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IMPROVED OSCILLATION CONDITIONS FOR THIRD-ORDER
NEUTRAL TYPE DIFFERENCE EQUATIONS

SRINIVASAN SELVARANGAM, MAYAKRISHNAN MADHAN,

ETHIRAJU THANDAPANI, SANDRA PINELAS

Abstract. In this article, we study the oscillatory behavior of the third-order

neutral type difference equation

∆(an(∆2(xn + pnxn−k))α) + qnf(xn−l) = 0

where α > 0, an > 0, qn ≥ 0 and 0 ≤ pn ≤ p < ∞. By using generalized
Ricatti type transformation we present some new criteria which ensure that

every solution is oscillatory. Also we provide examples that illustrate the

importance of our results.

1. Introduction

This article concerns the oscillatory behavior of solutions of the third-order neu-
tral type difference equation

∆(an(∆2(xn + pnxn−k))α) + qnf(xn−l) = 0, (1.1)

where n ∈ N(n0) = {n0, n0 + 1, . . . }, n0 is a nonnegative integer, subject to the
following conditions:

(H1) {an} is a positive real sequence with
∑∞
n=n0

1/a1/α
n =∞;

(H2) {pn} and {qn} are nonnegative real sequences, and 0 ≤ pn ≤ p <∞;
(H3) f : R → R is continuous with uf(u) > 0 and f(u)/uα ≥ M > 0 for all

u 6= 0;
(H4) α is a ratio of odd positive integers, and k and l are nonnegative integers.

Let θ = max{k, l}. By a solution of equation (1.1), we mean a real sequence
{xn} defined for all n ≥ n0 − θ, and satisfies equation (1.1) for all n ≥ N(n0).
A nontrivial solution of equation (1.1) is said to be oscillatory if the terms of the
sequence {xn} are neither eventually all positive nor eventually all negative, and
nonoscillatory otherwise.

The problem of determining oscillation criteria for neutral type difference equa-
tions have been receiving great attention in the last few decades since these type of
equations arise in the study of economics, mathematical biology, and many other
areas of mathematics, see for example [1, 4, 5, 8].
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In [12], the authors considered the third-order neutral difference equation

∆(cn(∆(dn∆(xn + pnxn−τ )))) + qnf(xn−σ) = 0, n ∈ N(n0), (1.2)

and studied the oscillatory and asymptotic behavior of solutions of (1.2) subject to
the conditions

∆cn ≥ 0,
∞∑

n=n0

1
cn

=
∞∑

n=n0

1
dn

=∞, 0 ≤ pn < 1. (1.3)

In [10], the authors considered the equation

∆(cn(∆(dn∆(xn + pnxn−τ )))α) + qnf(xn−σ) = 0, n ∈ N(n0), (1.4)

and established conditions for the oscillation and asymptotic behavior of all solu-
tions under condition (1.3) without assuming ∆cn ≥ 0.

In [16, 15], the authors considered the equation

∆(cn(∆2(xn + pnxn−δ))α) + qnx
α
n+1−τ = 0, n ∈ N(n0), (1.5)

and established sufficient conditions for the oscillation and asymptotic behavior of
all solutions under condition (1.3).

In [14], the authors considered equation (1.5), and established sufficient condi-
tions for the oscillation and asymptotic behavior of all solutions under the condition

∞∑
n=n0

1

c
1/α
n

=∞, 0 ≤ pn ≤ p <∞.

For further results concerning the oscillatory and asymptotic behavior of third-order
difference equations, one can refer to [2, 3, 9, 5] and the references cited therein.

From a review of literature it is found that all the results established in [14, 16,
10, 12, 15] for neutral type difference equations are guarantee that every solution is
either oscillatory or tends to zero monotonically, and to the best of our knowledge
there are no results in the literature which ensure that all solutions are just oscil-
latory for the third order neutral type difference equations. Therefore the purpose
of this paper is to present some new oscillation criteria for equation (1.1) which
ensure that all solutions are oscillatory. Thus, the results obtained in this paper
improve those in [10, 12, 14, 15, 16].

This article is organized as follows. In Section 2, we present the main results and
in Section 3, we provide some examples to illustrate the importance of the main
results.

2. Oscillation theorems

In this section, we obtain some sufficient conditions for the oscillation of all
solutions of (1.1). We may deal only with the positive solutions of equation (1.1)
since the proof for the negative case is similar. We also introduce a usual convention,
namely, for the sequence {fn} and any m ∈ N(n0) we put

∑m−1
n=m fn = 0 and∏m−1

n=m fn = 1.
We begin with some lemmas that will be used to prove our main results. In the

following, for convenience we denote

zn = xn + pnxn−k, and Qn = min{qn, qn−k}.
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Lemma 2.1. Assume that α ≥ 1, x1, x2 ∈ [0,∞). Then

xα1 + xα2 ≥
1

2α−1
(x1 + x2)α.

Lemma 2.2. Assume that 0 < α ≤ 1, x1, x2 ∈ [0,∞). Then

xα1 + xα2 ≥ (x1 + x2)α.

The proof of the above lemmas can be found in [7] and [14, Lemma 2.2], respec-
tively.

Lemma 2.3. Let {xn} be a positive solution of equation (1.1). Then there are only
two cases for the sequence {zn}:

(i) zn > 0, ∆zn > 0, ∆2zn > 0, ∆(an(∆2zn)α) ≤ 0;
(ii) zn > 0, ∆zn < 0, ∆2zn > 0, ∆(an(∆2zn)α) ≤ 0,

for all n ≥ N ∈ N(n0), where N is sufficiently large.

The proof of the above lemma is similar to that of [14, Lemma 2.1], and thus is
omitted.

Lemma 2.4. Assume that {zn} satisfies Case (i) of Lemma 2.3 for all n ≥ N ∈
N(n0). Then

zn−l ≥
B(n− l, N1)
A(n,N)

∆zn (2.1)

where A(n,N) =
∑n−1
s=N

1

a
1/α
s

and B(n − l, N1) =
∑n−l−1
s=N1

(∑s−1
t=N

1

a
1/α
t

)
for some

N1 > N .

Proof. Since ∆(an(∆2zn)α) ≤ 0, we have an(∆2zn)α is nonincreasing for all n ≥ N .
Then we obtain

∆zn ≥ ∆zn −∆zN =
n−1∑
s=N

(as(∆2zs)α)1/α

a
1/α
s

≥ a1/α
n ∆2znA(n,N).

That is,

a−1/α
n ∆zn −∆2znA(n,N) ≥ 0

which yields

∆
( ∆zn
A(n,N)

)
≤ 0. (2.2)

Since n− l ≤ n, we have
∆zn−l
∆zn

≥ A(n− l, N)
A(n,N)

, (2.3)

and using (2.2), we obtain

zn = zN1 +
n−1∑
s=N1

∆zs

≥
n−1∑
s=N1

∆zs
A(s,N)

A(s,N)

≥ ∆zn
A(n,N)

n−1∑
s=N1

A(s,N), n ≥ N1 ≥ N.

(2.4)
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It follows from (2.3) and (2.4) that

zn−l
∆zn

=
∆zn−l
∆zn

zn−l
∆zn−l

≥ B(n− l, N1)
A(n,N)

for all n ≥ N1. This completes the proof. �

Lemma 2.5. Assume that {zn} satisfies Case (i) of Lemma 2.3 for all n ≥ N ∈
N(n0). Then

∆zn ≥ (a1/α
n ∆2zn)A(n,N),

zn ≥ (a1/α
n ∆2zn)E(n,N)

where E(n,N) =
∑n−1
s=N

(n−1−s)
a
1/α
s

.

The proof of the above lemma can be found in [14, Lemma 2.5].

Lemma 2.6. Let α > 0. If fn > 0 and ∆fn > 0 for all n ≥ N ∈ N(n0), then

∆fαn ≥ αfα−1
n ∆fn if α ≥ 1,

∆fαn ≥ αfα−1
n+1 ∆fn if 0 < α ≤ 1

for all n ≥ N .

The proof of the above lemma can be found in [14, Lemma 2.6]. Next, we state
and prove our main results.

Theorem 2.7. Consider the sequences A and B defined in Lemma 2.4. Let α ≥ 1
and l ≥ k. Assume that there exist a positive nondecreasing real sequence {ρn} and
a nonnegative real sequence {δn} such that

lim sup
n→∞

n−1∑
s=N2

[
21−αMρsQs

(B(s− l, N1)
A(s,N)

)α
−Gs

]
=∞ (2.5)

for a sufficiently large N ∈ N(n0), and for some N2 > N1 > N , where

Gn =
(∆ρn)α+1

(α+ 1)α+1ραn
(an + pαan−k) + ∆(ρnanδn + pαρnan−kδn−k).

If

lim sup
n→∞

n+l∑
t=n+k

( t∑
s=n

( 1
as−k

t∑
i=s

Qi

)1/α)
>
(2α−1(1 + pα)

M

)1/α

(2.6)

for all n ≥ N ∈ N(n0), then every solution of equation (1.1) is oscillatory.

Proof. Assume the contrary that equation (1.1) has an eventually positive solution
{xn}, that is, there exists a n1 ∈ N(n0) such that xn > 0, xn−k > 0 and xn−l > 0
for all n ≥ n1. From the definition of zn, we have zn > 0 for all n ≥ N ∈ N(n1),
where N is chosen so that two cases of Lemma 2.3 hold for all n ≥ N . We shall
show that in each case we are led to a contradiction.
Case (i): From equation (1.1) and (H3), we have

∆(an(∆2zn)α) + pα∆(an−k(∆2zn−k)α) +Mqnx
α
n−l +Mpαqn−kx

α
n−k−l ≤ 0,

and then using Lemma 2.1, we obtain

∆(an(∆2zn)α) + pα∆(an−k(∆2zn−k)α) +M
Qn

2α−1
zαn−l ≤ 0, n ≥ N. (2.7)
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Define

wn = ρn

(an(∆2zn)α

(∆zn)α
+ anδn

)
, n ≥ N. (2.8)

Then wn > 0 for all n ≥ N , and from (2.8) and Lemma 2.6, we have

∆wn =
∆ρn
ρn+1

wn+1 + ρn∆(anδn) + ρn
∆(an(∆2zn)α)

(∆zn)α

− ρn
an+1(∆2zn+1)α

(∆zn+1)α(∆zn)α
∆((∆zn)α)

≤ ∆ρn
ρn+1

wn+1 + ρn∆(anδn) + ρn
∆(an(∆2zn)α)

(∆zn)α

− αρn
an+1(∆2zn+1)α

(∆zn+1)α
∆2zn
∆zn

.

(2.9)

It follows from (2.8) and (2.9) that

∆wn ≤
∆ρn
ρn+1

wn+1 −
αρn

a
1/α
n

(wn+1

ρn+1
− an+1δn+1

)1+1/α

+ ρn∆(anδn)

+ ρn
∆(an(∆2zn)α)

(∆zn)α
, n ≥ N.

(2.10)

where we used a1/α
n ∆2zn is nonincreasing, and ∆zn is nondecreasing for all n ≥ N .

From (2.10) and (2.8), we have

∆wn ≤ ∆ρnun −
αρn

a
1/α
n

u1+1/α
n + ∆(ρnanδn) + ρn

∆(an(∆2zn)α)
(∆zn)α

(2.11)

where un = wn+1
ρn+1

− an+1δn+1 > 0. Now using the inequality

Cu−Du1+1/α ≤ αα

(α+ 1)α+1

Cα+1

Dα
, D > 0 (2.12)

in (2.11), with C = ∆ρn and D = αρn

a
1/α
n

, we obtain

∆wn ≤
an(∆ρn)α+1

(α+ 1)α+1(ρn)α
+ ∆(ρnanδn) + ρn

∆(an(∆2zn)α)
(∆zn)α

. (2.13)

Define another function vn by

vn = ρn

(an−k(∆2zn−k)α

(∆zn−k)α
+ an−kδn−k

)
. (2.14)

Then vn > 0 for all n ≥ N , and from (2.14) and Lemma 2.6, we obtain

∆vn =
∆ρn
ρn+1

vn+1 + ρn∆(an−kδn−k) + ρn∆
(an−k(∆2zn−k)α

(∆zn−k)α
)

≤ ∆ρn
ρn+1

vn+1 + ρn∆(an−kδn−k) + ρn∆
(an−k(∆2zn−k)α

(∆zn−k)α
)

− α ρn

a
1/α
n−k

(wn+1

ρn+1
− an+1−kδn+1−k

)1+1/α

, n ≥ N,

(2.15)
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where we have again used a1/α
n ∆2zn is nonincreasing, and ∆zn is nondecreasing for

all n ≥ N . From (2.15) and (2.14), we have

∆vn ≤ ∆ρnun −
αρn

a
1/α
n−k

u1+1/α
n + ∆(ρnan−kδn−k) + ρn

∆(an−k(∆2zn−k)α)
(∆zn−k)α

(2.16)

where un = wn+1
ρn+1

− an+1−kδn+1−k > 0. Now using the inequality (2.12) to (2.16)
we obtain

∆vn ≤
an−k(∆ρn)α+1

(α+ 1)α+1(ρn)α+1
+ ∆(ρnan−kδn−k) + ρn

∆(an−k(∆2zn−k)α)
(∆zn−k)α

. (2.17)

It follows from (2.13), (2.17) and (2.7) that

∆wn + pα∆vn

≤ ρn
{∆(an(∆2zn)α) + pα∆(an−k(∆2zn−k)α)

(∆zn)α
}

+ ∆(ρnanδn + pαρnan−kδn−k) +
(∆ρn)α+1

(α+ 1)α+1ραn
(an + pαan−k)

≤ −M
2α−1

ρnQn
zαn−l

(∆zn)α
+Gn, n ≥ N1 ≥ N.

Now using Lemma 2.4 in the above inequality, and then summing the resulting
inequality from N2 ≥ N1 to n− 1, we obtain

n−1∑
s=N2

[
M21−αρsQs

(B(s− l, N1)
A(s,N)

)α
−Gs

]
≤ wN2 + pαvN2 <∞

which contradicts (2.5).

Case (ii): Let n ≥ N ∈ N(n0) be fixed, and summing the inequality (2.7) from n
to j, we have

aj+1(∆2zj+1)α − an(∆2zn)α + pαaj+1−k(∆2zj+1−k)α

− pαan−k(∆2zn−k)α +
M

2α−1

j∑
t=n

Qtz
α
t−l ≤ 0.

Since {aj(∆2zj)α} is positive and decreasing, the above inequality implies that, as
j →∞,

−∆2zn−k +
( M

2α−1(1 + pα)

)1/α( 1
an−k

∞∑
t=n

Qtz
α
t−l

)1/α

≤ 0.

Summing again from n to j and rearranging, we obtain

−∆zj+1−k + ∆zn−k +
( M

2α−1(1 + pα)

)1/α
j∑
t=n

( 1
at−k

t∑
s=n

Qs

)1/α

zt−l ≤ 0.

Since {∆zj} is negative and increasing, as j →∞, we have

∆zn−k +
( M

2α−1(1 + pα)

)1/α ∞∑
t=n

( 1
at−k

t∑
s=n

Qs

)1/α

zt−l ≤ 0.
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Summing the above inequality from n+ k to j and rearranging, we obtain

zj+1−k − zn +
( M

2α−1(1 + pα)

)1/α
j∑
t=n

[ t∑
s=n

( 1
as−k

t∑
i=s

Qi

)1/α

zt−l

]
≤ 0.

Since {zn} is positive and decreasing, we have from the last inequality as j →∞,
∞∑

t=n+k

[ t∑
s=n

( 1
as−k

t∑
i=s

Qi

)1/α]
zt−l ≤

(2α−1(1 + pα)
M

)1/α

zn,

or
n+l∑

t=n+k

[ t∑
s=n

( 1
as−k

t∑
i=s

Qi

)1/α]
≤
(2α−1(1 + pα)

M

)1/α

which contradicts (2.6) as n→∞. This completes the proof. �

By using the inequality in Lemma 2.2 instead of Lemma 2.1, we obtain the
following result.

Theorem 2.8. Consider the sequences A and B defined in Lemma 2.4. Let 0 <
α ≤ 1 and l ≥ k. Assume condition (2.6) holds. Further assume that there exist
a positive nondecreasing real sequence {ρn} and a nonnegative real sequence {δn}
such tat

lim
n→∞

sup
n−1∑
s=N2

[
MρsQs

(B(s− l, N1)
A(s,N)

)α
−Gs

]
=∞

for sufficiently large N ∈ N(n0), and for some N2 > N1 > N , then every solution
of equation (1.1) is oscillatory.

The proof of the above theorem is similar to that of Theorem 2.7, and hence it
is omitted. Next, we present an easily verifiable oscillation condition for equation
(1.1).

Theorem 2.9. Let α ≥ 1, and assume that condition (2.6) with l ≥ k. If there
exists a positive nondecreasing real sequence {ρn} such that

∞∑
n=N1

[
ρn+1

( M

2α−1
Qn − d(1 + pα)

)
+ d(1 + pα)ρn

]
=∞ (2.18)

for every d > 0, and for some N1 ≥ N , then every solution of (1.1) is oscillatory.

Proof. Let {xn} be a positive solution of equation (1.1). Then there exists a n1 ∈
N(n0) such that xn > 0, xn−k > 0, and xn−l > 0 for all n ≥ n1. From the definition
of zn, we have zn > 0 for all n ≥ N ∈ N(n1), where N is chosen so that Lemma 2.3
holds for all n ≥ N .
Case(i): Define

wn = ρn
an(∆2zn)α

zαn−l
, n ≥ N. (2.19)

Then wn > 0 for all n ≥ N , from (2.19), we have

∆wn ≤ ρn+1
∆(an(∆2zn)α)

zαn−l
+ ∆ρn

an(∆2zn)α

zαn−l
, n ≥ N. (2.20)
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Define another function

vn = ρn
an−k(∆2zn−k)α

zαn−l
, n ≥ N. (2.21)

Then vn > 0 for all n ≥ N , and from (2.21), we have

∆vn ≤ ρn+1
∆(an−k(∆2zn−k)α)

zαn−l
+ ∆ρn

an−k(∆2zn−k)
zαn−l

, n ≥ N. (2.22)

Combining (2.20) and (2.22), and then using (2.7), we obtain

∆wn + pα∆vn ≤
−M
2α−1

ρn+1Qn + ∆ρn
aN (∆2zN )α

zαN−l
+ pα∆ρn

aN−k(∆2zN−k)α

zαN−l

≤ −M
2α−1

ρn+1Qn + d(1 + pα)∆ρn, n ≥ N1 ≥ N,

where d = aN−k(∆2zN−k)α

zαN−l
> 0 is a constant. Summing the last inequality from N1

to m, we obtain
m∑

n=N1

[
ρn+1

(MQn
2α−1

− d(1 + pα)
)

+ d(1 + pα)ρn
]
≤ wN1 + pαvN1 .

which contradicts condition (2.18) as m→∞.
The proof of Case(ii) is similar to that of in Theorem 2.7, and we omit it. The

proof is complete. �

From Lemma 2.2, similar to the proof of Theorem 2.9, we obtain the following
result.

Theorem 2.10. Let 0 < α ≤ 1, assume condition (2.6) with l ≥ k. If there exists
a positive nondecreasing real sequence {ρn} such that

∞∑
n=N1

[ρn+1(MQn − d(1 + pα)) + d(1 + pα)ρn] =∞

for every constant d > 0, then every solution of equation (1.1) is oscillatory.

Next, we present some oscillation criteria using Lemma 2.5.

Theorem 2.11. Consider the sequences E defined in Lemma 2.5. Let α ≥ 1,
assume that condition (2.6) with l > k. If

lim sup
n→∞

n−1∑
s=n−l+k

QsE
α(s− l, N) >

( l − k
l − k + 1

)l−k+1 2α−1(1 + pα)
M

(2.23)

then every solution of (1.1) is oscillatory.

Proof. Let {xn} be a positive solution of equation (1.1). Then there exists a n1 ∈
N(n0) such that xn > 0, xn−k > 0, and xn−l > 0 for all n ≥ n1. From the definition
of zn, we have zn > 0 for all n ≥ N ∈ N(n1), where N is chosen so that Lemma 2.3
holds for all n ≥ N .
Case(i): From Lemma 2.5, we have

zαn−l ≥ an−l(∆2zn−l)αEα(n− l, N), n ≥ N. (2.24)
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Using (2.24) in (2.7), we obtain

∆(an(∆2zn)α) + pα∆(an−k(∆2zn−k)α)

+
M

2α−1
QnE

α(n− l, N)an−l(∆2zn−l)α ≤ 0
(2.25)

for all n ≥ N . Set

wn = an(∆2zn)α + pαan−k(∆2zn−k)α, n ≥ N.
Then wn > 0, and

wn ≤ (1 + pα)an−k(∆2zn−k)α, n ≥ N. (2.26)

Combining (2.26) with (2.25), we have

∆wn +
M

2α−1(1 + pα)
QnE

α
n−l,Nwn+k−l ≤ 0. (2.27)

In view of [1, Theorem 6.20.5], condition (2.22) implies that the inequality (2.27)
has no positive solution, which is a contradiction.

The proof of Case(ii) is similar to that of Case(ii) of Theorem 2.9. This completes
the proof. �

From Lemma 2.2, similar to the proof of Theorem 2.11, we obtain the following
result.

Theorem 2.12. Let 0 < α ≤ 1, and assume that condition (2.6) with l > k. If

lim
n→∞

sup
n−1∑

s=n−l+k

QsE
α(s− l, N) >

( l − k
l − k + 1

)l−k+1 (1 + pα)
M

then every solution of equation (1.1) is oscillatory.

Our final result is concern with the case when
∞∑
n=N

Qn <∞. (2.28)

Theorem 2.13. Let α ≥ 1, and assume that condition (2.6) with l ≥ k. If (2.28),
and

lim sup
n→∞

Eα(n− l, N)
∞∑
s=n

Qs >
2α−1(1 + pα)

M
(2.29)

hold, then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a positive solution of equation (1.1). Then there exists a n1 ∈
N(n0) such that xn > 0, xn−k > 0, and xn−l > 0 for all n ≥ n1. From the definition
of zn, we have zn > 0 for all n ≥ N ∈ N(n1), where N is chosen so that Lemma 2.3
holds for all n ≥ N .
Case(i): For this case, we define wn as in Theorem 2.9 with ρn ≡ 1, to obtain

∆
(an(∆2zn)α

zαn−l

)
≤ ∆(an(∆2zn)α)

zαn−l
, n ≥ N. (2.30)

Next we define vn as in Theorem 2.9 with ρn ≡ 1, to obtain

∆
(an−k(∆2zn−l)α

zαn−l

)
≤ ∆(an−k(∆2zn−k)α)

zαn−l
, n ≥ N. (2.31)
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Multiplying inequality (2.31) by pα and adding with (2.30), and then using (2.7),
we obtain

∆
(an(∆2zn)α + pαan−k(∆2zn−k)α

zαn−l

)
≤ −M

2α−1
Qn, n ≥ N.

Summing the last inequality from N to m, and then using the nonincreasing prop-
erty of {an(∆zn)α}, we obtain

M

2α−1

m∑
s=N

Qs ≤ (1 + pα)
aN−l(∆2zN−l)α

zαN−l
.

Since the right-hand side of the last inequality is independent of m, we have

M

2α−1(1 + pα)

∞∑
s=N

Qs ≤
aN−l(∆2zN−l)α

zαN−l
. (2.32)

In view of condition (2.28), it follows from (2.32) that

M

2α−1(1 + pα)

∞∑
s=n

Qs ≤
an−l(∆2zn−l)α

zαn−l
, n ≥ N. (2.33)

Now using Lemma 2.5 in (2.33), we have

Eα(n− l, N)
∞∑
s=n

Qs ≤
2α−1(1 + pα)

M
, n ≥ N,

which contradicts (2.29). The proof of Case (ii) is similar to that of Theorem 2.7.
This completes the proof. �

From Lemma 2.2, similar to the proof of Theorem 2.13, we obtain the following
result.

Theorem 2.14. Let 0 < α ≤ 1, and assume that condition (2.6) with l ≥ k. If
(2.28), and

lim sup
n→∞

Eα(n− l, N)
∞∑
s=n

Qs >
(1 + pα)
M

hold, then every solution of (1.1) is oscillatory.

3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the third-order neutral type difference equation

∆(n(∆2(xn + pxn−1))3) + λnx3
n−2 = 0, n ≥ 1. (3.1)

Here an = n, pn = p > 0, qn = λn, λ > 0, k = 1, l = 2, m = 1 and Qn = λ(n− 1).
Since A(n, 1) ≤ (n − 1) and B(n, 2) ≥ (n − 2), and by taking ρn ≡ 1 and δn ≡ 0,
we see that condition (2.5) is clearly satisfied. Further, we have

n+2∑
t=n+1

t∑
s=n

( 1
s− 1

t∑
i=s

λ(i− 1)
)1/3

=
n+2∑
t=n+1

t∑
s=n

( λ

s− 1

( t(t− 1)
2

− (s− 1)(s− 2)
2

)1/3)
,
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lim sup
n→∞

sup
n+2∑
t=n+1

t∑
s=n

(λ
2

( t(t− 1)
s− 1

− s+ 2
))1/3

= λ(2 + 31/3 + 24/3).

Therefore if

λ >
4(1 + p3)

(2 + 24/3 + 31/3)3
,

then condition (2.6) is satisfied. Hence by Theorem 2.7, every solution of equation
(3.1) is oscillatory provided λ > 0.0189(1 + p3).

Example 3.2. Consider the third-order neutral delay difference equation

∆((n+ 1)(∆2(xn + 2xn−1))3) + 64(2n+ 3)x3
n−3 = 0, n ≥ 1. (3.2)

Here an = (n + 1), pn = 2, qn = 64(2n + 3), α = 3, k = 1, l = 3, M = 1
and Qn = 64(2n + 1). By taking ρn ≡ 1, we see that condition (2.18) is clearly
satisfied. Further it is easy to verify that condition (2.6) is also satisfied. Therefore
by Theorem 2.9, every solution of (3.2) is oscillatory. In fact {xn} = {(−1)n} is
one such oscillatory solution of (3.2).

Example 3.3. Consider the third-order neutral type difference equation

∆(
1

(n+ 1)3
(∆2(xn + pxn−1))3) +

λ

n(n+ 1)
x3
n−2 = 0, n ≥ 1. (3.3)

Here an = 1
(n+1)3 , pn = p > 0, qn = λ

n(n+1) , λ > 0, k = 1, l = 2, M = 1 and

Qn = λ
n(n+1) . Since E(n, 1) = n3−7n+6

6 , it is easy to see that condition (2.24) is
satisfied. Further, we have

n+2∑
t=n+1

t∑
s=n

s
( t∑
i=s

λ

i(i+ 1)

)1/3

= λ1/3
n+2∑
t=n+1

t∑
s=n

s
(1
s
− 1
t

)1/3

,

or

lim sup
n→∞

n+2∑
t=n+1

t∑
s=n

λ1/3s
(1
s
− 1
t

)1/3

=∞.

Hence condition (2.6) is also satisfied. Therefore by Theorem 2.11, every solution
of (3.3) is oscillatory provided λ > 0.

Example 3.4. Consider a third-order neutral delay difference equation

∆(
1

(n− 1)3
(∆2(xn + 2xn−1))3) +

128
(n− 3)3

x3
n−3 = 0, n ≥ 5. (3.4)

Here an = 1
(n−1)3 , pn = 2, qn = 128

(n−3)3 , α = 3, k = 1, l = 3, M = 1 and

Qn = 128
(n−3)3 . Since E(n, 5) = n3−6n2−n+210

6 , it is easy to see that condition (2.30)
is satisfied. Further, one can easily that condition (2.6) is also satisfied. Therefore
by Theorem 2.13, every solution of (3.4) is oscillatory. In fact {xn} = {(−1)n} is
one such oscillatory solution of (3.4).

Remark 3.5. From the results given in [14, 16, 10, 12, 15], one cannot conclude
that all solutions of (3.1)–(3.4) are oscillatory.
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3.1. Conclusion. In this article, we have established some new oscillation the-
orems for (1.1) when 0 ≤ pn ≤ p < ∞, and α ∈ (0,∞). These results en-
sure that all solutions are just oscillatory. Therefore our results improve those
in [14, 16, 10, 12, 15] since the results in these papers will not ensure that all solu-
tions are oscillatory. Also one can extend the results in [6, 13, 11] to neutral type
difference equations, and the details are left to the reader. It is also interesting to
extend the results of the equation (1.1) when −1 < pn ≤ 0 and {pn} is oscillatory.
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