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Abstract. This article concerns the numerical analysis and the error estimate

of the biharmonic problem with homogeneous boundary conditions using the

mortar spectral element method in domains with corners. Since the solution
of this problem can be written as a sum of a regular part and known singular

functions, we propose to use the Strang and Fix algorithm for improving the

order of the error.

1. Introduction

It is well known that the solutions of an elliptic equations in polygonal domains
are not very regular despite the regularity of the second member and boundary data
[16, 17, 18]. More precisely, the solution of an elliptic problem in such domains is
the sum of a regular part and another one which is presented as a linear combination
of functions which the regularity gets lower as the angle of singularity gets greater.
This singular part of the solution pollutes the error estimate. Different numerical
methods for the most part related to finite element method have been developed to
calculate the singular part of the solution or to improve the error estimate [4, 5, 6];
this is the case of the mesh refinement method near the singular angle corners.
Among these methods the Strang and Fix algorithm [19] which was extended to
the mortar method for a spectral discretization [2, 15].

The high precision of the spectral methods makes them well adapted to the treat-
ment of the singularities. In fact, the numerical analysis using this method in the
Laplacian case [2, 14] confirms this expectation of sufficient precision. Furthermore,
the study of the singular function approximation by polynomials near the singular
corners shows that the convergence is better than what the general approxima-
tion theory lets to believe and explains the appearance of super convergence [10].
Calculations have also been made for the stokes system [1].

The Strang and Fix algorithm consists on the enlargement of the test function
space and the resolution of the discrete problem in this space. This algorithm
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permits us the computing of the singular coefficient which is usually issued from
the physics (case of the elastic crack) [3].

In this work we propose to study this algorithm for the homogeneous biharmonic
problem. For that we place ourselves within the framework of the Mortar element
method with spectral discretization [11, 13]. The analysis and the implementation
of the mortar element method has been done in the work of Belhachmi et al. [7, 8, 9]
for a problem of order 4. We present in this work an extension in the case of the
non regular domains in order to improve the estimation of the order of the error.

An outline of this article is as follows. In section 2, we present the geometry
aspects of the domain. In section 3 we present the continuous problem, then we
give the singular functions and some regularity results. In section 4, we define
the discrete problem. Section 5 is devoted to the numerical analysis and the error
estimation of the mortar spectral element method of the Strang and Fix algorithm
for the harmonic problem.

2. Geometric aspects

Let Ω an open polygonal, bounded, Lipschitzian and connected domain of R2,
decomposed on K rectangles Ωk, 1 ≤ k ≤ K such that

Ω = ∪Kk=1Ω
k

and Ωk ∪ Ωl = ∅ , 1 ≤ k 6= l ≤ K.

We denote by Γ
k,j

, 1 ≤ j ≤ 4 the sides of the sub-domain Ω
k
, 1 ≤ k ≤ K and

γkl = Ω
k ∩ Ω

l
, 1 ≤ k 6= l ≤ K

the interface of the decomposition.
We define the skeleton of the decomposition

S = ∪Kk=1 ∪4
j=1 Γ

k,j
.

We associate to each decomposition the set of vertices of the sub-domain, denoted
by V.

We chooseM a set of integers m such that the open segment Γk(m),j(m) are two
by two disjoints and

S = ∪m∈MΓ
k(m),j(m)

.

The sides Γk(m),j(m), m ∈ M is called mortars and denoted by γm. We suppose
that the intersection of a sub-domain Ωk with the boundary ∂Ω can be reduced to
a vertex (see Figure 1).

a

∆ ∆

a

Figure 1. Domain Ω

The angles of the singular vertices are π/2, 3π/2 or 2π. Thereafter we will be
interested specially to the case 3π/2 because of its applications in fluid mechanic
(step case in Stokes flow) and to the case of 2π for its applications in mechanics
(crack propagation). The local influence of the singularity allows to limit the study
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to one vertex. We denote a this vertex and ω the associated angle. To simplify the
problem analysis, the sides of the sub-domains are supposed to be parallel to the
axis of the scale of origin a. We introduce the polar coordinates (r, θ) with r the
distance from a point to the vertex a and the line θ = 0 contains a side of ∂Ω.

Also we consider the following conformity assumption.

Assumption 2.1. We denote ∆ the union of sub-domains containing the vertex
a. We suppose that the decomposition of the domain ∆ is conforming (see Figure
1): If a is a vertex of the mortar Γk(m),j(m) which coincides with Γl a side of a
sub-domain Ωl, l 6= k(m) then Nk(m) ≤ Nl, such that the restriction of a function
to ∆ is in H2(∆).

3. Continuous problem and singular functions

Consider the homogeneous biharmonic problem

∆2u = f in Ω,
u = 0 on ∂Ω,
∂u

∂n
= 0 on ∂Ω.

(3.1)

For f ∈ H−2(Ω) the problem (3.1) is equivalent to the following variational formu-
lation: Find u ∈ H2

0 (Ω), such that for all v ∈ H2
0 (Ω),

a(u, v) = 〈f, v〉, (3.2)

where a(u, v) =
∫

Ω
∆u : ∆v dx and 〈·, ·〉 is the duality mapping betweenH−2(Ω) and

H2
0 (Ω). Since the bilinear form a(·, ·) is continuous in H2

0 (Ω)×H2
0 (Ω) and coercive

in H2
0 (Ω), we conclude using the Lax-Milgram theorem that for f ∈ H−2(Ω) the

problem (3.2) has a unique solution u ∈ H2
0 (Ω) such that

‖u‖H2(Ω) ≤ C‖f‖H−2(Ω),

where C is a constant independent of Ω.
Let V a neighborhood of the singular point a included in the domain ∆, let s ≥ 1

and f ∈ Hs−2(Ω) then we know that the solution of problem (3.1) is written as
[16, 17]

u = uR + uS , (3.3)

where uR ∈ Hs+2(Ω) ∩H2
0 (Ω) and uS is given by

uS(r, θ) =
∑

0<Real(zk)<s+2

λkr
1+zkϕk(θ) +

∑
0<Real(ẑk)<s+2

λ̂kr
1+ẑk [σk(θ) + ln(r)ηk(θ)]

(3.4)
with λk and λ̂k are real numbers, ϕk, σk, ηk are functions defined on a finite
dimension sub-space of C∞([0, ω]) ∩H2([0, ω]) (see [17] for the explicit expression
of these functions) and zk (respectively ẑk) are the simple (respectively double)
roots of the characteristic equation of the bilaplacian

sin(ωz)2 = z2 sin(ω2) (3.5)

in the band, 0 < Real(z) < s + 2, except 1 if ω 6= tan(ω), without exception if
ω = tan(ω) which has the unique solution ωe = 1.430397π in ]0, 2π[.
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The study of equation (3.5) shows that z is a double root if and only if z = 0 or

z = ±
√

1
sinω2 − 1

ω2 . This is given by the following necessary and sufficient condition
[17]

sin
( ω2

sinω2
− 1
)

= ±
√

1− sinω2

ω2
. (3.6)

For handling the singularities we define

η(ω) = inf{Real(z), z is a solution of (3.5), z 6= ±1}.

In the case of ω = 3π/2 we have η(ω) = 0.54484 and s < 1.544. We decompose
u = uR + λS, such that uR ∈ Hs+2(Ω) and

‖uR‖Hs+2(Ω) + |λ| ≤ C‖f‖Hs−2(Ω),

where
•

S(r, θ) = r1+η(ω)ϕ(θ) (3.7)

with ϕ(θ) = 2.093
(

cos(0.459 θ)− cos(1.544 θ)
)

+1.093
(

2.193 sin(0.459 θ)−

sin(1.544 θ)
)

,
• λ is the first singular coefficient of the singularity S.

Furthermore, if f ∈ Hs−2(Ω), with s < 2.908, we can again decompose the singular
part as follows

u = ũR + λS + λ̃S̃, (3.8)

where
• ũR ∈ Hs+2(Ω),
•

S̃(r, θ) = r1+z2ψ(θ), (3.9)

with z2 is the second solution of equation (3.5) in the band 0 < Real(z) < 1
(z2 ' 0.908529) and ψ(θ) = 4.302

(
cos(0.092θ)− cos(1.908θ)

)
− 1.815

(
10.869 sin(0.092θ)− 0.524 sin(1.908θ)

)
,

• λ̃ is the coefficient of the second singularity S̃ satisfying

‖ũR‖Hs+2(Ω) + |λ|+ |λ̃| ≤ C‖f‖Hs−2(Ω).

when ω = 2π, we have η(ω) = 0.5 and s < 1.5. If f belongs to Hs−2(Ω), then u
belongs to the space Hs+2(Ω). We decompose

u = uR + λS + λ̃S̃,

where

S(r, θ) = r3/2
(
(sin(3θ/2)− 3 sin(θ/2)) + (cos(3θ/2)− cos(θ/2))

)
,

S̃(r, θ) = r5/2
(
(cos(5θ/2)− 5 sin(θ/2)) + (cos(5θ/2)− cos(θ/2))

)
,

and (λ, λ̃) is the singular coefficient associated to the singular function (S, S̃). If f
belongs to Hs−2(Ω), uR belongs to Hs+2(Ω) for s < 2, 5. We have the following
stability condition:

‖uR‖Hs+2(Ω) + |λ|+ |λ̃| ≤ C‖f‖Hs−2(Ω).
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4. Discrete problem

Firstly, we recall the space of mortar functions. As the considered problem is
posed in H2(Ω), two matching conditions are necessary on each interface; one for
the trace of the function and the other for its normal derivative.

We introduce δ = (Nk)1≤k≤K , a strictly positive sequence of integers. δ is called
parameter of discretization and (Nk), 1 ≤ k ≤ K, are the degrees of polynomials in
each sub-domain. (Pn(Ω) is the space of polynomial functions of degree less than
or equal to n).

The mortar method requires the introduction of a space of functions, which we
call mortar functions. These are defined on the skeleton and ensure the matching of
the locally approximation functions. The space of mortar functions is then defined
by

W δ =
{

(ϕ0, ϕ1);ϕ0/γm = vδ/Γk(m),j(m) and ϕ1/γm = (
∂vδ
∂n

)/Γk(m),j(m) ∀m ∈M
}
.

where vδ is a test function.
We propose a discretization by the Galerkin method with numerical integration.

In the case of the problem of order four, it is more appropriate to use a quadrature
formula which takes into account the values of the function on the boundary. The
following lemma defines this quadrature formula (see [11] for a proof).

Lemma 4.1. Let N ≥ 2 be an integer. Then there exists a unique set of points ξj,
1 ≤ j ≤ N − 1, a unique set of positive reals ρj, 1 ≤ j ≤ N − 1, ρ+, ρ− such that
for all polynomials ϕ in P2N−1(]− 1, 1[)∫ 1

−1

ϕ(x) dx =
N−1∑
j=1

ϕ(ξj)ρj + ϕ(−1)ρ− + ϕ(1)ρ+ . (4.1)

Remark 4.2. The nodes ξj ; 1 ≤ j ≤ N − 1, are the zeros of the derivative of
the Legendre polynomial LN . We refer to [11] for the calculation of ξj and ρj ,
1 ≤ j ≤ N − 1.

Given two functions u, v continuous on Ω = [−1, 1] × [−1, 1] and vanishing on
its boundary, we define the discrete scalar product

(u, v)N =
N−1∑
i=1

N−1∑
j=1

u(ξi, ξj)v(ξi, ξj)ρiρj .

If T k is the bijection from ]− 1, 1[2 in Ωk, we define

(u, v)Nk =
|Ωk|

4

Nk−1∑
i=1

Nk−1∑
j=1

(u ◦ T k)(ξi, ξj)(v ◦ T k)(ξi, ξj)ρiρj .

Thus, we define the space of approximation Xδ as the space of functions vδ such
that

• for all k, 1 ≤ k ≤ K, vδ/Ωk ∈ PNk(Ωk),
• vδ and ∂vδ

∂n vanishes on ∂Ω,
• there exist a couple (ϕ0, ϕ1) ∈Wδ such that, for all 1 ≤ k ≤ K, 1 ≤ j ≤ 4,

and all ψ ∈ PNk−4(Γk,j),
∫

Γk,j
(vδ − ϕ0)(τ)ψ(τ) dτ = 0 and

∫
Γk,j

(∂vδ∂n −
ϕ1)(τ)ψ(τ) dτ = 0.
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Finally the discrete problem is written: For f ∈ C(Ω), find uδ ∈ Xδ such that for
all vδ ∈ Xδ,

aδ(uδ, vδ) = (f, v)δ,

where aδ(uδ, vδ) =
∑K
k=1(∆ukδ ,∆v

k
δ )Nk and (f, vδ)δ =

∑K
k=1(f, vkδ )Nk . We refer to

[8] for the a priori analysis of this problem and its implementation by the mortar
spectral element method.

5. Strang and Fix algorithm

The Strang and Fix algorithm [19] consists of the enlargement of the discrete
space Xδ as

X∗δ = Xδ + RS,
where S is the first singular function. We have, then u∗δ = uδ+λS and v∗δ = vδ+µS
in X∗δ ,

a∗δ(u
∗
δ , v
∗
δ ) =

K∑
k=1

[
(∆ukδ ,∆v

k
δ )Nk + λ

∫
Ωk

∆vkδ∆S dx

+ µ

∫
Ωk

∆ukδ∆S dx+ λµ

∫
Ωk

(∆S)2 dx
]
.

The discrete problem becomes: Find u∗δ ∈ X∗δ such that

∀v∗δ ∈ X∗δ , aδ(u∗δ , v
∗
δ ) =

K∑
k=1

∫
Ωk

fv∗δk dx, (5.1)

where v∗δk is the restriction of v∗δ to sub-domain Ωk.
For the analysis of this problem, we introduce the following two norms on X∗δ ,

‖u∗δ‖∗1 =
K∑
k=1

(
‖ukδ‖2H2(Ωk) + |λ|2‖S/Ωk‖2H2(Ωk)

)1/2

and

‖u∗δ‖∗2 =
( K∑
k=1

‖u∗δ‖2H2(Ωk)

)1/2

.

Proposition 5.1. Let η(δ) = supu∗δ∈X∗δ
‖u∗δ‖∗2
‖u∗δ‖∗1

. Then limδ→+∞ η(δ) = 0.

Proof. Because of the conformity of the decomposition, we consider the proof in
the domain ∆. Let N∆ = minΩk⊂∆(Nk), η(N∆) is the sine of the angle between
the space Xδ and the singular function S. Then

η(N∆)2 = 1−
(

sup
uN∆∈PN∆ (∆)

(vN∆ , S)
‖uN∆‖H2(∆)‖S‖H2(∆)

)2

;

(·, ·) is the scalar product on H2(∆). If we consider ΠN∆ : L2(∆) → PN∆(∆), we
conclude that

η(N∆)2 = 1−
( (ΠN∆S, S)
‖ΠN∆S‖H2(∆)‖S‖H2(∆)

)2

.

Let
(ΠN∆S, S)

‖ΠN∆S‖H2(∆)‖S‖H2(∆)
=

(ΠN∆S − S, S)
‖ΠN∆S‖H2(∆)‖S‖H2(∆)

+
(S, S)

‖ΠN∆S‖H2(∆)‖S‖H2(∆)
.
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We conclude that η(N∆) has the same order as
(
‖ΠN∆S − S‖H2(∆)

)1/2 which is
N−π/w [10]. This completes the proof. �

To study problem (5.1), we begin by giving the properties of the bilinear form
a∗δ(·, ·) in the following proposition.

Proposition 5.2. There exist two positive functions C1 and C2 independent of δ
such that for all u∗δ , v∗δ in X∗δ ,

|a∗δ(u∗δ , v∗δ )| ≤ C1‖u∗δ‖∗1‖v∗δ‖∗1, (5.2)

a∗δ(u
∗
δ , v
∗
δ ) ≥ C2‖u∗δ‖2∗2. (5.3)

Proof. Consider Ωk =]ak, bk[×]ck, dk[. For u∗δ and v∗δ in X∗δ , we have

a∗δ(u
∗
δ , v
∗
δ ) =

K∑
k=1

[
(∆ukδ ,∆v

k
δ )Nk + λ

∫
k

∆S∆vkδ dx dy + µ

∫
Ωk

∆ukδ∆S dx dy

+ λµ

∫
Ωk

(∆S)2 dx dy
]
.

where

(∆ukδ ,∆v
k
δ )Nk

=
NK−1∑
i=1

NK−1∑
j=1

[∂2ukδ
∂x2

∂2vkδ
∂x2

+
∂2ukδ
∂x2

∂2vkδ
∂y2

+
∂2ukδ
∂y2

∂2vkδ
∂x2

+
∂2ukδ
∂y2

∂2vkδ
∂y2

]
(ξki , ξ

k
j )ρiρj .

The terms ∂2ukδ
∂x2

∂2vkδ
∂x2 , ∂2ukδ

∂x2
∂2vkδ
∂y2 , ∂2ukδ

∂y2
∂2vkδ
∂x2 and ∂2ukδ

∂y2
∂2vkδ
∂y2 are the polynomials of

degree less or equal to 2Nk − 1 with respect to x and y respectively.
Using the exactness of the quadrature formula, the Cauchy-Schwartz inequality

and a · b ≤ a2+b2

2 we obtain

(∆ukδ ,∆v
k
δ )Nk ≤

∫ bk

ak

(Nk−1∑
j=1

∂2ukδ
∂x2

(x, ξj)2ρj

)1/2(Nk−1∑
j=1

∂2vkδ
∂x2

(x, ξj)2ρj

)1/2

dx

+
∫ dk

ck

(Nk−1∑
i=1

∂2ukδ
∂y2

(ξi, y)2ρi

)1/2(Nk−1∑
i=1

∂2vkδ
∂y2

(ξi, y)2ρi

)1/2

dy

+
1
2

∫ bk

ak

(Nk−1∑
j=1

∂2ukδ
∂x2

(x, ξj)2ρj +
∂2vkδ
∂x2

(x, ξj)2ρj

)
dx

+
1
2

∫ dk

ck

(Nk−1∑
i=1

∂2ukδ
∂y2

(ξi, y)2ρi +
∂2vkδ
∂y2

(ξi, y)2ρi

)
dy.

Using that for all ϕN ∈ PN (Λ),

‖ϕN‖L2(Λ) ≤ (ϕN , ϕN )N ≤ C‖ϕN‖L2(Λ),

where C is a constant independent of N [12], we deduce (5.2).
For the ellipticity proof, we have

aδ(u∗δ , v
∗
δ ) ≥

K∑
k=1

‖∆ukδ‖2L2(Ωk) + λ2‖∆S‖2L2(Ωk) + 2λ
∫

Ωk

∆uk∆S dx
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≥
K∑
k=1

‖∆u∗δk‖2L2(Ωk).

We distinguish the two cases Ω\∆ and ∆.
(1) If Ωk ⊂ ∆; since the functions X∗δ and their normal derivatives vanish on ∂∆

and using the conformity hypothesis it is therefore sufficient to show that∑
Ωk⊂∆

‖∆u∗δk‖2L2(Ωk) ≥ C
∑

Ωk⊂∆

|u∗δk|H2(Ωk). (5.4)

It suffices to handle the terms of the cross product, using Green formula∫
Ωk

∂2u∗δk
∂x2

∂2u∗δk
∂y2

dx =
∫

Ωk

(∂2u∗δk
∂x∂y

)2

−
∫
∂Ωk

∂u∗δk
∂x

∂2u∗δk
∂x∂y

nky dτ

+
∫
∂Ωk

∂u∗δk
∂x

∂2u∗δk
∂y2

nkx dτ.

(5.5)

The sum on the mortar of ∆ reveals the jumps [∂u
∗
δk

∂x
∂2u∗δk
∂x∂y ] and [∂u

∗
δk

∂x
∂2u∗δk
∂y2 ] on

the interfaces terms. Since S is continuous as well as its normal derivative on the
interfaces, these jumps are reduced to [∂u

∗
δk

∂x
∂2uδk
∂x∂y ] and [∂u

∗
δk

∂x
∂2uδk
∂y2 ].

These terms are then written: [∂uδk∂x
∂2uδk
∂x∂y +λ∂S∂x

∂2uδk
∂x∂y ] and [∂uδk∂x

∂2uδk
∂y2 +λ∂S∂x

∂2uδk
∂y2 ].

The integral of [∂uδk∂x
∂2uδk
∂x∂y ] and [∂uδk∂x

∂2uδk
∂y2 ] vanishes (see [8]).

We also show that the integral of these terms [∂S∂x
∂2uδk
∂x∂y ] and [∂S∂x

∂2uδk
∂y2 ] vanishes

since ∂S
∂x =

∑
n≥0 αnLn(x). Then, the sum on the sub-domain ∆ in (5.5) no longer

counts jump terms which gives (5.4).
(2) If Ωk ⊂ Ω\∆, the restriction of the functions from X∗δ to Ω\∆ coincides with

that of Xδ and we conclude (see [8])∑
Ωk⊂Ω\∆

‖∆u∗δk‖2L2(Ωk) ≥ C
∑

Ωk⊂Ω\∆

‖u∗δk‖2H2(Ωk). (5.6)

Then from inequalities (5.4) and (5.5) we have that for all v∗δ ∈ X∗δ ,

K∑
k=1

‖∆u∗δk‖2L2(Ωk) ≥ C‖u
∗
δk‖2∗2.

Hence we obtain the ellipticity of a∗δ(·, ·). �

Proposition 5.3. For f ∈ L2(Ω), the discrete problem (5.1) has a unique solution
u∗δ in X∗∆ and

‖u∗δ‖2∗ ≤ C‖f‖L2(Ω).

Remark 5.4. The norms ‖·‖1∗ and ‖·‖2∗ are equivalent with a constant depending
on the discretization parameter δ. In the following we will use the norm ‖ · ‖1∗ and
we will show an inf-sup condition on the bilinear form a∗δ(·, ·) using this norm.

Proposition 5.5. There exists a constant α such that for all v∗δ ∈ X∗δ ,

sup
t∗δ∈X

∗
δ

a∗δ(v
∗
δ , t
∗
δ)

‖t∗δ‖1∗
≥ α‖v∗δ‖1∗. (5.7)
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Proof. Consider t∗δ = vδ + β(λS) and find a value for β which satisfies inequality
(5.7),

a∗δ(v
∗
δ , t
∗
δ)

= a∗δ(vδ + λS, vδ + β(λS))

≥
K∑
k=1

[ ∫
Ωk

(∆vδk)2 dx+ |λ|(1 + β)
∫

Ωk

∆S∆vδk dx+ β2λ2

∫
Ωk

∆S2 dx
]

≥
K∑
k=1

[
‖∆vδk‖2L2(Ωk) − |λ|(1 + β)‖∆S‖L2(Ωk)‖∆vδk‖L2(Ωk) + β2λ2‖∆S‖2L2(Ωk)

]
≥

K∑
k=1

[1
2
‖∆vδk‖2L2(Ωk) + |λ|

(
β2 − (β + 1)2

2

)
‖∆S‖2L2(Ωk)

]

Using Young’s inequality ab ≤ a2+b2

2 and choosing β = 3, we complete the proof.
�

Using inequality (5.7) and the Strang lemma we obtain the following result.

Proposition 5.6. The error estimate between u the solution of problem (3.1) and
uδ∗ the solution of problem (5.1) is

‖u− uδ∗‖1∗

≤ C
[

inf
v∗δ∈X

∗
δ

(
‖u− v∗δ‖1∗ + sup

ω∗δ∈X
∗
δ

a(v∗δ , ω
∗
δ )− a∗δ(v∗δ , ω∗δ )
‖ω∗δ‖1∗

)
× sup
ω∗δ∈X

∗
δ

∑K
k=1

∑K
l=k+1

( ∫
γkl

∂(∆u)
∂n [ω∗δ ] dx−

∫
γkl

∆u[∂ω
∗
δ

∂n ] dx
)

‖ω∗δ‖1∗

]
,

(5.8)

where n and [ω] are respectively the normal and the jump of ω on the interfaces.

To find the order of convergence, we have to estimate each term of the inequality
(5.8). Recall that the singular function S is of class C1, then the jump terms
(ω∗δk−ω∗δl) and

(∂ω∗δk
∂n −

∂ω∗δl
∂n

)
through each interface γkl are reduced to (ωδk−ωδl)

and
(
∂ωδk
∂n −

∂ωδl
∂n

)
.

The conformity hypothesis on ∆ implies that these quantities vanish. Moreover
u and uR coincide on Ω\∆; the consistence error term is then written on each
interface γkl,∫

γkl

∂(∆u)
∂n

[ωδ] dx+
∫
γkl

∆u[
∂ωδ
∂n

] dx

=
∫
γkl

∂(∆uR)
∂n

(ϕ0 − ωδk) dx+
∫
γkl

∂(∆uR)
∂n

(ϕ0 − ωδl) dx

+
∫
γkl

(∆uR)
(
ϕ1 −

∂ωδk
∂n

)
dx+

∫
γkl

(∆uR)
(
ϕ1 −

∂ωδl
∂n

)
dx
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where ϕ0 and ϕ1 are the mortar functions associated with (ωδ, ∂ωδ∂n ). Then we
obtain, [8],

K∑
k=1

K∑
l=k+1

∫
γkl

∂(∆uR)
∂n

[ωδ] dx+
∫
γkl

∆uR[
∂ωδ
∂n

] dx

≤ c
K∑
k=1

4∑
j=1

(
inf

ψkj∈PNk−4(Γkj)
‖∂(∆uR)

∂n
− ψkj‖(H3/2(Γkj))′

+ inf
ψkj∈PNk−4(Γkj)

‖∆uR − ψkj‖(H1/2(Γkj))′

)
.

(5.9)

Following the definition of X∗δ and (3.3), we have

inf
v∗δ∈X

∗
δ

‖u− v∗δ‖1∗ ≤ C inf
vδ∈X−δ

‖uR − vδ‖1∗

where
X−δ = {vδ ∈ Xδ; vδk ∈ PN−1(Ωk)}.

Finally the term

sup
ω∗δ∈X

∗
δ

a(v∗δ , ω
∗
δ )− a∗δ(v∗δ , ω∗δ )
‖ω∗δ‖1∗

vanishes if we choose v∗δ = vδ ∈ X−δ following the exactness of the quadrature
formula (4.1).
Doing the sum of these results, we obtain

‖u− u∗δ‖1∗

≤ C
[

inf
vδ∈X−δ

‖u− vδ‖1∗ +
K∑
k=1

4∑
j=1

(
inf

ψkj∈PNk−4(Γkj)
‖∂∆uR

∂n
− ψkj‖(H3/2(Γkj))′

+ inf
ψkj∈PNk−4(Γkj)

‖∆uR − ψkj‖(H1/2(Γkj))′

)]
.

(5.10)
Suppose f in Hs−2(Ω) for η(ω) < s < η(ω) + 2, then uR ∈ Hs+2(Ω) and the trace
(respectively the normal derivative trace) of uR belongs to Hs− 1

2 (∂Ωk) (respectively
Hs− 3

2 (∂Ωk)); 1 ≤ k ≤ K. Taking ψkj (respectively χkj) the orthogonal projection
on PNk−4(Γkj), we deduce

‖∆uR − ψkj‖(H1/2(Γkj))′ ≤ C N−sk ‖uR‖Hs+2(Ωk),

‖∂∆uR
∂n

− χkj‖H−3/2(Γkj) ≤ C N−sk ‖uR‖Hs+2(Ωk).

Furthermore, we have

inf
vδ∈X−δ

‖u− vδ‖1∗ ≤ C
K∑
k=1

N−sk ‖uR‖Hs+2(Ωk).

Suppose that f ∈ Hs−2(Ω) with s < 2+η1(ω) where η1(ω) is the second real solution
of the equation (3.5), in the band 0 < Real(z) < s, then from the decomposition
(3.8) and Assumption 2.1, we show exactly in the same way that

‖u− u∗δ‖1∗
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≤ C
[

inf
vδ∈X−δ

‖uR − vδ‖1∗ +
K∑
k=1

4∑
j=1

(
inf

ψkj∈PNk−4(Γkj)
‖∂∆ũR

∂n
− ψkj‖(H3/2(Γkj))′

+ inf
χkj∈PNk−4(Γkj)

‖∆ũR − χkj‖(H1/2(Γkj))′

)]
.

We note that

inf
vδ∈X−δ

‖uR − vδ‖1∗ ≤ C
{

inf
vδ∈X−δ

‖ũR − vδ‖1∗ + |λ̃| inf
vδ∈X−δ

‖S̃ − vδ‖1∗
}
.

Using the approximation result of the singular functions by polynomials [10] we
have

inf
vδ∈X−δ

‖S̃ − vδ‖1∗ ≤ CNε−2η1(ω) ∀ε > 0.

Then
inf

vδ∈X−δ
‖uR − vδ‖1∗ ≤ CN2−s(‖ũR‖Hs(Ω) + |λ̃|),

hence
‖u− u∗δ‖1∗ ≤ CN2−s‖f‖Hs−2(Ω) for s < 2 + η1(ω).

Combining these results we have the following theorem.

Theorem 5.7. If f ∈ Hs−2(Ω) for s > 0 and ε > 0 then

‖u− u∗δ‖1∗ ≤ C
( K∑
k=1

N−σkk

)
‖f‖Hs−2(Ω)

where σk, 1 ≤ k ≤ K satisfies

σk =


s− 2 if Ωk does not contain any vertices of Ω,
inf(s− 2, 2η1(π/2)− ε) if Ωk contains a vertex of Ω other than a,
inf(s− 2, 2η1(ω)− ε) if Ωk contains a.

(5.11)

Using the Aubin-Nische duality we have the following corollary.

Corollary 5.8. Let f in Hs−2(Ω), for s > 0, then, for all ε > 0,

‖u− u∗δ‖L2(Ω) ≤ C
(
N−2(

K∑
k=1

N−σkk )
)
‖f‖Hs−2(Ω)

where σk satisfies (5.11) and N = inf1≤k≤KNk.

Conclusion. We studied the biharmonic problem with homogeneous boundary
conditions in a domain of R2 with corners. The discrete problem was studied
using the mortar spectral element method. We showed that if we consider the
decomposition of the solution in a regular part and a singular one, we improve the
order of the error. Using the Strang and Fix algorithm, which consists on adding
the singular function in the discrete space, we prove an optimal order of the error
on the solution. The numerical implementation of the obtained results will be
presented in a forthcoming work. The extension of this discretization to the three
dimension axi-symmetric domain is presently under consideration.
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Paris, Sér. I 313 (1991), 335-338.
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