^{\infty}(0, T_0; L^2(\Omega)) \cap L^2(0, T_0; L^2(\Gamma_1)),$$

such that u satisfies

$$u'' - M(\cdot, ||u||^2) \Delta u + |u|^{\rho} = f \quad in \ L^{\infty}(0, T_0; L^2(\Omega)),$$
(2.6)

$$\frac{\partial u}{\partial \nu} + \delta h(u') = 0 \quad in \ L^2(0, T_0; H^{1/2}(\Gamma_1)),
\frac{\partial u'}{\partial \nu} + \delta h'(u')u'' = 0 \quad in \ L^2(0, T_0; L^2(\Gamma_1)),$$
(2.7)

and

$$u(0) = u^0, \quad u'(0) = u^1,$$
 (2.8)

Remark 2.4. By Remarks 2.1 and 2.2, the function $\delta h(u^1)$ belongs to $H^{1/2}(\Gamma_1)$. Then condition (2.2) makes sense.

3. EXISTENCE OF SOLUTIONS

To apply Banach Fixed-Point Theorem in the proof of our result, we introduce an auxiliary problem related to (1.4).

3.1. Auxiliary Problem. Consider the problem

$$u'' - \mu \Delta u + |u|^{\rho} = f \quad \text{in } \Omega \times (0, \infty),$$

$$u = 0 \quad \text{on } \Gamma_0 \times (0, \infty),$$

$$\frac{\partial u}{\partial \nu} + \delta h(u') = 0 \quad \text{on } \Gamma_1 \times (0, \infty),$$

$$u(0) = u^0, \quad u'(0) = u^1 \quad \text{in } \Omega.$$

(3.1)

Where $\mu(t), h(s)$ and δ are real functions defined in $[0, \infty)$, \mathbb{R} and Γ_1 , respectively.

The existence of solutions of (3.1) is derived by applying the Galerkin method with a special basis of $V \cap H^2(\Omega)$ and a modification of the Tartar method. To obtain this basis we introduce some results.

Lemma 3.1. Let m and n be functions in $L^1(0,T)$ with $m(t) \ge 0$ and $n(t) \ge 0$ a.e. t in (0,T) and let $a \ge 0$ be a constant. Consider $\varphi : [0,T] \to \mathbb{R}$ continuous, $\varphi(t) \ge 0$, for all $t \in [0,T]$, and satisfying

$$\frac{1}{2}\varphi^2(t) \le \frac{1}{2}a^2 + \int_0^t m(\tau)\varphi(\tau)d\tau + \int_0^t n(\tau)\varphi^2(\tau)d\tau, \quad \forall t \in [0,T].$$

Then

$$\varphi(t) \le \left(a + \int_0^T m(\tau) d\tau\right) \exp\left(\int_0^t n(\tau) d\tau\right), \quad \forall t \in [0, T].$$

The above result is a consequence of a lemma provided in Brezis [1, p. 157]. Milla Miranda and Medeiros [20] showed the following three results:

Proposition 3.2. Let us consider $f \in L^2(\Omega)$ and $g \in H^{1/2}(\Gamma_1)$. Then, the solution u of the problem

$$-\Delta u = f \quad in \Omega,$$

$$u = 0 \quad on \Gamma_0,$$

$$\frac{\partial u}{\partial \nu} = g \quad on \Gamma_1,$$

(3.2)

belongs to $V \cap H^2(\Omega)$ and satisfies

$$||u||_{H^{2}(\Omega)}^{2} \leq c \left[|f|^{2} + ||g||_{H^{1/2}(\Gamma_{1})}^{2}\right],$$

where the constant c > 0 is independent of u, f and g.

Proposition 3.3. In $V \cap H^2(\Omega)$ the norms $H^2(\Omega)$ and

$$\left[|\Delta u|^2 + \|\frac{\partial u}{\partial \nu}\|^2_{H^{1/2}(\Gamma_1)}\right]^{1/2},$$

are equivalent.

We equipp $V \cap H^2(\Omega)$ with the preceding norm.

Remark 3.4. The space $V \cap H^2(\Omega)$ is dense in V. In fact, we consider the operator $A = -\Delta$ defined by the triplet $\{V, L^2(\Omega), ((u, v))\}$. Then its domain $D(-\Delta)$ is

$$D(-\Delta) = \left\{ v \in V \cap H^2(\Omega); \frac{\partial v}{\partial \nu} = 0 \text{ on } \Gamma_1 \right\},\$$

is dense in V (see [11]). As $D(-\Delta)$ is contained in $V \cap H^2(\Omega)$, the conclusion follows.

Lemma 3.5. Consider a function δ satisfying hypothesis (H3), and a Lipschitz continuous function h(s), $s \in \mathbb{R}$, with h(0) = 0. Take $u^0 \in V \cap H^2(\Omega)$ and $u^1 \in V$ satisfying the condition

$$\frac{\partial u^0}{\partial \nu} + \delta h(u^1) = 0 \quad \text{on } \Gamma_1.$$
(3.3)

Then, for each $\varepsilon > 0$, there exist w and z in $V \cap H^2(\Omega)$ such that

$$w - u^0 \|_{V \cap H^2(\Omega)} < \varepsilon, \quad \|z - u^1\| < \varepsilon,$$

 $\frac{\partial w}{\partial u} + \delta h(z) = 0 \quad \text{on } \Gamma_1.$

With respect to the function μ we make the following assumptions:

$$\mu \in W^{1,1}_{\text{loc}}(0,\infty), \quad 0 < \mu_0 \le \mu(t) \le \mu_1, \quad \forall t \ge 0, \quad \mu' \in L^1(0,\infty)$$
(3.4)

for some constants μ_0 , μ_1 .

Consider the real number ρ satisfying the restrictions (H4). Then

$$V \hookrightarrow L^{p^*}(\Omega) \hookrightarrow L^{2\rho}(\Omega) \hookrightarrow L^{\rho+1}(\Omega) \hookrightarrow L^{\rho}(\Omega)$$
(3.5)

where $p^* = \frac{2n}{n-2}$, $n \ge 3$. In what follows $X \hookrightarrow Y$ denotes that injection of the space X into the space Y is continuous. Note that when p > 1 and n = 1 or n = 2, the continuous injections (3.5) without $L^{p^*}(\Omega)$ is true.

With respect to the above injections, we introduce the following notation:

$$\|v\|_{L^{\rho+1}(\Omega)} \le k_0 \|v\|, \quad \|v\|_{L^{\rho}(\Omega)} \le k_1 \|v\|, \|v\|_{L^{2\rho}(\Omega)} \le k_2 \|v\|, \quad \|v\|_{L^{(\rho-1)n}(\Omega)} \le k_3 \|v\|, \quad \|v\|_{L^{p^*}(\Omega)} \le k_4 \|v\|$$

$$(3.6)$$

for all $v \in V$. Consider

$$\|u^0\| < \lambda_1^* := \left(\frac{\mu_0}{3k_0^{\rho+1}}\right)^{\frac{1}{\rho-1}},\tag{3.7}$$

$$G(s) = \frac{1}{\rho + 1} |s|^{\rho} s.$$
(3.8)

Recall that $G(s) = \int_0^s |\tau|^\rho d\tau$. With the above assumptions, we have the following result.

Theorem 3.6. Assume hypotheses (H1), (H3), (H4) and (3.4). Consider

 $\begin{aligned} u^0 \in V \cap H^2(\Omega), \quad u^1 \in V, f \in L^1(0,\infty;L^2(\Omega)), \quad f' \in L^1_{\text{loc}}(0,\infty;L^2(\Omega)) \quad (3.9) \\ satisfying (2.2) \text{ and} \end{aligned}$

$$\|u^{0}\| < \lambda_{1}^{*},$$

$$\left(\frac{2}{\mu_{0}}\right)^{1/2} \left[(2N)^{1/2} + \int_{0}^{\infty} |f(t)|dt \right] \exp\left(\frac{2}{\mu_{0}} \int_{0}^{\infty} |\mu'(t)|dt\right) < \lambda_{1}^{*},$$
(3.10)

where

$$N = \frac{1}{2} |u^{1}|^{2} + \frac{1}{2} \mu(0) ||u^{0}||^{2} + \frac{k_{0}^{\rho+1}}{\rho+1} ||u^{0}||^{\rho+1}.$$
(3.11)

and the real number λ_1^* defined in (3.7). Then there exists a function u with

$$u \in L^{\infty}(0, \infty; V), \quad u' \in L^{\infty}(0, \infty; L^{2}(\Omega)) \cap L^{\infty}_{loc}(0, \infty; V)$$
$$u'' \in L^{\infty}_{loc}(0, \infty; L^{2}(\Omega)), \quad u' \in L^{\infty}(0, \infty; L^{2}(\Gamma_{1})); \qquad (3.12)$$
$$u'' \in L^{\infty}_{loc}(0, \infty; L^{2}(\Gamma_{1}))$$

satisfying

$$u'' - \mu \Delta u + |u|^{\rho} = f \quad in \ L^{2}_{\text{loc}}(0, \infty; L^{2}(\Omega)), \tag{3.13}$$

$$\frac{\partial u}{\partial \nu} + \delta h(u') = 0 \quad in \ L^2_{\text{loc}}(0, \infty; H^{1/2}(\Gamma_1)), \tag{3.14}$$

$$\frac{\partial u'}{\partial \nu} + \delta h'(u')u'' = 0 \quad in \ L^2_{\text{loc}}(0,\infty; L^2(\Gamma_1)), \tag{3.15}$$

$$u(0) = u^0, \quad u'(0) = u^1.$$
 (3.16)

Proof of Theorem 3.6. By Lemma 3.5, we obtain sequences $(u_l^0), (u_l^1)$ of vectors of $V \cap H^2(\Omega)$ satisfying

$$\lim_{l \to \infty} u_l^0 = u^0 \quad \text{in } V \cap H^2(\Omega)$$
$$\lim_{l \to \infty} u_l^1 = u^1 \quad \text{in } V$$
$$\frac{\partial u_l^0}{\partial \nu} + \delta h(u_l^1) = 0 \quad \text{on } \Gamma_1, \ \forall l \in \mathbb{N}.$$
(3.17)

We construct a special basis of $V \cap H^2(\Omega)$ as follows: Fix $l \in \mathbb{N}$. Consider the basis

 $\{w_1^l, w_2^l, \dots, w_j^l, \dots\},\$

of $V \cap H^2(\Omega)$ satisfying $u^0, u^1 \in [w_1^l, w_2^l]$, where $[w_1^l, w_2^l]$ denotes the subspace generated by w_1^l, w_2^l . With this basis determine approximate solutions $u_{lm}(t)$ of

Problem (3.1), that is,

$$u_{lm}(t) = \sum_{j=1}^{m} g_{jlm}(t) w_{j}^{l},$$

$$(u_{lm}''(t), v) + \mu(t)((u_{lm}(t), v)) + (|u_{lm}(t)|^{\rho}, v)$$

$$+ \mu(t) \int_{\Gamma_{1}} \delta h(u_{lm}'(t)) v d\Gamma = (f(t), v), \quad \forall v \in V_{m}^{l},$$

$$u_{lm}(0) = u_{l}^{0}, \quad u_{lm}'(0) = u_{l}^{1},$$
(3.18)

where V_m^l is the subspace generated by $w_1^l, w_2^l, \ldots, w_m^l$. The above finite-dimensional system has a solution u_{lm} defined in $[0, t_{lm})$. The following estimates allow us to extend this solution to the interval $[0,\infty)$

First Estimate. Set $v = u'_{lm}$ in $(3.18)_1$. We have

$$\begin{aligned} &\frac{1}{2}\frac{d}{dt}|u'_{lm}(t)|^2 + \frac{1}{2}\frac{d}{dt}\left[\mu(t)\|u'_{lm}(t)\|^2\right] + \frac{d}{dt}\int_{\Omega}G(u_{lm}(t))dx \\ &+ \mu(t)\int_{\Gamma_1}\delta h(u'_{lm}(t))u'_{lm}(t)d\Gamma \\ &= (f(t),u'_{lm}(t)) + \frac{1}{2}\mu'(t)\|u'_{lm}(t)\|^2. \end{aligned}$$

Integrating on [0, t], $0 < t < t_{lm}$, we obtain

$$\frac{1}{2} |u'_{lm}(t)|^{2} + \frac{\mu(t)}{2} ||u'_{lm}(t)||^{2} + \int_{\Omega} G(u_{lm}(t))dt
+ \int_{0}^{t} \int_{\Gamma_{1}} \mu(t)h(u'_{lm}(\tau))u'_{lm}(\tau)d\Gamma d\tau
= \int_{0}^{t} (f(\tau), u'_{lm}(\tau))d\tau + \frac{1}{2} \int_{0}^{t} \mu'(\tau) ||u'_{lm}(\tau)||^{2} d\tau
+ \frac{1}{2} |u^{1}_{l}|^{2} + \frac{\mu(0)}{2} ||u^{0}_{l}||^{2} + \int_{\Omega} G(u^{0}_{l})dx.$$
(3.19)

Using (3.8), it follows that

$$\left| \int_{\Omega} G(u_{lm}(t)) dx \right| \leq \frac{1}{\rho+1} k_0^{\rho+1} \|u_{lm}(t)\|^{\rho+1},$$
$$\left| \int_{\Omega} G(u_l^0) dx \right| \leq \frac{1}{\rho+1} k_0^{\rho+1} \|u_l^0\|^{\rho+1}.$$

Taking into account the last two inequalities in (3.19), and using hypotheses $(3.4)_2$ and the fact $h_l(s)s \ge d_0$, we find

$$\frac{1}{2} |u'_{lm}(t)|^{2} + \frac{\mu_{0}}{2} ||u_{lm}(t)||^{2} - \frac{1}{\rho+1} k_{0}^{\rho+1} ||u_{lm}(t)||^{\rho+1} \\
\leq \frac{1}{2} |u'_{lm}(t)|^{2} + \frac{\mu(t)}{2} ||u_{lm}(t)||^{2} + \int_{\Omega} G(u_{lm}(t)) dx \\
+ \mu_{0} d_{0} \int_{0}^{t} \int_{\Gamma_{1}} [u'_{lm}(\tau)]^{2} d\Gamma d\tau \\
\leq \int_{0}^{t} |f(\tau)| |u'_{lm}(\tau)| d\tau + \frac{1}{2} \int_{0}^{t} |\mu'(\tau)| ||u'_{lm}(\tau)||^{2} d\tau + N_{1l}$$
(3.20)

where

$$N_{l} = \frac{1}{2} |u_{l}^{1}|^{2} + \frac{\mu(0)}{2} ||u^{0}||^{2} + \frac{1}{\rho+1} k_{0}^{\rho+1} ||u^{0}||^{\rho+1}.$$
(3.21)

Motivated by the expression

$$\frac{\mu_0}{2} \|u_{lm}(t)\|^2 - \frac{1}{\rho+1} k_0^{\rho+1} \|u_{lm}(t)\|^{\rho+1}$$

we introduce the function

$$J(\lambda) = \frac{1}{4}\mu_0 \lambda^2 - \frac{3}{2} \frac{k_0^{\rho+1}}{\rho+1} \lambda^{\rho+1}, \quad \lambda \ge 0.$$
(3.22)

That is,

$$J'(\lambda) = \frac{1}{2}\mu_0\lambda - \frac{3}{2}k_0^{\rho+1}\lambda^{\rho}.$$

We are interested in $\lambda \ge 0$ such that $J'(\lambda) \ge 0$, that is,

$$\frac{3}{2}k_0^{\rho+1}\lambda^{\rho-1} \le \frac{1}{2}\mu_0 \tag{3.23}$$

or

$$0 \le \lambda^{\rho-1} \le \frac{\mu_0}{3k_0^{\rho+1}}.$$
(3.24)

This inequality is equivalent to $0 \le \lambda \le \lambda_1^*$, where λ_1^* was defined in (2.3). Thus

$$J(\lambda) \ge 0 \quad \text{for } \lambda \in [0, \lambda_1^*]. \tag{3.25}$$

As consequence of (3.25) and hypothesis $(2.3)_1$, we obtain

$$\frac{\mu_0}{4} \|u_{lm}(t)\|^2 - \frac{3}{2} \frac{k_0^{\rho+1}}{\rho+1} \|u_{lm}(t)\|^{\rho+1} \ge 0,$$
(3.26)

for $||u_{lm}(t)|| < \lambda_1^*, t \in [0, t_{lm})$. Inequality (3.26) implies

$$\frac{1}{4}\mu_0 \|u_{lm}(t)\|^2 + \frac{1}{2}\frac{k_0^{\rho+1}}{\rho+1}\|u_{lm}(t)\|^{\rho+1} \le \frac{1}{2}\mu_0 \|u_{lm}(t)\|^2 - \frac{k_0^{\rho+1}}{\rho+1}\|u_{lm}(t)\|^{\rho+1}.$$

Taking into account this inequality and (3.26), we have

$$\frac{1}{2}|u'_{lm}(t)|^{2} + \frac{1}{4}\mu_{0}||u_{lm}(t)||^{2} + \frac{1}{2}\frac{k_{0}^{\rho+1}}{\rho+1}||u_{lm}(t)||^{\rho+1} \\
\leq \frac{1}{2}|u'_{lm}(t)|^{2} + \frac{\mu(t)}{2}||u_{lm}(t)||^{2} + \int_{\Omega}G(u_{lm}(t))dx \\
+ \mu_{0}d_{0}\int_{0}^{t}\int_{\Gamma_{1}}[u'_{lm}(\tau)]^{2}d\Gamma d\tau \\
\leq \int_{0}^{t}|f(\tau)||u'_{lm}(\tau)|d\tau + \frac{1}{2}\int_{0}^{t}|\mu'(\tau)||u_{lm}(\tau)||^{2}d\tau + N_{l}.$$
(3.27)

Note that

$$N_l < N \quad \text{for all } l \ge l_0 \tag{3.28}$$

where N was introduced in (3.11).

We set

$$\varphi(t) = |u_{lm}'(t)|^2 + \frac{1}{2}\mu_0 ||u_{lm}(t)||^2 + \frac{k_0^{\rho+1}}{\rho+1} ||u_{lm}(t)||^{\rho+1}$$

Then taking into account (3.28) in (3.27) and noting that $\frac{1}{\mu_1} \leq \frac{1}{\mu_0}$, we obtain

$$\varphi^{2}(t) \leq \frac{[(2N)^{1/2}]^{2}}{2} + \int_{0}^{t} |f(\tau)| |\varphi(\tau)| d\tau + \int_{0}^{t} 2\frac{|\mu'(\tau)|}{\mu_{0}} \varphi^{2}(\tau) d\tau.$$

Then by Lemma 3.1, we obtain

$$\varphi(t) \le \left[(2N)^{1/2} + \int_0^\infty |f(t)| dt \right] \exp\left(\frac{2}{\mu_0} \int_0^\infty |\mu'(t)| dt\right) = P.$$
(3.29)

 So

$$|u'_{lm}(t)| \le P$$
 and $||u_{lm}(t)|| \le \left(\frac{2}{\mu_0}\right)^{1/2} P$ (3.30)

for each $t \in [0, t_{lm})$ and $||u_{lm}(t)|| < \lambda_1^*$. The following result ensures that inequalities (3.30) hold for all $t \in [0, \infty)$.

Lemma 3.7. Let $[0, t_{lm})$ be an interval of existence of the solution $u_{lm}(t)$ of (3.18). Then

$$\|u_{lm}(t)\| < \lambda_1^*, \quad \forall t \in [0,\infty), \ \forall l \ge l_0, \ \forall m.$$

Proof. First, we note that by hypothesis (2.3), we have

$$||u_{lm}(0)|| = ||u_l^0|| < \lambda_1^*, \quad \forall l \ge l_0, \ \forall m.$$

Reasoning by contradiction, we assume that there exists $t_1 \in (0, t_{lm})$ such that $||u_{lm}(t_1)|| = \lambda_1^*$. Let

$$t^* = \inf\{t_1 \in (0, t_{lm}) : ||u_{lm}(t_1)|| = \lambda_1^*\}.$$

By the continuity of $||u_{lm}(t)||$, we obtain $||u_{lm}(t^*)|| = \lambda_1^*$. Note that $0 < t^* < t_{lm}$. Consider $t \in [0, t^*)$. Then $||u_{lm}(t)|| < \lambda_1^*$. So inequality (3.30) provides

$$||u_{lm}(t)|| \le \left(\frac{2}{\mu_0}\right)^{1/2} P, \ \forall t \in [0, t^*)$$

that implies

$$\lambda_1^* = \|u_{lm}(t^*)\| \le \left(\frac{2}{\mu_0}\right)^{1/2} P$$

But this is a contradiction because by hypothesis $(2.3)_2$, $\left(\frac{2}{\mu_0}\right)^{1/2}P < \lambda_1^*$. This concludes the proof.

Lemma 3.7 provides the estimates

$$|u'_{lm}(t)| \le P, \quad ||u_{lm}(t)|| \le \left(\frac{2}{\mu_0}\right)^{1/2} P, \quad \forall t \in [0,\infty), \ \forall l \ge l_0, \ \forall m.$$
 (3.31)

Also inequalities (3.29), (3.31) and (3.20) gives us

$$\int_{0}^{\infty} \|u_{lm}'(t)\|_{L^{2}(\Gamma_{1})} dt \leq K, \quad \forall t \in [0,\infty), \ \forall l \geq l_{0}, \ \forall m.$$
(3.32)

Second Estimate. In this part, to facilitate the notation we do not write the variable t and the subscripts l and m. Differentiating with respect to t equation $(3.18)_1$ and then setting w = u'', we obtain

$$\begin{split} &\frac{1}{2}\frac{d}{dt}|u''|^2 + \frac{1}{2}\frac{d}{dt}[\mu||u'||^2] + \mu'((u,u'')) + (\rho|u|^{\rho-2}uu',u'') \\ &+ \mu \int_{\Gamma_1} \delta h'(u')[u'']^2 d\Gamma + \mu' \int_{\Gamma_1} h(u')u'' d\Gamma \\ &= (f',u'') + \frac{1}{2}\mu'||u'||^2. \end{split}$$

Considering $w = \frac{\mu'}{\mu} u''$ in approximate equation (3.18)₁, we find

$$\mu'((u,u'') + \mu' \int_{\Gamma_1} h(u')u''d\Gamma = \left(f', \frac{\mu'}{\mu}u''\right) - \left(u'', \frac{\mu'}{\mu}u''\right) - \left(|u|^{\rho}, \frac{\mu'}{\mu}u''\right).$$

Combining the last two equalities, we have

$$\frac{1}{2} \frac{d}{dt} |u''|^2 + \frac{1}{2} \frac{d}{dt} \left[\mu ||u'||^2 \right] + \mu \int_{\Gamma_1} \delta h'(u) [u'']^2 d\Gamma
= (f', u'') + \frac{1}{2} \mu' ||u||^2 - (f, \frac{\mu'}{\mu} u'') + (u'', \frac{\mu'}{\mu} u'')
+ (|u|^{\rho}, \frac{\mu'}{\mu} u'') - (\rho |u|^{\rho-2} uu', u'').$$
(3.33)

Fix a real number T > 0. We bound the last terms of the second member of (3.33). By C = C(T) > 0 is denoted a generic constant which is independent of l and m. By (3.8), (3.6)₁ and estimate (3.33), we obtain

$$\left|\left(|u|^{\rho},\frac{\mu'}{\mu}u''\right)\right| \leq k_{2}^{\rho} ||u||^{\rho} \frac{|\mu'|}{\mu_{0}} |u''| \leq C \frac{|\mu'|}{\mu_{0}} |u''|.$$

By $(3.6)_2$, $(3.6)_3$, estimates (3.31) and noting that $\frac{1}{n} + \frac{1}{p^*} + \frac{1}{2} = 1$ (p^* introduced in (3.5)), we find

$$|(\rho|u|^{\rho-2}uu', u'')| \le \rho k_3^{\rho-1} k_4 ||u'|| |u''| \le C ||u'|| |u''| \le \frac{C}{2} ||u'||^2 + \frac{C}{2} |u''|^2.$$

Taking into account the last two inequalities (3.33) and integrating on [0, t], we obtain

$$\frac{1}{2} |u_{lm}''(t)|^{2} + \frac{1}{2} \mu(t) ||u_{lm}'(t)||^{2} + \mu_{0} d_{0} \int_{0}^{t} \int_{\Gamma_{1}} [u_{lm}''(\tau)]^{2} d\Gamma d\tau$$

$$\leq \int_{0}^{t} \left[|f'(\tau)| + \frac{|\mu'(\tau)|}{\mu_{0}} |f(\tau)| + \frac{C|\mu'(\tau)|}{\mu_{0}} \right] |u_{lm}''(\tau)| d\tau$$

$$+ \int_{0}^{t} \frac{C}{2} |u_{lm}''(\tau)|^{2} d\tau + \int_{0}^{t} \frac{C}{2} ||u_{lm}'(\tau)|^{2} d\tau$$

$$+ \frac{1}{2} \int_{0}^{t} \frac{|\mu'(\tau)|}{\mu_{0}} \mu(\tau) ||u(\tau)||^{2} d\tau + \frac{1}{2} |u_{lm}''(0)|^{2} + \frac{\mu(0)}{2} ||u_{l}^{1}||^{2}.$$
(3.34)

For this inequality provides an estimate, we need to bound $|u_{lm}'(0)|$. This is possible thanks to the choice of the special basis of $V \cap H^2(\Omega)$ and $(3.17)_3$.

$$|u_{lm}''(0)|^2 + \mu(0)(-\Delta u_l^0, u_{lm}''(0)) + (|u_l^0|^{\rho}, u_{lm}''(0)) = (f(0), u_{lm}''(0)).$$

This equality and (3.17) gives us

$$|u_{lm}''(0)|^2 \le K_1.$$

Taking into account this inequality in (3.34) and using Lemma 3.7, follows that

$$\|u_{lm}'(t)\| \leq C, \quad \forall t \in [0, T], \; \forall l \geq l_0, \; \forall m$$

$$|u_{lm}''(t)| \leq C, \quad \forall t \in [0, T], \; \forall l \geq l_0, \; \forall m$$

$$\int_0^t \|u_{lm}''(t)\|_{L^2(\Gamma_1)} \leq C, \quad \forall t \in [0, T], \; \forall l \geq l_0, \; \forall m$$
(3.35)

Passage to the Limit in m. Estimates (3.31), (3.32), (3.35) and diagonal process allows to find a function u_k and a subsequence of (u_{lm}) , still denoted by (u_{lm}) , such that

$$\begin{split} u_{lm} &\to u_l \quad \text{weak star in } L^{\infty}(0,\infty,V); \\ u'_{lm} &\to u'_l \quad \text{weak star in } L^{\infty}(0,\infty,L^2(\Omega)) \cap L^{\infty}_{\text{loc}}(0,\infty,V); \\ u''_{lm} &\to u''_l \quad \text{weak star in } L^{\infty}_{\text{loc}}(0,\infty,L^2(\Omega)); \\ u'_{lm} &\to u'_l \quad \text{weak star in } L^{\infty}(0,\infty,L^2(\Gamma_1)); \\ u''_{lm} &\to u''_l \quad \text{weak star in } L^{\infty}_{\text{loc}}(0,\infty,L^2(\Gamma_1)). \end{split}$$
(3.36)

Estimates $(3.36)_1$, $(3.36)_2$ and Aubin-Lions Theorem provides us

$$u_{lm}(x,t) \to u_l(x,t)$$
 a.e. in $Q = \Omega \times (0,T)$.

Then

$$|u_{lm}(x,t)|^{\rho} \to |u_l(x,t)|^{\rho} \quad \text{a.e. in } Q = \Omega \times (0,T).$$
(3.37)

By (3.8), $(3.6)_2$ and (3.31), we find

$$\int_{\Omega} |u_{lm}|^{2\rho} dx \le k_2^{2\rho} ||u_{lm}||^{2\rho} \le C.$$
(3.38)

Expressions (3.37), (3.38), Lions Lema [10] and diagonal process provide

$$|u_{lm}|^{\rho} \to |u_l|^{\rho}$$
 weak star in $L^{\infty}_{loc}(0,\infty;L^2(\Omega)).$ (3.39)

Estimate $(3.36)_3$ yields

 $u_{lm}' \to u_l' \quad \text{weak star in } L^\infty(0,\infty; H^{1/2}(\Gamma_1)).$

This, convergence $(3.36)_5$ and Aubin-Lions Theorem and fact h Lipchitizian function gives us

 $h(u'_{lm}(x,t)) \rightarrow h(u'_{l}(x,t))$ a.e. in Q

and by trace theorem and (3.36), we obtain

$$(h(u'_{lm}))$$
 bounded in $L^{\infty}_{loc}(0,\infty; H^{1/2}(\Gamma_1)).$

Therefore, by Lions Lemma, we conclude that

$$h(u'_{lm}) \to h(u'_l)$$
 weak star in $L^{\infty}_{\text{loc}}(0,\infty; H^{1/2}(\Gamma_1)).$ (3.40)

Convergences (3.36), (3.39)-(3.40) allows us to pass to the limit in approximate equation $(3.18)_1$. Then by density of $V \cap H^2(\Omega)$ in V, we obtain

$$\int_{0}^{\infty} (u_{l}''(t), v)\theta(t)dt + \mu \int_{0}^{\infty} ((u_{l}(t), v))\theta(t)dt + \int_{0}^{\infty} (|u_{l}(t)|^{\rho}, v)\theta(t)dt
+ \int_{0}^{\infty} \int_{\Gamma_{1}} \mu(t)\delta h(u_{l}'(t))v\theta(t)d\Gamma dt$$

$$= \int_{0}^{\infty} (f(t), v)\theta(t)dt, \quad v \in V, \,\forall \theta \in C_{0}^{\infty}(\Omega).$$
(3.41)

Taking $v \in \mathcal{D}(\Omega)$ in (3.41), and observing the regularities of $u_l'', |u_l|^{\rho}$ and f, follows that

$$u_l'' - \mu \Delta u_l + |u_l|^{\rho} = f \quad \text{in } L^2_{\text{loc}}(0, \infty; L^2(\Omega)).$$
(3.42)

This equation provides $\Delta u_l \in L^{\infty}(0,\infty; L^2(\Omega))$ and $(3.36)_1, u_l \in L^{\infty}(0,\infty; V)$. Then

$$\frac{\partial u_l}{\partial \nu} \in L^{\infty}_{\text{loc}}(0,\infty; H^{1/2}(\Gamma_1)).$$
(3.43)

Multiply both sides of (3.42) by $v\theta, v \in V$ and $\theta \in C_0^{\infty}(0, \infty)$, and integrate on $\Omega \times (0, \infty)$. Using regularity (3.43) of $\frac{\partial u}{\partial \nu}$, we conclude

$$\begin{split} &\int_0^\infty (u_l''(t), v)\theta(t)dt + \mu \int_0^\infty ((u_l(t), v))\theta(t)dt - \int_0^\infty \mu(t) \langle \frac{\partial u_l}{\partial \nu}, v \rangle \theta(t)dt \\ &+ \int_0^\infty (|u_l(t)|^\rho, v)\theta(t)dt \\ &= \int_0^\infty (f(t), v)\theta(t)dt, \quad v \in V, \, \forall \theta \in C_0^\infty(\Omega). \end{split}$$

where $\langle \cdot, \cdot \rangle$ denotes the duality paring between $H^{-\frac{1}{2}}(\Gamma_1)$ and $H^{1/2}(\Gamma_1)$. Comparing this equality with (3.41) and observing the regularity of $h(u'_l)$, we find (see [19])

$$\frac{\partial u_l}{\partial \nu} + \delta h(u_l') = 0 \quad \text{in } L^2_{\text{loc}}(0,\infty; H^{1/2}(\Gamma_1)).$$
(3.44)

Passage to the Limit in *l***.** Estimates (3.31), (3.32), (3.35) and convergence (3.36) provide

$$\begin{aligned} |u_{l}'(t)| &\leq P, \|u_{l}(t)\| \leq \left(\frac{2}{\mu_{0}}\right)^{1/2} \quad \forall t \in [0, \infty), \; \forall l \geq l_{0}, \\ \int_{0}^{\infty} \|u_{l}''(t)\|_{L^{2}(\Gamma_{1})}^{2} dt \leq C, \quad \forall t \in [0, \infty), \; \forall l \geq l_{0}; \\ \|u_{l}'(t)\| \leq C, \quad |u_{l}''(t)| \leq C \quad \forall t \in [0, T],]; \; \forall l \geq l_{0}, \\ \int_{0}^{t} \|u_{l}''(\tau)\|_{L^{2}(\Gamma_{1})}^{2} d\tau \leq C, \quad \forall t \in [0, T], \; \forall l \geq l_{0}. \end{aligned}$$
(3.45)

These estimates allows to obtain similar convergence to those obtained in (3.36). So there exists a function u and subsequence of (u_l) , still denoted by (u_l) , such that

$$u_{l} \to u \quad \text{weak star in } L^{\infty}(0, \infty, V);$$

$$u_{l}' \to u' \quad \text{weak star in } L^{\infty}(0, \infty, L^{2}(\Omega)) \cap L^{\infty}_{\text{loc}}(0, \infty; V);$$

$$u_{l}'' \to u'' \quad \text{weak star in } L^{\infty}_{\text{loc}}(0, \infty, L^{2}(\Omega)); \qquad (3.46)$$

$$u_{l}' \to u' \quad \text{weak in } L^{2}(0, \infty, L^{2}(\Gamma_{1}));$$

$$u_{l}'' \to u'' \quad \text{weak in } L^{2}_{\text{loc}}(0, \infty, L^{2}(\Gamma_{1})).$$

By arguments similar to those used for (3.39), we find

$$|u_l|^{\rho} \to |u|^{\rho} \quad \text{weak in } L^2_{\text{loc}}(0,\infty;L^2(\Omega)).$$
 (3.47)

This convergence, $(3.46)_3$ and (3.42) provide

$$\Delta u_l \to \Delta u \quad \text{weak in } L^2_{\text{loc}}(0,\infty;L^2(\Omega))$$
 (3.48)

and therefore

$$u'' - \mu \Delta u + |u|^{\rho} = f \text{ in } L^2_{\text{loc}}(0, \infty; L^2(\Omega)).$$
 (3.49)

Also convergences $(3.46)_1$ and (3.48) provide us with

$$\frac{\partial u_l}{\partial \nu} \to \frac{\partial u}{\partial \nu} \quad \text{weak in } L^2_{\text{loc}}(0,\infty; H^{-\frac{1}{2}}(\Gamma_1)).$$
 (3.50)

As done in (3.40), we find

$$\delta h(u_l) \to \delta h(u')$$
 weak star in $L^{\infty}_{\text{loc}}(0,\infty; H^{1/2}(\Gamma_1)).$ (3.51)

So these two convergences and (3.44), we met

$$\frac{\partial u}{\partial \nu} + \delta h(u') = 0 \quad \text{in } L^2_{\text{loc}}(0, \infty; H^{1/2}(\Gamma_1)).$$
(3.52)

From the regularity

$$u \in L^{\infty}_{\text{loc}}(0,\infty;V), \quad \Delta u \in L^{\infty}_{\text{loc}}(0,\infty;L^{2}(\Omega)), \quad \frac{\partial u}{\partial \nu} \in L^{\infty}_{\text{loc}}(0,\infty;H^{1/2}(\Gamma_{1}))$$

and by Proposition 3.2, we obtain

$$u \in L^{\infty}_{\text{loc}}(0, \infty; V \cap H^2(\Omega)).$$
(3.53)

Also, by estimate $(3.46)_4$ and noting that h is a Lipschitz continuous function we find

$$\frac{\partial u'}{\partial \nu} + \delta h'(u')u'' = 0 \quad \text{in } L^2_{\text{loc}}(0,\infty;L^2(\Gamma_1)).$$
(3.54)

The verification of initial conditions follows in the usual way.

In what follows, we prove the uniqueness of solutions. Let u and v two functions in class (3.12) which satisfy equations (3.13), (3.14) and initial conditions (3.16). Consider w = u - v. Then

$$w'' - \mu \Delta w + |u|^{\rho} - |v|^{\rho} = 0 \quad \text{in } L^{\infty}(0, T; L^{2}(\Omega)),$$

$$\frac{\partial w}{\partial \nu} + \delta[h(u') - h(v')] = 0 \quad \text{in } L^{\infty}(0, T; H^{1/2}(\Gamma_{1})),$$

$$w(0) = 0, \quad w'(0) = 0$$
(3.55)

Multiplying both sides of $(3.55)_1$ by w' integrating on Ω and using Gauss Theorem, we obtain

$$\frac{1}{2}\frac{d}{dt}|w'(t)|^2 + \frac{1}{2}||w(t)||^2 + \int_{\Gamma_1} \delta[h(u'(t)) - h(v'(t))]d\Gamma$$

= $-(|u(t)|^{\rho} - |v(t)|^{\rho}, w'(t)).$ (3.56)

We have

$$|u(x,t)|^{\rho} - |v(x,t)|^{\rho} = \rho|\xi|^{\rho-2}\xi w(x,t)$$

where ξ is between u(x, t) and v(x, t). Then

$$||u(x,t)|^{\rho} - |v(x,t)|^{\rho}| = \rho |\xi|^{\rho-1} |w(x,t)|$$

that provides

$$\begin{aligned} ||u(t)|^{\rho} - |v(t)|^{\rho}| &\leq \rho[|u(x,t)| + |v(x,t)|]^{\rho-1} |w(x,t)| \\ &\leq C(\rho)[|u(x,t)|^{\rho-1} |w(x,t)| + |v(x,t)|^{\rho-1} |w(x,t)|]. \end{aligned}$$
(3.57)

We obtain

$$\int_{\Omega} |u(x,t)|^{\rho-1} |w(x,t)| |w'(x,t)| dx \le ||u(t)||_{L^{(\rho-1)n}(\Omega)}^{\rho-1} ||w(t)||_{L^{p^*}(\Omega)} |w'(t)| \le k_3 k_4 ||u(t)||^{\rho-1} ||w(t)|| |w'(t)|.$$

Thus

$$|(|u(t)|^{\rho} - |v(t)|^{\rho}, w'(t))| \le C ||w(t)|| |w'(t)| \le \frac{C}{2} ||w(t)||^{2} + \frac{C}{2} |w'(t)|^{2}.$$

This inequality, (3.56) and property of monotony of h, imply

$$\frac{1}{2}\frac{d}{dt}|w'(t)|^2 + \frac{1}{2}\frac{d}{dt}||w(t)||^2 + \delta_0 d_0 \int_{\Gamma_1} w'(t)^2 d\Gamma \le \frac{C}{2}||w(t)||^2 + \frac{C}{2}|w'(t)|.$$

Then the Gronwall inequality provides w'(t) = 0 and w(t) = 0. This concludes the proof of Theorem 3.6.

3.2. **Proof of Theorem 2.3.** We introduce some notation to apply the Banach Fixed-Point Theorem. Consider a real number R > 0 such that

$$R > M_0 \tag{3.58}$$

where $M_0 = \max\{M_1, M_2\}$ is defined in (3.71), M_1 , M_2 are defined by (3.65) and (3.69) respectively. Let

$$R_1^2 = N_1^2 = |u^1|^2 + M(0, ||u^0||^2) ||u^0||^2 + \frac{1}{\rho+1} k_0 ||u_0||^{\rho+1}, \qquad (3.59)$$

$$R_2^2 = M(0, ||u^0||^2) ||u^1||^2 + M(0, ||u^0||^2) |\Delta u^0| + |u^0|^\rho + |f(0)|.$$
(3.60)

We define B_{R,T_0} as the set of vectors

$$B_{R,T_0} = \left\{ u : u \in L^{\infty}(0,T_0;V), \ u' \in L^{\infty}(0,T_0;V) \cap C^0([0,T_0];L^2(\Omega)), \\ \|u\|_{L^{\infty}(0,T_0;V)} + \|u'\|_{L^{\infty}(0,T_0;V)} \le R, \\ u(0) = u^0, \ u'(0) = u^1. \right\}$$

The real number T_0 with $0 < T_0 \leq 1$ will be determined later. We equipped B_{R,T_0} with the metric

$$d(u,v) = \|u - v\|_{L^{\infty}(0,T_0;V)} + \|u' - v'\|_{C^0([0,T_0];L^2(\Omega))}$$

Consider the map $S: B_{R,T_0} \to \mathcal{H}, z \mapsto S(z) = \varphi$, where \mathcal{H} denotes the set of solutions φ , of the problem

$$\varphi'' - M(\cdot, ||z||^2) \Delta \varphi + |\varphi|^{\rho} = f \quad \text{in } \Omega \times (0, T_0)$$

$$\varphi = 0 \quad \text{on } \Gamma_0 \times (0, T_0)$$

$$\frac{\partial \varphi}{\partial \nu} + \delta h(\varphi') = 0 \quad \text{on } \Gamma_1 \times (0, T_0)$$

$$\varphi(0) = u^0, \quad \varphi'(0) = u^1 \quad \text{in } \Omega$$
(3.61)

We prove that the map S is well defined. Set

$$K = \max\left\{ \left| \frac{\partial M}{\partial t}(t,\lambda) \right|, \left| \frac{\partial M}{\partial \lambda}(t,\lambda) \right|; t \in [0,1], \ \lambda \in [0,R^2] \right\}.$$
(3.62)

Consider

$$\mu(t) = M(t, ||z(t)||^2), \quad t \in [0, T_0].$$
(3.63)

We have that $\mu \in W^{1,\infty}(0,T_0)$. In fact,

$$\mu'(t) = \frac{\partial M}{\partial t}(t, \|z(t)\|^2) + \frac{\partial M}{\partial \lambda}(t, \|z(t)\|^2)\frac{d}{dt}\|z(t)\|^2.$$

As $z \in B_{R,T_0}$, we find that

$$|\mu'(t)| \le K(1+4R^2), \quad \text{a.e. } t \in]0, T_0[.$$
 (3.64)

Thus, $\mu \in W^{1,\infty}(0,T_0)$ with $\mu_0 = m_0$. Theorem 3.6 says that there exists a unique solution φ of system (3.61) and this solution has the regularity of the vectors of B_{R,T_0} .

Our objective now is to show that $S(B_{R,T_0})$ is contained B_{R,T_0} and that S is a strict contraction.

Let φ be a solution of the problem (3.61) given by the Theorem 3.6 with $\mu(t)$ defined in (3.63). Let φ_{lm} be the approximate solution given in the proof of Theorem 3.6. Then by first a priori estimate given the proof of Theorem 3.6, we obtain

$$\|\varphi_{lm}(t)\|^2 \le M_1 \exp\left(\frac{2}{m_0} \int_0^t |\mu'(\tau)| d\tau\right), \quad 0 \le t \le T_0,$$

where

$$M_1 = (2R_1)^{1/2} + \int_0^{T_0} |f(t)| dt.$$
(3.65)

This and (3.64) gives

$$\|\varphi_{lm}(t)\| \le M_1 \exp(\mathcal{K}_1 T_0), \quad 0 \le t \le T_0, \text{ for } m \ge 2 \text{ and } l \ge l_0(1).$$
 (3.66)

where

$$\mathcal{K}_1 = \frac{2K(1+R^2)}{m_0}.$$
(3.67)

The second priori estimates Theorem 2.3 gives us

$$\|\varphi'_{lm}(t)\| \le M_2 \exp\left(\mathcal{K}_2 T_0\right), \quad 0 \le t \le T_0, \text{ for } m \ge 2 \text{ and } l \ge l_0(1).$$
 (3.68)

where

$$M_{2} = 2R_{2}^{1/2} + \int_{0}^{T_{0}} \left[|f'(t)| + \frac{|\mu'(t)|}{m_{0}} |f(t)| + \frac{C}{m_{0}} |\mu'(t)| \right] dt$$

$$\leq 2R_{2}^{1/2} + \int_{0}^{T_{0}} \left[|f'(t)| + \frac{K(1+4R^{2})}{m_{0}} |f(t)| + \frac{C}{m_{0}} K(1+4R^{2}) \right] dt$$
(3.69)

and

$$\mathcal{K}_2 = \frac{(2+m_0)K(1+4R^2)}{2m_0} + \frac{3C}{2}.$$
(3.70)

Consider

$$M_0 = \max\{M_1, M_2\}, \quad \mathcal{K} = \max\{\mathcal{K}_1, \mathcal{K}_2\}.$$
 (3.71)

From (3.66), (3.68) and (3.71) and taking the maximum on $[0, T_0]$ of both of members the (3.66) and (3.68) and then the limit inferior, first with respect to m and later with respect to l, we obtain

$$\|\varphi\|_{L^{\infty}(0,T_{0};V)} + \|\varphi'\|_{L^{\infty}(0,T_{0};V)} \le M_{0}exp(\mathcal{K}T_{0}).$$
(3.72)

We will choose $T_0 > 0$ so that the second member of the preceding inequality be less than or equal to R. In fact, set

$$q(t) = M_0 e^{\mathcal{K}t}, \quad t \ge 0.$$

Then q is continuous, increasing, $q(t) \to \infty$ when $t \to \infty$ and $q(0) = M_0 < R$ (see (3.58)). Then by the Intermediate Value Theorem there exists $T_1^* > 0$ such that $q(T_1^*) = R$, that is,

$$T_1^* = \frac{1}{\mathcal{K}} \ln\left(\frac{R}{M_0}\right). \tag{3.73}$$

We choose

$$0 < T_0 \le \min\{1, T_1^*\}. \tag{3.74}$$

Then expression (3.72) with T_0 given by (3.74) satisfies

$$\|\varphi\|_{L^{\infty}(0,T_{0};V)} + \|\varphi'\|_{L^{\infty}(0,T_{0};V)} \le R.$$

Therefore φ belongs to B_{R,T_0} . Thus $S(B_{R,T_0})$ is contained in B_{R,T_0} .

In the sequel we prove that S is a strict contraction. Set $r_1, y_1 \in B_{R,T_0}$ and $S(r_1) = r, S(y_1) = y$. Introduce the notation

$$\varphi = r - y. \tag{3.75}$$

We have

$$\varphi'' - M(\cdot, ||r_1||^2) \Delta r + M(\cdot, ||y_1||^2) \Delta y + |r|^{\rho} - |y|^{\rho} = 0 \quad \text{in } \Omega \times]0, T_0[,$$

$$\varphi = 0, \quad \psi = 0 \quad \text{on } \Gamma_0 \times]0, T_0[,$$

$$\frac{\partial \varphi}{\partial \nu} + \delta[h(r') - h(y')] = 0 \quad \text{on } \Gamma_1 \times]0, T_0[,$$

$$\varphi(0) = 0, \quad \varphi'(0) = 0 \quad \text{in } \Omega.$$
(3.76)

Taking the scalar product in $L^2(\Omega)$ of $(3.76)_1$ with $\varphi'(t)$ we obtain

$$\frac{1}{2} \frac{d}{d} |\varphi'(t)|^2 - M(t, ||r_1(t)||^2) (\Delta r(t), \varphi'(t))
+ M(t, ||y_1(t)||^2) (\Delta y(t), \varphi'(t)) + (|r|^{\rho} - |y|^{\rho}, \varphi'(t)) = 0.$$
(3.77)

We modify (3.77), to obtain

$$\frac{1}{2} \frac{d}{d} |\varphi'(t)|^2 - M(t, ||r_1(t)||^2) (\Delta \varphi(t), \varphi'(t))
= [M(t, ||r_1(t)||^2) - M(t, ||y_1(t)||^2)] (\Delta y(t), \varphi'(t)) - (|y|^{\rho} - |r|^{\rho}, \varphi'(t)).$$

We abbreviate the notation and write this expression in the form

$$\frac{1}{2}\frac{d}{dt}|\varphi'(t)|^2 + A(t) = B(t).$$
(3.78)

• Analysis of A(t). Using the Green's Theorem and the boundary condition in $(3.76)_3$, we find that

$$\begin{aligned} A(t) &= M(t, \|r_1(t)\|^2) \frac{1}{2} \frac{d}{dt} \|\varphi(t)\|^2 \\ &+ M(t, \|r_1(t)\|^2) \int_{\Gamma_1} \delta[h(r'(t)) - h(y'(t))] \varphi'(t) d\Gamma. \end{aligned}$$

Note that, $\delta(x) \ge \delta_0 > 0$ and $\varphi'(t) = r'(t) - y'(t)$ then by the strong monotonicity of h, follows that

$$\int_{\Gamma_1} \delta[h(r'(t)) - h(y'(t))]\varphi'(t)d\Gamma \ge 0.$$

Combining the last two expressions we conclude that

$$A(t) \ge M(t, \|r_1(t)\|^2) \frac{1}{2} \frac{d}{dt} \|\varphi(t)\|^2 \ a.e. \ t \in]0, T_0[.$$
(3.79)

• Analysis of B(t). To facilitate the notation in this part we do not write the variable t. We have

$$B = \left[M(\cdot, \|r_1\|^2) - (M(\cdot, \|y_1\|^2)) \right] (\Delta y(t), \varphi'(t)) - (|y|^{\rho} - |r|^{\rho}, \varphi'(t)).$$
(3.80)

• As $M \in C^1$ we have

$$\left| M(\cdot, \|r_1\|^2) - M(\cdot, \|y_1\|^2) \right| \le 2KM_0 \|r_1 - y_1\|,$$

where K and M_0 were defined in (3.62) and (3.71), respectively.

• Analysis of $(|y(t)|^{\rho} - |r(t)|^{\rho}, \varphi'(t))$. We have

$$|y(x,t)|^{\rho} - |r(x,t)|^{\rho} = \rho |\xi|^{\rho-2} \xi \varphi(x,t)$$

where ξ is between y(x,t) and r(x,t). Then

$$||y(x,t)|^{\rho} - |r(x,t)|^{\rho}| \le \rho |\xi|^{\rho-1} |\varphi(x,t)|$$

which implies

$$||y(x,t)|^{\rho} - |r(x,t)|^{\rho}| \le C[|y(x,t)|^{\rho-1} + |r(x,t)|^{\rho-1}]|\varphi(x,t)|.$$

Thus

$$|(|y(t)|^{\rho} - |r(t)|^{\rho}, \varphi'(t))| \le C ||y(t)||_{L^{(\rho-1)n}(\Omega)}^{\rho-1} ||\varphi(t)||_{L^{p^*}(\Omega)} |\varphi'(t)|.$$

By (3.6), we find that

$$\begin{split} \|y(t)\|_{L^{(\rho-1)n}(\Omega)}^{\rho-1} &\leq k_3^{\rho-1} \|y(t)\|^{\rho-1} \leq C, \quad \forall t \in [0,T_0], \\ \|r(t)\|_{L^{(\rho-1)n}(\Omega)}^{\rho-1} &\leq C, \ \forall t \in [0,T_0]. \end{split}$$

Combining the last tree inequalities, we obtain

$$|(|y(t)|^{\rho} - |r(t)|^{\rho}, \varphi'(t))| \le C ||\varphi(t)|| |\varphi'(t)| \le \frac{C}{2} ||\varphi(t)||^{2} + \frac{C}{2} |\varphi'(t)|^{2}.$$

Taking into account the last two inequalities in (3.80), we obtain

$$|B(t)| \le C|\Delta y(t)||\varphi'(t)|d(r_1, y_1) + \frac{C}{2}||\varphi(t)||^2 + \frac{C}{2}|\varphi'(t)|^2.$$
(3.81)

Next we find a bound for $|\Delta y(t)|$. We have

$$\varphi'' - M(\cdot, ||z||^2) \Delta \varphi + |\varphi|^{\rho} = f \quad \text{in } L^{\infty}(0, T_0; L^2(\Omega)).$$

By estimates (3.66), (3.68) and following the same reasoning used for (3.68), we obtain

$$|y''(t)| \le M_0 \exp(\mathcal{K}T_0)$$
 a.e. $t \in]0, T_0[.$ (3.82)

Hence,

$$|M(t, ||z(t))|| ||\Delta\varphi(t)| \le |f(t)| + |u(t)|^{\rho} + |\varphi'(t)| \le \left(\frac{C_1 + C_2}{m_0}\right) + \frac{M_0}{m_0} \exp(\mathcal{K}T_0).$$
(3.83)

These last two expressions give

$$|\Delta y(t)| \le M_3 + M_3 exp(\mathcal{K}T_0)$$
 a.e. $t \in]0, T_0[,$ (3.84)

where

$$M_3 = \max\left\{\frac{C_1 + C_2}{m_0}, \frac{M_0}{m_0}\right\}.$$

Note that $e^{\mathcal{K}T_0} > 1$, therefore $M_3 \leq M_3 e^{\mathcal{K}T_0}$. Hence Combining (3.81)and(3.84) we derive

$$|B(t)| \le P_0[exp(\mathcal{K}T_0)]|\varphi'(t)|d(r_1, y_1) \quad \text{a.e. } t \in]0, T_0[$$
(3.85)

where

$$P_0 = 4KM_0M_3. (3.86)$$

Combining (3.79) and (3.85) with (3.78), we obtain

$$\frac{1}{2} \frac{d}{dt} |\varphi'(t)|^2 + M(t, ||r_1(t)||^2) \frac{1}{2} \frac{d}{dt} ||\varphi(t)||^2
\leq P_0 [exp(\mathcal{K}T_0)]^2 d^2(r_1, y_1) + |\varphi'(t)|^2 \quad \text{a.e } t \in]0, T_0[.$$
(3.87)

We have

$$M(\cdot, \|r_1\|^2) \frac{1}{2} \frac{d}{dt} \|\varphi\|^2 = \frac{1}{2} \frac{d}{dt} [M(\cdot, \|r_1\|^2) \|\varphi(t)\|^2] - \frac{1}{2} \Big[\frac{\partial M}{\partial t} (\cdot, \|r_1\|^2) + \frac{\partial M}{\partial \lambda} (\cdot, \|r_1\|^2) \frac{d}{dt} \|r_1\|^2 \Big] \|\varphi\|^2.$$

Substituting this equality in (3.87), and using boundedness (3.62) and (3.60), we find

$$\frac{1}{2} \frac{d}{d} \left[|\varphi'(t)|^2 + M(t, ||r_1(t)||^2) ||\varphi(t)||^2 \right]
\leq \frac{K(1+2R^2)}{2} ||\varphi(t)||^2 + P_0^2 [\exp(\mathcal{K}T_0)]^2 d^2(r_1, y_1) + |\varphi'(t)|^2 \quad \text{a.e. } t \in]0, T_0[.$$

Integrating on [0, t], $0 < t \le T_0$, and noting that $M(t, \lambda) \ge m_0$ and $\varphi(0) = \varphi'(0) = 0$, we obtain

$$\frac{1}{2} [|\varphi'(t)|^2 + m_0 ||\varphi(t)||^2]
\leq P_1 \int_0^t ||\varphi(s)||^2 ds + T_0 P_0^2 [exp(\mathcal{K}T_0)]^2 d^2(r_1, y_1) + \int_0^t |\varphi'(s)|^2 ds,$$
(3.88)

where

$$P_1 = \frac{K(1+2R^2)}{2}.$$
(3.89)

Considering

$$b_1^2 = \frac{P_0[exp(\mathcal{K}T_0)]^2}{\min\{\frac{1}{2}, \frac{m_0}{2}\}}, \quad b_2 = \frac{\max\{P_1, 1\}}{\min\{\frac{1}{2}, \frac{m_0}{2}\}},$$
(3.90)

where P_0 was defined in (3.86), we have

$$\|\varphi(t)\|^2 + |\varphi'(t)|^2 \le b_1^2 T_0 d^2(r_1, y_1) + b_2 \int_0^t [\|\varphi(s)\|^2 + |\varphi'(s)|^2] ds.$$

Then Gronwall's lemma gives

$$\|\varphi(t)\|^2 + |\varphi'(t)|^2 \le 4b_1^2 T_0 d^2(r_1, y_1) \exp(b_2 T_0),$$

which implies

$$\|\varphi(t)\| + |\varphi'(t)| \le 2b_1 T_0^{1/2} d(r_1, y_1) \exp(b_2 T_0),$$

Recalling that $S(r_1) = r$, $S(y_1) = y$ and $\varphi = r - y$, from the above inequality it follows that

$$d(S(r_1), S(y_1)) \le [2b_1 T_0^{1/2} \exp(b_2 T_0)] d((r_1, y_1).$$
(3.91)

Note that K given in (3.62) is independent of T_0 , therefore \mathcal{K} , P_0 and P_1 defined in (3.71), (3.86) and (3.89) respectively, are independent of T_0 . Thus the constants b_1 and b_2 given in (3.90) are also independent of T_0 .

Consider $\psi(t) = 2b_1 t \exp(b_2 t)$, $t \ge 0$. Then ψ is continuous, increasing and $\psi(0) = 0$. So there exists $T_2^* > 0$ such that $\psi(T_2^*) < 1$. Take

$$T_0 = \min\{1, T_1^*, T_2^*\} > 0$$

where T_1^* was defined in (3.73). Then T_0 satisfies (3.74) and

$$2b_1 T_0 \exp(b_2 T_0) = \alpha_0 < 1.$$

Substituting this constant in (3.91), we conclude that

$$d(S(r_1), S(y_1)) \le \alpha_0 d(r_1, y_1), \quad \forall r_1, y_1 \in B_{R, T_0}.$$

Thus d is a strict contraction. By the Banach Fixed-Point Theorem there exists a unique point $u \in B_{R,T_0}$ such that S(u) = u. This fixed point satisfies all conditions required in the theorem.

The uniqueness of solutions follows as in [21].

The existence of global solutions to problem (2.6) and their asymptotic behavior with small data will be published in a future article.

References

- H. Brezis; Opérateurs Maximaux Monotones et Semi-groupes de Contraction dans les Espaces de Hilbert, Nort-Holland, Amsterdam, 1973.
- [2] H. Brezis, T. Cazenave.; Nonlinear Evolution Equations, IM-UFRJ, Rio, 1994.
- [3] M. M. Cavalcanti; V. N. Domingos Cavalcanti, J. A. Soriano; Global existence and uniforme decay rates for the Kirchhoff - Carrier equation with nonlinear dissipation, Advances in Diff. Equations 6 (2001), p. 701-730.
- [4] J. A. Goldstein; Semigroups and second order differential equations, J. Funct. Anal. 4, No. 1 (1969), 50-70.
- [5] V. Komornik.; Exact Controllability, The Multiplier Method, John Wiley & Sons and Masson, 1994.
- [6] V. Komornik, E. Zuazua.; A direct method for boundary stabilization of the wave equation, J. Math. Pure Appl. 69 (1990) p. 33-54.
- [7] I. Lasiecka, J. Ong; Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Com. Partial Differential Equations 24 (1999) p. 2069-2107.
- [8] I. Lasiecka, D. Tataru.; Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Diff. Integral Eq. 6 (1993), 507-533.
- [9] I. Lasiecka, R. Triggiane; Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric condition, Applied Math. Optimiz. 25(1992), p.189-224.
- [10] J. L. Lions; Quelques Méthodes de Résolutions des Problèmes aux Limites Non-Linéaires. Dunod, Paris. 1969.
- [11] J. L. Lions; Equations aux Derivées Partielles Interpolation, Vol 1, EDP Sciences, Les Ulis, Paris (2003), Oeuvres Choisies de Jacques-Louis Lions, 2003, View at Math. SciNet.
- [12] J. L. Lions, E. Magenes; Problèmes aux Limites Non Homogènes and Applications, Vol. 1, Dunod, Paris. 1968.
- [13] A.T. Louredo, M, Milla Miranda.; Local solutions for a coupled system of Kirchhoff type. Nonlinear Analysis, v. 74, p. 7094-7110, 2011.
- [14] M. Marcus, V. Mizel.; Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal 33 (1979), p. 217-229.
- [15] L. A. Medeiros; On Some Nonlinear Pertubation of Kirchhoff-Carrier Operator., 39° Seminário Brasileiro de Análise, São José dos Campos - SP, ITA, Maio de 1994.
- [16] L. A. Medeiros; J. Limaco, C. L. Frota.; On Wave Equations Without Global a Priori Estimates, Bol. Soc. Paran. Mat. v. 30 2 (2012): 19-32.
- [17] L. A. Medeiros; J. Limaco, S. B. Menezes., Vibrations of elastic strings: mathematical aspects, Part One, Journal of Computational Analysis and Applications 4 (2002), p.91-127.
- [18] L. A. Medeiros, M. Milla Miranda; Espaços de Sobolev (Iniciação aos Problemas Eliticos Não Homogêneos), Editora IM-UFRJ, Fifth Ed., 2006.
- [19] M. Milla Miranda; Traço para o dual dos espaços de Sobolev, Bol. Soc. Paran.Matemática (2^a série) 11(2) (1990), p.131-157.
- [20] M. Milla Miranda, L. A. Medeiros.; On a boundary value problem for wave equations: Existence, uniqueness-asymptotic behavior, Revista de Matemáticas Aplicadas, Universidad de Chile 17 (1996), p. 47-73.
- [21] M. Milla Miranda, P. San Gil Jutuca; Existence and boundary stabilization of solutions for the Kirchhoff equation, Commun. Partial Differential Equations 24 (1999), 1759-1880.
- [22] J. P. Quinn, D. L. Russell; Asymptotic stability and energy decay rates for solutions of hyperbolic equation with boundary damping, Proc. Roy. Soc. Edinburgh, Sect. A, 77 (1977), 97-127.
- [23] L. Tartar; Topics in Nonlinear Analysis, Uni. Paris Sud, Dep. Math., Orsay, France, (1978).
- [24] E. Zuazua; Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 28 (1990), 466-478.

MANUEL MILLA MIRANDA UNIVERSIDADE ESTADUAL DA PARAÍBA, DM, PB, BRAZIL *E-mail address:* milla@im.ufrj.br

20

Aldo T. Louredo

UNIVERSIDADE ESTADUAL DA PARAÍBA, DM, PB, BRAZIL *E-mail address:* aldolouredo@gmail.com, Phone +55 (83) 3315-3340

Luiz A. Medeiros

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, IM, RJ, BRAZIL *E-mail address:* luizadauto@gmail.com