Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 78, pp. 1-11.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

BLOW-UP OF SOLUTIONS TO A COUPLED QUASILINEAR VISCOELASTIC WAVE SYSTEM WITH NONLINEAR DAMPING AND SOURCE

XIAOYING ZHANG, SHUGEN CHAI, JIEQIONG WU

Communicated by Goong Chen

Abstract

We study the blow-up of the solution to a quasilinear viscoelastic wave system coupled by nonlinear sources. The system is of homogeneous Dirichlet boundary condition. The nonlinear damping and source are added to the equations. We assume that the relaxation functions are non-negative non-increasing functions and the initial energy is negative. The competition relations among the nonlinear principal parts are not constant functions, the viscoelasticity terms, dampings and sources are analyzed by using perturbed energy method. The blow-up result is proved under some conditions on the nonlinear principal parts, viscoelasticity terms, dampings and sources by a contradiction argument

1. Introduction

Let Ω be a bounded domain of $R^{n}(n \geq 1)$ with a smooth boundary $\partial \Omega$. Consider the following nonlinear viscoelastic system

$$
\begin{align*}
& \left|u_{t}\right|^{\rho} u_{t t}-\operatorname{div}\left(\rho_{1}\left(|\nabla u|^{2}\right) \nabla u\right)+\int_{0}^{t} g(t-\tau) \Delta u(x, \tau) d \tau+u_{t}+\left|u_{t}\right|^{m-1} u_{t} \\
& =f_{1}(u, v), \quad \Omega \times(0, T), \\
& \left|v_{t}\right|^{\rho} v_{t t}-\operatorname{div}\left(\rho_{2}\left(|\nabla v|^{2}\right) \nabla v\right)+\int_{0}^{t} h(t-\tau) \Delta v(x, \tau) d \tau+v_{t}+\left|v_{t}\right|^{r-1} v_{t} \tag{1.1}\\
& =f_{2}(u, v), \quad \Omega \times(0, T), \\
& \quad u(x, t)=v(x, t)=0, \quad x \in \partial \Omega \times[0, T], \\
& \quad u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega, \\
& \quad v(x, 0)=v_{0}(x), \quad u_{t}(x, 0)=v_{1}(x), \quad x \in \Omega,
\end{align*}
$$

where $\rho>0, m, r>1$ and $\rho_{1}, \rho_{2}, f_{1}, f_{2}, g, h$ are functions satisfying the following assumptions:
(A1) $\rho_{i}(s)=b_{1}+b_{2} s^{q_{i}}$ with $q_{i} \geq 0$ and $b_{1}, b_{2}>0 ; \rho_{i}(s)>0$, for $s>0$.

[^0](A2) The relaxation functions g and h are of class C^{1} and satisfy, for $s \geq 0$,
\[

$$
\begin{aligned}
& g(s) \geq 0, \quad b_{1}-\int_{0}^{\infty} g(s) d s=l>0, \quad g^{\prime}(s) \leq 0 \\
& h(s) \geq 0, \quad b_{1}-\int_{0}^{\infty} h(s) d s=k>0, \quad h^{\prime}(s) \leq 0
\end{aligned}
$$
\]

(A3) Let $F(u, v)=a|u+v|^{p+1}+2 b|u v|^{\frac{p+1}{2}}$ with $a, b>0,1<p<\infty$ if $n=1,2$ and $1<p<\frac{n}{n-2}$ if $n \geq 3$. Assume that

$$
f_{1}(u, v)=\frac{\partial F}{\partial u}, \quad f_{2}(u, v)=\frac{\partial F}{\partial v}
$$

and that there are positive constants c_{0}, c_{1} such that

$$
c_{0}\left(|u|^{p+1}+|v|^{p+1}\right) \leq F(u, v) \leq c_{1}\left(|u|^{p+1}+|v|^{p+1}\right)
$$

Many studies concerning existence of global solutions or their blow-up to system (1.1) with $\rho_{i} \equiv 1$ are available in the literature. Georgiev and Todorova 5 considered the single equation

$$
\begin{equation*}
u_{t t}-\Delta u+u_{t}\left|u_{t}\right|^{m-1}=|u|^{p-1} u, \quad \text { in } \Omega \times(0, \infty) \tag{1.2}
\end{equation*}
$$

and the interaction between the nonlinear damping and nonlinear source term. The authors showed that the solutions of the system with sufficient large initial data blow up in finite time if $p>m$. Messaoudi [8] extended the results of [5] to the case that the initial energy is negative. Agre and Rammaha [1] extended the results of [5] by considering an initial-boundary value problem to the coupled wave equations.

In the presence of the viscoelastic term, Messaoudi 9] considered the nonlinear viscoelastic equation

$$
\begin{equation*}
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau+a u_{t}\left|u_{t}\right|^{m-1}=b|u|^{p-1} u, \quad \Omega \times(0, \infty) \tag{1.3}
\end{equation*}
$$

with initial conditions and Dirichlet boundary conditions. He proved that the weak solution with negative initial energy blew up if $p>m$ when g satisfied some conditions. Messaoudi [10] considered the blow-up solution of 1.3 with $a=1$, $b=1$ and with small positive initial energy. Song [12 extended the results of 10 to the case that the initial energy is arbitrarily positive. For other related works on the viscoelastic wave equation, we refer the reader to [2, 4, 16].

Problem (1.1) with $\rho>0$ has also been extensively studied. Song [13] investigated the nonexistence of global solutions to the initial-boundary value problem of the following equation with positive initial energy

$$
\begin{equation*}
\left|u_{t}\right|^{\rho} u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau+u_{t}\left|u_{t}\right|^{m-2}=|u|^{p-2} u, \quad \Omega \times(0, \infty) \tag{1.4}
\end{equation*}
$$

Liu [7] studied the general decay for the global solution and blow-up of solution to the equation

$$
\begin{equation*}
\left|u_{t}\right|^{\rho} u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau-\Delta u_{t t}=|u|^{p-2} u, \quad \Omega \times(0, \infty) \tag{1.5}
\end{equation*}
$$

Cavalcanti et al. 3] studied the energy decay for the nonlinear viscoelastic problem

$$
\begin{equation*}
\left|u_{t}\right|^{\rho} u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau-\Delta u_{t t}-\gamma \Delta u_{t}=0, \quad \Omega \times(0, \infty) \tag{1.6}
\end{equation*}
$$

A global existence result for $\gamma \geq 0$ as well as an exponential decay for $\gamma>0$ was established in [3]. When the source term $b|u|^{p-2} u$ appeared on the right side of system (1.6), Messaoudi et al. [11] proved that the viscoelastic term was enough to ensure existence and uniform decay of global solutions provided that the initial data were in some stable set.

For $\rho_{i}(s)=b_{1}+b_{2} s^{q_{i}}$ with $q_{i} \geq 0$ and $b_{1}, b_{2}>0$, Wu et al. [14] and 15] considered the blow-up of the initial boundary value problem (spatial dimension $n=1,2,3$) for the system

$$
\begin{gather*}
u_{t t}-\operatorname{div}\left(\rho_{1}\left(|\nabla u|^{2}\right) \nabla u\right)+u_{t}+\left|u_{t}\right|^{m-1} u_{t}=f(u, v), \quad \Omega \times(0, T), \\
v_{t t}-\operatorname{div}\left(\rho_{2}\left(|\nabla v|^{2}\right) \nabla v\right)+v_{t}+\left|v_{t}\right|^{r-1} v_{t}=g(u, v), \quad \Omega \times(0, T) . \tag{1.7}
\end{gather*}
$$

For a single wave equation with $\rho_{i}(s) \geq b_{1}+b_{2} s^{q_{i}}, q_{i} \geq 0, b_{1}, b_{2}>0$, Hao et al. [6] studied the global existence and blow up of the solutions.

We note that, in the literature mentioned above, only viscoelastic term was included in the equation or only nonlinear principal part (i.e. $\rho_{i}, i=1,2$, are not constant functions) was included. To the best of our knowledge, there are no papers considering the blow-up of the equation with both viscoelastic term and nonlinear principal part. The main goal of our paper is to prove that for $\rho_{i}(s)=b_{1}+b_{2} s^{q_{i}}$ the nonlinear coupled source terms still leads to blow-up of the solutions though there are viscoelastic terms in the equations. To be more precise, we prove that when $p>\max \left\{2 q_{1}+1,2 q_{2}+1\right\}$ and the relaxation functions satisfy that $\max \left\{\int_{0}^{\infty} g(s) d s, \int_{0}^{\infty} h(s) d s\right\}<\frac{q}{q+1} b_{1}$, the solutions of the system will blow up. Our method is borrowed partly from [7, 14, but we must overcome some additional difficulty caused by the complex interaction among the nonlinear viscoelastic terms, the nonlinear principal parts, the coupled source terms and the nonlinear damping.

2. Preliminaries

In this section, we present some other assumptions and existence result of local solution. We use the following assumptions:
(A4) $\rho>0$ if $n=1,2$ and $0<\rho<\frac{2}{n-2}$ if $n \geq 3$.
(A5) $m<p, r<p$ and $\rho+2<p$.
Define the energy function of the system (1.1) by

$$
\begin{align*}
E(t)= & \frac{1}{\rho+2}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right)+\frac{1}{2}\left(b_{1}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2} \\
& +\frac{1}{2}\left(b_{1}-\int_{0}^{t} h(s) d s\right)\|\nabla v\|^{2}+\frac{1}{2}(g \circ \nabla u)(t)+\frac{1}{2}(h \circ \nabla v)(t) \tag{2.1}\\
& +\frac{b_{2}}{2\left(q_{1}+1\right)}\|\nabla u\|_{2\left(q_{1}+1\right)}^{2\left(q_{1}+1\right)}+\frac{b_{2}}{2\left(q_{2}+1\right)}\|\nabla u\|_{2\left(q_{2}+1\right)}^{2\left(q_{2}+1\right)}-\int_{\Omega} F(u, v) d x .
\end{align*}
$$

Combining the arguments in [5] and [3], and making some slight modification, we have the following existence of local weak solutions.
Theorem 2.1. Let (A1)-(A4) hold. Then for any initial data $u_{0} \in W_{0}^{1,2 q_{1}+2}(\Omega) \cap$ $L^{p+1}(\Omega), v_{0} \in W_{0}^{1,2 q_{2}+2}(\Omega) \cap L^{p+1}(\Omega)$, there exists a unique local weak solution (u, v) to the system 1.1) defined on $[0, T)$ for some $T>0$, and

$$
\begin{aligned}
& u \in L^{\infty}\left([0, T) ; W_{0}^{1,2 q_{1}+2}(\Omega) \cap L^{p+1}(\Omega)\right), \\
& v \in L^{\infty}\left([0, T] ; W_{0}^{1,2 q_{2}+2}(\Omega) \cap L^{p+1}(\Omega)\right),
\end{aligned}
$$

$$
\begin{gathered}
u_{t} \in L^{\infty}\left([0, T) ; W_{0}^{1,2 q_{1}+2}(\Omega) \cap L^{p+1}(\Omega)\right), \\
v_{t} \in L^{\infty}\left([0, T] ; W_{0}^{1,2 q_{2}+2}(\Omega) \cap L^{p+1}(\Omega)\right) \\
u_{t t} \in L^{\infty}\left([0, T) ; L^{2}(\Omega)\right), \quad v_{t t} \in L^{\infty}\left([0, T) ; L^{2}(\Omega)\right)
\end{gathered}
$$

Combining the arguments of [5, 10], the following lemma can be proved easily.
Lemma 2.2. Let (A1)-(A4) hold. And let (u, v) be a solution of 1.1). Then $E(t)$ satisfies the inequality

$$
\begin{align*}
E^{\prime}(t)= & -\left\|u_{t}\right\|^{2}-\left\|u_{t}\right\|_{m+1}^{m+1}-\left\|v_{t}\right\|^{2}-\left\|v_{t}\right\|_{r+1}^{r+1}+\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t) \\
& +\frac{1}{2}\left(h^{\prime} \circ \nabla v\right)(t)-\frac{1}{2} g(t)\|\nabla u\|^{2}-\frac{1}{2} h(t)\|\nabla v\|^{2} \leq 0 \tag{2.2}
\end{align*}
$$

Lemma 2.3 ([8). Suppose p satisfies (A3). Then there exists a positive constant $C(|\Omega|, p)$ such that

$$
\|u\|_{p+1}^{s} \leq C(|\Omega|, p)\left(\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}\right), \quad \forall u \in H_{0}^{1}(\Omega)
$$

where $2 \leq s \leq p+1$.
In this article, we use $\|\cdot\|$ and $\|\cdot\|_{p}$ denote the usual $L^{2}(\Omega)$ norm and $L^{p}(\Omega)$ norm, respectively. B_{1} is the optimal constant of the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$.

3. Blow-up Results

In this section, we state and prove our main result.
Theorem 3.1. Let (A1)-(A5) hold. $q=\max \left\{q_{1}, q_{2}\right\}$. Assume the initial energy $E(0)<0$ and

$$
\max \left\{\int_{0}^{\infty} g(s) d s, \int_{0}^{\infty} h(s) d s\right\}<\frac{q}{q+1} b_{1}, \quad p>\max \left\{2 q_{1}+1,2 q_{2}+1\right\}
$$

Then the solution of (1.1) blows up at finite time.
Proof. We use the contradiction method. Suppose that the solution (u, v) of 1.1) is global. Then

$$
\begin{equation*}
\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1} \leq C, \quad \forall t \geq 0 \tag{3.1}
\end{equation*}
$$

Set $M_{1}=\max _{t \in[0, T]}\|u\|_{p+1}^{p+1}, M_{2}=\max _{t \in[0, T]}\|v\|_{p+1}^{p+1}, M=M_{1}+M_{2}$. Let $H(t)=$ $-E(t)$. Then by Lemma 2.2 , the function $H(t)$ is increasing. Moreover, from $E(0)<0$ and $(\mathrm{A} 3)$, we obtain

$$
\begin{align*}
0<H(0) & \leq H(t) \leq \int_{\Omega} F(u, v) d x \\
& \leq c_{1} \int_{\Omega}\left(|u|^{p+1}+|v|^{p+1}\right) d x \tag{3.2}\\
& \leq c_{1} \max _{t \in[0, T]} \int_{\Omega}|u|^{p+1}+|v|^{p+1} d x=c_{1} M
\end{align*}
$$

Let us introduce the auxiliary function

$$
\begin{equation*}
L(t)=H^{1-\sigma}(t)+\frac{\varepsilon}{\rho+1}\left(\int_{\Omega}\left|u_{t}\right|^{\rho} u_{t} u d x+\int_{\Omega}\left|v_{t}\right|^{\rho} v_{t} v d x\right) \tag{3.3}
\end{equation*}
$$

where $0<\varepsilon \ll 1$ and

$$
\begin{equation*}
0<\sigma<\min \left\{\frac{1}{\rho+2}-\frac{1}{p}, \frac{p-m}{m(p+1)}, \frac{p-r}{r(p+1)}\right\} \tag{3.4}
\end{equation*}
$$

By differentiating $L(t)$, we obtain

$$
\begin{align*}
& L^{\prime}(t) \\
&=(1-\sigma) H^{\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1}\left(\int_{\Omega}\left|u_{t}\right|^{\rho+2} d x+\int_{\Omega}\left|v_{t}\right|^{\rho+2} d x\right) \\
&+\varepsilon\left(\int_{\Omega}\left|u_{t}\right|^{\rho} u_{t t} u d x+\int_{\Omega}\left|v_{t}\right|^{\rho} v_{t t} v d x\right) \\
&=(1-\sigma) H^{\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|u_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
&-\varepsilon \int_{\Omega}\left(\rho_{1}\left(|\nabla u|^{2}\right)|\nabla u|^{2}+\rho_{2}\left(|\nabla v|^{2}\right)|\nabla v|^{2}\right) d x \\
&+\varepsilon \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(s) \cdot \nabla u(t) d s d x+\varepsilon \int_{\Omega} \int_{0}^{t} h(t-s) \nabla v(s) \cdot \nabla v(t) d s d x \\
&-\varepsilon \int_{\Omega}\left(u u_{t}+v v_{t}+\left|u_{t}\right|^{m-1} u_{t} u+\left|v_{t}\right|^{r-1} v_{t} v\right) d x+\varepsilon(p+1) \int_{\Omega} F(u, v) d x \\
&=(1-\sigma) H^{\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right)-\varepsilon b_{1}\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right) \\
&-\varepsilon b_{2}\left(\|\nabla u\|_{2\left(q_{1}+1\right)}^{2\left(q_{1}+1\right)}+\|\nabla v\|_{2\left(q_{2}+1\right)}^{2\left(q_{2}+1\right)}\right) \\
&+\varepsilon \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(s) \cdot \nabla u(t) d s d x+\varepsilon \int_{\Omega} \int_{0}^{t} h(t-s) \nabla v(s) \cdot \nabla v(t) d s d x \\
&-\varepsilon \int_{\Omega}\left(u u_{t}+v v_{t}+\left|u_{t}\right|^{m-1} u_{t} u+\left|v_{t}\right|^{r-1} v_{t} v\right) d x+\varepsilon(p+1) \int_{\Omega} F(u, v) d x . \tag{3.5}
\end{align*}
$$

Now, we estimate the fourth term on the right hand of 3.5. Let $\mu=\min \{l, k\}$. From the the definition of $H(t)$, it follows that

$$
\begin{align*}
- & b_{2}\|\nabla u\|_{2\left(q_{1}+1\right)}^{2\left(q_{1}+1\right)}-b_{2}\|\nabla v\|_{2\left(q_{2}+1\right)}^{2\left(q_{2}+1\right)} \\
\geq & -b_{2} \frac{(q+1)}{q_{1}+1}\|\nabla u\|_{2\left(q_{1}+1\right)}^{2\left(q_{1}+1\right)}-b_{2} \frac{(q+1)}{q_{2}+1}\|\nabla v\|_{2\left(q_{2}+1\right)}^{2\left(q_{2}+1\right)} \\
= & (q+1)\left(2 H(t)-2 \int_{\Omega} F(u, v) d x+\frac{2}{\rho+2}\left(\int_{\Omega}\left|u_{t}\right|^{\rho+2} d x+\int_{\Omega}\left|v_{t}\right|^{\rho+2} d x\right)\right. \\
& +\left(b_{1}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2}+\left(b_{1}-\int_{0}^{t} h(s) d s\right)\|\nabla v\|^{2} \tag{3.6}\\
& +(g \circ \nabla u)(t)+(h \circ \nabla v)(t)) \\
\geq & 2(q+1) H(t)+\frac{2(q+1)}{\rho+2}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
& -2(q+1) \int_{\Omega} F(u, v) d x+(q+1) \mu\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right) \\
& +(q+1)((g \circ \nabla u)(t)+(h \circ \nabla v)(t)) .
\end{align*}
$$

By Hölder's and Young's inequalities, we estimate the fifth term on the right hand of 3.5. It yields

$$
\begin{align*}
& \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(s) \cdot \nabla u(t) d s d x \\
& =\int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(t) \cdot(\nabla u(s)-\nabla u(t)) d s d x+\int_{0}^{t} g(t-s)\|\nabla u(t)\|^{2} \tag{3.7}\\
& \geq-(g \circ \nabla u)(t)+\frac{3}{4} \int_{0}^{t} g(t-s)\|\nabla u(t)\|^{2}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\int_{\Omega} \int_{0}^{t} h(t-s) \nabla v(s) \cdot \nabla v(t) d s d x \geq-(h \circ \nabla v)(t)+\frac{3}{4} \int_{0}^{t} h(t-s)\|\nabla v(t)\|^{2} \tag{3.8}
\end{equation*}
$$

Therefore, based on (3.6), 3.7) and (3.8), we conclude that

$$
\begin{align*}
& L^{\prime}(t) \\
& \geq \\
& \quad(1-\sigma) H^{\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
& \quad-\varepsilon b_{1}\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right)+2 \varepsilon(q+1) H(t)+\frac{2 \varepsilon(q+1)}{\rho+1}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
& \quad+\mu \varepsilon(q+1)\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right)+\varepsilon(q+1)((g \circ \nabla u)(t)+(h \circ \nabla v)(t)) \\
& \quad+\varepsilon(p-2 q-1) \int_{\Omega} F(u, v) d x-\varepsilon(g \circ \nabla u)(t) \\
& \quad+\frac{3}{4} \varepsilon \int_{0}^{t} g(s) d s\|\nabla u(t)\|^{2}-\varepsilon(h \circ \nabla v)(t)+\frac{3}{4} \varepsilon \int_{0}^{t} h(s) d s\|\nabla v(t)\|^{2} \tag{3.9}\\
& \quad-\varepsilon \int_{\Omega}\left(u u_{t}+v v_{t}+\left|u_{t}\right|^{m-1} u_{t} u+\left|v_{t}\right|^{r-1} v_{t} v\right) d x .
\end{align*}
$$

Now we use Young's inequality and 2.2 to obtain the inequality

$$
\begin{align*}
& \int_{\Omega}\left|u\left\|u_{t} \left\lvert\, d x \leq \frac{\varepsilon_{1}^{2}}{2}\right.\right\| u\left\|^{2}+\frac{1}{2 \varepsilon_{1}^{2}}\right\| u_{t}\left\|^{2} \leq \frac{\varepsilon_{1}^{2} B_{1}}{2}\right\| \nabla u \|^{2}+\frac{1}{2 \varepsilon_{1}^{2}} H^{\prime}(t)\right. \tag{3.10}\\
& \int_{\Omega}\left|v \| v_{t}\right| d x \leq \frac{\varepsilon_{1}^{2}}{2}\|v\|^{2}+\frac{1}{2 \varepsilon_{1}^{2}}\left\|v_{t}\right\|^{2} \leq \frac{\varepsilon_{1}^{2} B_{1}}{2}\|\nabla v\|^{2}+\frac{1}{2 \varepsilon_{1}^{2}} H^{\prime}(t) \tag{3.11}\\
& \int_{\Omega}\left|u_{t}\right|^{m-1} u_{t} u d x \leq \frac{\delta_{1}^{m+1}}{m+1}\|u\|_{m+1}^{m+1}+\frac{m \delta_{1}^{-\frac{m+1}{m}}}{m+1}\left\|u_{t}\right\|_{m+1}^{m+1} \tag{3.12}\\
& \leq \frac{\delta_{1}^{m+1}}{m+1}\|u\|_{m+1}^{m+1}+\frac{m \delta_{1}^{-\frac{m+1}{m}}}{m+1} H^{\prime}(t) \\
& \int_{\Omega}\left|v_{t}\right|^{r-1} v_{t} v d x \leq \frac{\delta_{2}^{r+1}}{r+1}\|v\|_{r+1}^{r+1}+\frac{r \delta_{2}^{-\frac{r+1}{r}}}{r+1}\left\|v_{t}\right\|_{r+1}^{r+1} \tag{3.13}\\
& \leq \frac{\delta_{2}^{r+1}}{r+1}\|v\|_{r+1}^{r+1}+\frac{r \delta_{2}^{-\frac{r+1}{r}}}{r+1} H^{\prime}(t)
\end{align*}
$$

where $\varepsilon_{1}, \delta_{1}, \delta_{2}$ are constants depending on the time t and are specified later.

Since g and h are positive, we have, for any $t>t_{0}>0$,

$$
\int_{0}^{t} g(s) d s \geq \int_{0}^{t_{0}} g(s) d s=: g_{0}>0, \quad \int_{0}^{t} h(s) d s \geq \int_{0}^{t_{0}} h(s) d s=: h_{0}>0
$$

Let $\chi=\min \left\{\frac{3}{4} g_{0}, \frac{3}{4} h_{0}\right\}$. Then $\chi>0$. By 3.10 3.13 , we obtain

$$
\begin{align*}
L^{\prime}(t) \geq & \left((1-\sigma) H^{\sigma}(t)-\frac{\varepsilon m \delta_{1}^{-\frac{m+1}{m}}}{m+1}-\frac{\varepsilon r \delta_{2}^{-\frac{r+1}{r}}}{r+1}-\frac{\varepsilon}{\varepsilon_{1}^{2}}\right) H^{\prime}(t) \\
& +2 \varepsilon(q+1) H(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{2(q+1)}{\rho+2}\right)\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
& +\varepsilon\left(\mu(q+1)-b_{1}-\frac{B_{1} \varepsilon_{1}^{2}}{2}+\chi\right)\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right) \tag{3.14}\\
& +\varepsilon(p-2 q-1) \int_{\Omega} F(u, v) d x-\varepsilon\left(\frac{\delta_{1}^{m+1}}{m+1}\|u\|_{m+1}^{m+1}+\frac{\delta_{2}^{r+1}}{r+1}\|v\|_{r+1}^{r+1}\right) \\
& +\varepsilon q((g \circ \nabla u)(t)+(h \circ \nabla v)(t)) .
\end{align*}
$$

Let $\varepsilon_{1}^{-2}=K_{1} H^{-\sigma}, \delta_{1}^{-\frac{m+1}{m}}=K_{2} H^{-\sigma}, \delta_{2}^{-\frac{r+1}{r}}=K_{3} H^{-\sigma}$, where $K_{1}, K_{2}, K_{3}>0$ will be chosen later. Then, by (3.2), we obtain

$$
\begin{align*}
\delta_{1}^{m+1}=K_{2}^{-m} H^{\sigma m}(t) & \leq K_{2}^{-m} c_{1}^{\sigma m}\left(\|u\|_{p+1}^{p+1}+\|v\|_{p+1}^{p+1}\right)^{\sigma m} \tag{3.15}\\
\delta_{2}^{r+1}=K_{3}^{-r} H^{\sigma r}(t) & \leq K_{3}^{-r} c_{1}^{\sigma r}\left(\|u\|_{p+1}^{p+1}+\|v\|_{p+1}^{p+1}\right)^{\sigma r} \tag{3.16}
\end{align*}
$$

Hence,

$$
\begin{align*}
L^{\prime}(t) \geq & \left((1-\sigma) H^{\sigma}(t)-\frac{\varepsilon m K_{2} H^{-\sigma}}{m+1}-\frac{\varepsilon r K_{3} H^{-\sigma}}{r+1}-\varepsilon K_{1} H^{-\sigma}\right) H^{\prime}(t) \\
& +2 \varepsilon(q+1) H(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{2(q+1)}{\rho+2}\right)\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
& +\varepsilon\left(\mu(q+1)-b_{1}-\frac{B_{1} \varepsilon_{1}^{2}}{2}+\chi\right)\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right) \tag{3.17}\\
& +\varepsilon(p-2 q-1) \int_{\Omega} F(u, v) d x-\varepsilon\left(\frac { K _ { 2 } ^ { - m } c _ { 1 } ^ { \sigma m } } { m + 1 } \left(\|u\|_{p+1}^{p+1}\right.\right. \\
& \left.\left.+\|v\|_{p+1}^{p+1}\right)^{\sigma m}\|u\|_{m+1}^{m+1}+\frac{K_{3}^{-r} c_{1}^{\sigma r}}{r+1}\left(\|u\|_{p+1}^{p+1}+\|v\|_{p+1}^{p+1}\right)^{\sigma r}\|v\|_{r+1}^{r+1}\right) \\
& +\varepsilon q((g \circ \nabla u)(t)+(h \circ \nabla v)(t)) .
\end{align*}
$$

By (A5) and the Sobolev embedding theorem, we have

$$
\begin{gather*}
\|u\|_{m+1}^{m+1} \leq B_{2}\|u\|_{p+1}^{m+1} \leq B_{2}\left(\|u\|_{p+1}+\|v\|_{p+1}\right)^{m+1} \tag{3.18}\\
\|v\|_{r+1}^{r+1} \leq B_{3}\|v\|_{p+1}^{r+1} \leq B_{3}\left(\|u\|_{p+1}+\|v\|_{p+1}\right)^{r+1} \tag{3.19}
\end{gather*}
$$

Using the inequality $(a+b)^{\lambda} \leq B_{4}\left(a^{\lambda}+b^{\lambda}\right)$, we have

$$
\begin{align*}
L^{\prime}(t) \geq & \left((1-\sigma) H^{\sigma}(t)-\frac{\varepsilon m K_{2} H^{-\sigma}}{m+1}-\frac{\varepsilon r K_{3} H^{-\sigma}}{r+1}-\varepsilon K_{1} H^{-\sigma}\right) H^{\prime}(t) \\
& +2 \varepsilon(q+1) H(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{2(q+1)}{\rho+2}\right)\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \\
& +\varepsilon\left(\mu(q+1)-b_{1}-\frac{B_{1} \varepsilon_{1}^{2}}{2}+\chi\right)\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right) \\
& +\varepsilon(p-2 q-1) \int_{\Omega} F(u, v) d x \tag{3.20}\\
& -\varepsilon\left(\frac{K_{2}^{-m} B_{5} c_{1}^{\sigma m}}{m+1}\left(\|u\|_{p+1}+\|v\|_{p+1}\right)^{\sigma m(p+1)+m+1}\right. \\
& \left.+\frac{K_{3}^{-r} B_{6} c_{1}^{\sigma r}}{r+1}\left(\|u\|_{p+1}+\|v\|_{p+1}\right)^{\sigma r(p+1)+r+1}\right) \\
& +\varepsilon q((g \circ \nabla u)(t)+(h \circ \nabla v)(t))
\end{align*}
$$

where $B_{5}=B_{2} B_{4}, B_{6}=B_{3} B_{4}$.
If we set $s=\sigma m(p+1)+m+1$ and $\sigma r(p+1)+r+1$, then by Lemma 2.3, there exist two positive constants B_{7}, B_{8} depending on $|\Omega|, m, r$ such that

$$
\begin{align*}
\|u\|_{p+1}^{\sigma m(p+1)+m+1} & \leq B_{7}\left(\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}\right) \tag{3.21}\\
\|v\|_{p+1}^{\sigma r(p+1)+r+1} & \leq B_{8}\left(\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1}\right) \tag{3.22}
\end{align*}
$$

Thus

$$
\begin{align*}
& L^{\prime}(t) \\
& \geq \\
& \quad\left((1-\sigma) H^{\sigma}(t)-\frac{\varepsilon m K_{2} H^{-\sigma}}{m+1}-\frac{\varepsilon r K_{3} H^{-\sigma}}{r+1}-\varepsilon K_{1} H^{-\sigma}\right) H^{\prime}(t) \\
& \quad+2 \varepsilon(q+1) H(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{2(q+1)}{\rho+2}\right)\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}\right) \tag{3.23}\\
& \quad+\varepsilon\left(\mu(q+1)-b_{1}-\frac{B_{1} \varepsilon_{1}^{2}}{2}+\chi-\frac{K_{2}^{-m} B_{5} B_{7} c_{1}^{\sigma m}}{m+1}-\frac{K_{3}^{-r} B_{6} B_{8} c_{1}^{\sigma r}}{r+1}\right) \\
& \quad \times\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right)+\varepsilon\left((p-2 q-1) c_{0}-\frac{K_{2}^{-m} B_{5} B_{7} c_{1}^{\sigma m}}{m+1}\right. \\
& \left.\quad-\frac{K_{3}^{-r} B_{6} B_{8} c_{1}^{\sigma r}}{r+1}\right)\left(\|u\|_{p+1}^{p+1}+\|v\|_{p+1}^{p+1}\right)+\varepsilon q((g \circ \nabla u)(t)+(h \circ \nabla v)(t)) .
\end{align*}
$$

Using the condition of Theorem 3.1, we obtain $\mu(q+1)-b_{1}>0$. Now, we can choose K_{1}, K_{2}, K_{3} large enough so that the following inequalities hold:

$$
\begin{align*}
& \mu(q+1)-b_{1}+\chi-\frac{B_{1} \varepsilon_{1}^{2}}{2}-\frac{K_{2}^{-m} B_{5} B_{7} c_{1}^{\sigma m}}{m+1}-\frac{K_{3}^{-r} B_{6} B_{8} c_{1}^{\sigma r}}{r+1} \\
& \geq \mu(q+1)-b_{1}+\chi-\frac{B_{1} M^{\sigma}}{2 K_{1}}-\frac{K_{2}^{-m} B_{5} B_{7} c_{1}^{\sigma m}}{m+1}-\frac{K_{3}^{-r} B_{6} B_{8} c_{1}^{\sigma r}}{r+1} \tag{3.24}\\
& \geq \frac{\mu(q+1)-b_{1}}{2}
\end{align*}
$$

and

$$
\begin{equation*}
(p-2 q-1) c_{0}-\frac{K_{2}^{-m} B_{5} B_{7} c_{1}^{\sigma m}}{m+1}-\frac{K_{3}^{-r} B_{6} B_{8} c_{1}^{\sigma r}}{r+1} \geq \frac{(p-2 q-1) c_{0}}{2} \tag{3.25}
\end{equation*}
$$

Furthermore, for fixed $K_{1}, K_{2}, K_{3}, T_{0} \geq t_{0}$, we choose ε small enough such that

$$
\begin{align*}
& (1-\sigma)-\frac{\varepsilon m K_{2}}{m+1}-\frac{\varepsilon r K_{3}}{r+1}-\varepsilon K_{1} \geq 0 \tag{3.26}\\
L\left(T_{0}\right)= & H^{1-\sigma}\left(T_{0}\right)+\frac{\varepsilon}{\rho+1}\left(\int_{\Omega}\left|u_{t}\left(T_{0}\right)\right|^{\rho} u_{t}\left(T_{0}\right) u\left(T_{0}\right) d x\right. \\
& \left.+\int_{\Omega}\left|v_{t}\left(T_{0}\right)\right|^{\rho} v_{t}\left(T_{0}\right) v\left(T_{0}\right) d x\right)>0 \tag{3.27}
\end{align*}
$$

From the condition of Theorem 3.1, for $t>T_{0}$, we have

$$
\begin{gather*}
L^{\prime}(t) \geq \varepsilon \gamma\left[H(t)+\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}\right. \tag{3.28}\\
\left.+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1}\right] \\
L(t) \geq L\left(T_{0}\right)>0 \tag{3.29}
\end{gather*}
$$

where

$$
\begin{equation*}
\gamma=\min \left\{2(q+1),\left(\frac{1}{\rho+1}+\frac{2(q+1)}{\rho+2}\right), \frac{\mu(q+1)-b_{1}}{2}, \frac{(p-2 q-1) c_{0}}{2}\right\} . \tag{3.30}
\end{equation*}
$$

We now estimate $L(t)^{\frac{1}{1-\sigma}}$. By Hölder's inequality and the condition (A5), we obtain

$$
\begin{equation*}
\left.\left|\int_{\Omega}\right| u_{t}\right|^{\rho} u_{t} u d x \mid \leq\left\|u_{t}\right\|_{\rho+2}^{\rho+1}\|u\|_{\rho+2} \leq B_{9}\left\|u_{t}\right\|_{\rho+2}^{\rho+1}\|u\|_{p+1} \tag{3.31}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left.\left.\left|\int_{\Omega}\right| u_{t}\right|^{\rho} u_{t} u d x\right|^{\frac{1}{1-\sigma}} \leq B_{9}\left\|u_{t}\right\|_{\rho+2}^{\frac{\rho+1}{1-\sigma}}\|u\|_{p+1}^{\frac{1}{1-\sigma}} \leq B_{10}\left(\left\|u_{t}\right\|_{\rho+2}^{\frac{\rho+1}{1-\sigma} \mu}+\|u\|_{p+1}^{\frac{\theta}{1-\sigma}}\right) \tag{3.32}
\end{equation*}
$$

where $\frac{1}{\mu}+\frac{1}{\theta}=1$. Choosing $\mu=\frac{(1-\sigma)(\rho+2)}{\rho+1}>1$, we have

$$
\begin{equation*}
2<\frac{\theta}{1-\sigma}=\frac{\rho+2}{(1-\sigma)(\rho+2)-(\rho+1)}<p+1 \tag{3.33}
\end{equation*}
$$

By Lemma 2.3. taking $s=\frac{\theta}{1-\sigma}$, it follows that

$$
\begin{equation*}
\|u\|_{p+1}^{\frac{\theta}{1-\sigma}} \leq B_{11}\left(\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}\right) \tag{3.34}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left.\left.\left|\int_{\Omega}\right| u_{t}\right|^{\rho} u_{t} u d x\right|^{\frac{1}{1-\sigma}} \leq B_{12}\left[\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}\right] \tag{3.35}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left.\left.\left|\int_{\Omega}\right| v_{t}\right|^{\rho} v_{t} v d x\right|^{\frac{1}{1-\sigma}} \leq B_{13}\left[\left\|v_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1}\right] . \tag{3.36}
\end{equation*}
$$

Hence, combining (3.2, 3.35 and 3.36, we easily get

$$
\begin{align*}
L(t)^{\frac{1}{1-\sigma}}= & \left(H^{1-\sigma}(t)+\frac{\varepsilon}{\rho+1}\left(\int_{\Omega}\left|u_{t}\right|^{\rho} u_{t} u d x+\int_{\Omega}\left|v_{t}\right|^{\rho} v_{t} v d x\right)\right)^{\frac{1}{1-\sigma}} \\
\leq & 2^{\frac{1}{1-\sigma}}\left(H(t)+\frac{\varepsilon}{\rho+1}\left(\left.\left|\int_{\Omega}\right| u_{t}\right|^{\rho} u_{t} u d x\left|+\left|\int_{\Omega}\right| v_{t}\right|^{\rho} v_{t} v d x \mid\right)^{\frac{1}{1-\sigma}}\right) \\
\leq & 2^{\frac{1}{1-\sigma}} B_{14}\left[H(t)+\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}\right. \tag{3.37}\\
& \left.+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1}\right] \\
\leq & \widetilde{C}\left[\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1}\right]
\end{align*}
$$

where \widetilde{C} depends on $c_{1}, B_{9}-B_{14}$.
Combining (3.28) and (3.37), we have

$$
\begin{equation*}
L^{\prime}(t)>\frac{\varepsilon \gamma}{\widetilde{C}} L^{\frac{1}{1-\sigma}}(t), \quad \text { for } t \geq T_{0} \tag{3.38}
\end{equation*}
$$

The inequality above implies that $L(t)$ blows up at a finite time T^{*} and

$$
\begin{equation*}
T^{*} \leq \frac{\widetilde{C}(1-\sigma)}{\varepsilon \gamma L^{\sigma /(1-\sigma)}\left(T_{0}\right)} \tag{3.39}
\end{equation*}
$$

Furthermore, from (3.37) we obtain

$$
\begin{equation*}
\lim _{t \rightarrow T^{*-}}\left[\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|u\|_{p+1}^{p+1}+\left\|v_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla v\|^{2}+\|v\|_{p+1}^{p+1}\right]=+\infty \tag{3.40}
\end{equation*}
$$

If we choose the $T>\frac{\widetilde{C}(1-\sigma)}{\varepsilon \gamma L^{\sigma /(1-\sigma)}\left(T_{0}\right)}$, obviously, 3.40 contradicts 3.1). Thus, the solution of problem 1.1 blows up in finite time.
Concluding remarks. In this paper, we considered the blow-up of solutions to a coupled quasilinear system with the nonlinear viscoelastic terms, the nonlinear principal parts, the coupled source terms and the nonlinear dampings. A sufficient condition under which the solutions of the system will blow up at finite time is given. We show that the coupled sources are enough to lead to the blow-up when the relaxation functions and the nonlinear principle parts satisfy some conditions.

Acknowledgments. This research supported by the National Natural Science Foundation of China (11671240, 61403239, 61503230).

References

[1] K. Agre, M. A. Rammaha; System of nonlinear wave equations with damping and source terms, Differential Intergral Equations, 2006, 19: 1235-1270.
[2] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano; Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron.J. Differential equations, 2002, 44: 1-14.
[3] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira; Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 2001, 24: 1043-1053.
[4] M. M. Cavalcanti, H. P. Oquendo; Fractional versusviscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 2003, 42(4): 1310-1324.
[5] V. Georgiev, G. Todorova; Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differential equations, 1994, 109: 295-308.
[6] J. H. Hao, Y. J. Zhang, S. J. Li; Global existence and blow up phenomena for a nonlinear wave equation, Nonlinear Anal., TMA, 2009, 71: 4823-4832.
[7] W. J. Liu; General decay and blow up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal., TMA, 2010, 73: 1890-1904.
[8] S. A. Messaoudi; Blow up in a nonlinearly damped wave equation, math. Nachr., 2001, 231: 1-7.
[9] S. A. Messaoudi; Blow up and global existence in a nonlinear viscoelastic wave equation, math. Nachr., 2003, 260: 58-66.
[10] S. A. Messaoudi; Blow up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math .Anal. Appl., 2006, 320: 902-915.
[11] S. A. Messaoudi, N. E. Tatar; Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Meth. Appl. Sci., 2007, 30: 665-680.
[12] H. T. Song; Blow up of arbitrarily positive initial energy solutions for a viscoelastic wave equation, Nonlinear Anal., RWA, 2015, 26: 306-314.
[13] H. T. Song; Global nonexistence of positive initial energy solutions for a viscoelastic wave equation, Nonlinear Anal., TMA, 2015, 125: 260-269.
[14] J. Q. Wu, S. J. Li; Blow up for coupled nonlinear wave equations with damping and source, Appl. Math. Lett., 2011, 24: 1093-1098.
[15] J. Q. Wu, S. J. Li, S. G. Chai; Existence and nonexistence of a global solution for coupled nonlinear wave equations with damping and source, Nonlinear Anal., TMA, 2010, 72: 39693975.
[16] E. Zuazua; Exponential decay for the semilinear wave equatiuon with locally distributed damping, Comm. Partial Differential Equations, 1990, 15: 205-235.

Xiaoying Zhang
School of Mathmatical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China.
Department of Mathematics, Shanxi Agriculture University, Taigu, Shanxi 030800, China
E-mail address: zxybetter@163.com
Shugen Chai (corresponding author)
School of Mathmatical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
E-mail address: sgchai@sxu.edu.cn, Phone +86-351-7010555, Fax +86-351-7010979
Jieqiong Wu
School of Mathmatical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
E-mail address: jieqiong@sxu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35A01, 35L53.
 Key words and phrases. Blow up; quasilinear wave system; viscoelasticity.
 (C) 2017 Texas State University.

 Submitted February 26, 2016. Published March 21, 2017.

