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MULTIPLICITY OF SOLUTIONS FOR NONPERIODIC
PERTURBED FRACTIONAL HAMILTONIAN SYSTEMS

ABDERRAZEK BENHASSINE

Communicated by Paul H. Rabinowitz

Abstract. In this article, we prove the existence and multiplicity of nontrivial

solutions for the nonperiodic perturbed fractional Hamiltonian systems

−tDα∞(−∞D
α
t x(t))− λL(t) · x(t) +∇W (t, x(t)) = f(t),

x ∈ Hα(R,RN ),

where α ∈ (1/2, 1], λ > 0 is a parameter, t ∈ R, x ∈ RN , −∞Dαt and tDα∞ are
left and right Liouville-Weyl fractional derivatives of order α on the whole axis

R respectively, the matrix L(t) is not necessary positive definite for all t ∈ R nor

coercive, W ∈ C1(R×RN ,R) and f ∈ L2(R,RN )\{0} small enough. Replacing
the Ambrosetti-Rabinowitz Condition by general superquadratic assumptions,

we establish the existence and multiplicity results for the above system. Some

examples are also given to illustrate our results.

1. Introduction

Hamiltonian systems form a significant field of nonlinear functional analysis,
since they arise in phenomena studied in several fields of applied science such
as physics, astronomy, chemistry, biology, engineering and other fields of science.
Since Newton wrote the differential equation describing the motion of the planet
and derived the Kepler ellipse as its solution, the complex dynamical behavior of
the Hamiltonian system has attracted a wide range of mathematicians and physi-
cists. The variational methods to investigate Hamiltonian system were first used
by Poincaré, who used the minimal action principle of the Jacobi form to study
the closed orbits of a conservative system with two degrees of freedom. Ambrosetti
and Rabinowitz in [1] proved “Mountain Pass Theorem”, “Saddle Point Theorem”,
“Linking Theorem” and a series of very important minimax form of critical point
theorem. The study of Hamiltonian systems makes a significant breakthrough, due
to critical point theory. Critical point theorem was first used by Rabinowitz [20] to
obtain the existence of periodic solutions for first order Hamiltonian systems, while
the first multiplicity result is due to Ambrosetti and Zelati [2]. Since then, there
is a large number of literatures on the use of critical point theory and variational
methods to prove the existence of homoclinic or heteroclinic orbits of Hamiltonian
systems see for example [6, 9, 17] and the references therein.
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On the other hand, fractional calculus has received increased popularity and
importance in the past decades to describe long-memory processes. For more de-
tails, we refer the reader to the monographs [7, 13, 15] and the reference therein.
Recently, the critical point theory has become an effective tool in studying the
existence of solutions to fractional differential equations by constructing fractional
variational structures.

Recently, in Jiao and Zhou [11] showed that critical point theory is an effec-
tive approach to tackle the existence of solutions for the fractional boundary-value
problem

tD
α
T (0D

α
t x(t)) = ∇W (t, x(t)), a.e. t ∈ [0, T ],

x(0) = x(T ),

where α ∈ (1/2, 1), x ∈ RN , W ∈ C1([0, T ] × RN ,R),∇W (t, x) is the gradient of
W at x, and obtained the existence of at least one nontrivial solution. Inspired by
this paper, Torres [22] studied the fractional Hamiltonian system

−tDα
∞(−∞Dα

t x(t))− L(t) · x(t) +∇W (t, x(t)) = 0,

x ∈ Hα(R,RN ),
(1.1)

where α ∈ ( 1
2 , 1), t ∈ R, x ∈ RN , −∞Dα

t and tD
α
∞ are left and right Liouville-Weyl

fractional derivatives of order α on the whole axis R respectively, L(t) ∈ C(R,RN2
)

is symmetric and positive definite matrix for all t ∈ R and W ∈ C1(R×RN ,R). The
author showed that (1.1) possesses at least one nontrivial solution via Mountain
Pass Theorem, by assuming that L and W satisfy the following hypotheses:

(A1) L ∈ C(R,RN2
) is a positive definite symmetric matrix for all t ∈ R;

(A2) the smallest eigenvalue of L(t)→ +∞ as t→∞;
(A3) |∇W (t, x)| = o(|x|) as |x| → 0 uniformly in t ∈ R;
(A4) there is W ∈ C(RN ,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)|, ∀(t, x) ∈ R× RN .
(A5) there exists a constant µ > 2 such that

0 < µW (t, x) ≤ ∇W (t, x) · x, ∀t ∈ R, x ∈ RN\{0}.
When α = 1, (1.1) reduces to the standard second-order Hamiltonian systems

ẍ(t)− L(t)x(t) +∇W (t, x(t)) = 0. (1.2)

When L(t) is a symmetric matrix valued function for all t ∈ R and W (t, x) satisfies
the so-called global Ambrosetti-Rabinowitz Condition (A5), the existence and mul-
tiplicity of homoclinic solutions for Hamiltonian systems (1.2) have been extensively
investigated in many recent papers see for example [2, 6, 9, 21] and the references
therein. If L(t) and W (t, x) are neither periodic in t, the problem of existence of
homoclinic orbits for (1.2) is quite different from the ones just described, because
of lack of compactness of Sobolev embedding. In [21] and without periodicity as-
sumptions on both L and W , Rabinowitz and Tanaka first studied system (1.2) and
prove the existence of one nontrivial homoclinic orbit of (1.2) under assumptions
(A1)–(A5).

Remark 1.1. Although the technical coercively assumption (A2) plays a key role
to guarantee the compactness of the Sobolev embedding, it is somewhat restrictive
and eliminates many functions.
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Motivated by the above works , in this article, when f ∈ L2(R,RN )\{0}, L(t) ∈
C(R,RN2

) is a symmetric matrix but not necessary positive definite for all t ∈ R not
coercive, W ∈ C1(R× RN ,R) and replacing the Ambrosetti-Rabinowitz condition
by general superquadratic assumptions, we establish the existence and multiplicity
results for the nonperiodic perturbed fractional Hamiltonian system

−tDα
∞(−∞Dα

t x(t))− λL(t) · x(t) +∇W (t, x(t)) = f(t),

x ∈ Hα(R,RN ),
(1.3)

where α ∈ (1/2, 1], λ > 0 is a parameter. Precisely, we suppose that
(A6) minx∈RN ,|x|=1 L(t)x · x ≥ 0 and there is b > 0 such that meas({L 6≥ b}) <

1/c2α, where meas(·) is the Lebesgue measure, {L 6≥ b} = {t ∈ R : L(t) 6≥ b}
and cα defined the Sobolev constant (see section 2);

(A7) W (t, 0) = 0 and for any 0 < α1 < α2,

Cα1
α2

:= inf
{W̃ (t, x)
|x|2

; t ∈ R, α1 < |x| < α2

}
> 0,

where W̃ (t, x) := 1
2∇W (t, x) · x−W (t, x);

(A8) there exist c1 > 0, R1 > 1 and β ∈ (1, 2) such that

∇W (t, x) · x ≤ c1W̃ (t, x)|x|2−β , ∀t ∈ R, |x| ≥ R1;

(A9) there exist a constants T0 > 0 and x0 ∈ RN\{0} such that∫ T0

−T0

λL(t)x0 · x0 −W (t, x0) dt < 0.

Our main results reads as follows.

Theorem 1.2. Assume that f ∈ L2(R,RN )\{0} and (A3), (A4), (A6)–(A9) hold.
Then, there exist constants f0, λ0 > 0 such that, for any λ > λ0 system (1.3)
possesses at least two nontrivial solutions whenever ‖f‖L2 < f0.

Corollary 1.3. Assume that f ∈ L2(R,RN )\{0}, (A3), (W2), (A6)–(A8) are sat-
isfied and

(A9’)

lim
|x|→+∞

W (t, x)
|x|2

= +∞, uniformly for a.e. t ∈ R.

Then, there exist constants f0, λ0 > 0 such that, for any λ > λ0 system (1.3)
possesses at least two nontrivial solutions whenever ‖f‖L2 < f0.

Remark 1.4. Assumption (A5) implies (A8), (A9) and (A9’). In fact assuming
(A5) is satisfied, it is clear that (A9) and (A9’) hold. Choose R1 ≥ 1 so large that

1
µ
<

1
2
− 1
|x|2−β

whenever |x| ≥ R1.

Then, for such |x|, we have

W (t, x) ≤
(1

2
− 1
|x|2−β

)
∇W (t, x) · x,

and it follows that

∇W (t, x) · x ≤ |x|2−β
(1

2
∇W (t, x) · x−W (t, x)

)
= |x|2−βW̃ (t, x).
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Here and in the following x · y denotes the inner product of x, y ∈ RN and
| · | denotes the associated norm. Throughout this article, we denote by c, ci the
various positive constants which may vary from line to line and are not essential to
the problem.

2. Preliminaries

2.1. Liouville-Weyl Fractional Calculus.

Definition 2.1. The left and right Liouville-Weyl fractional integrals of order
0 < α < 1 on the whole axis R are defined by

−∞I
α
x u(x) :=

1
Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ,

xI
α
∞u(x) :=

1
Γ(α)

∫ ∞
x

(ξ − x)α−1u(ξ)dξ ,

respectively, where x ∈ R.

Definition 2.2. The left and right Liouville-Weyl fractional derivatives of order
0 < α < 1 on the whole axis R are defined by

−∞D
α
xu(x) :=

d

dx
−∞I

1−α
x u(x), (2.1)

xD
α
∞u(x) := − d

dx
xI

1−α
∞ u(x) , (2.2)

respectively, where x ∈ R.

Remark 2.3. Definitions (2.1) and (2.2) may be written in the alternative forms:

−∞D
α
xu(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x− ξ)
ξα+1

dξ,

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x+ ξ)
ξα+1

dξ .

Recall that the Fourier transform û(w) of u(x) is defined by

û(w) =
∫ ∞
−∞

e−ix.wu(x)dx.

We establish the Fourier transform properties of the fractional integral and frac-
tional operators as follows:

̂−∞Iαx u(x)(w) := (iw)−αû(w),

̂
xIα∞u(x)(w) := (−iw)−αû(w),

̂−∞Dα
xu(x)(w) := (iw)αû(w),

̂
xDα
∞u(x)(w) := (−iw)αû(w).
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2.2. Fractional derivative spaces. Let us recall for any α > 0, the semi-norm

|u|Iα−∞ := ‖−∞Dα
xu‖L2 ,

and the norm

‖u‖Iα−∞ :=
(
‖u‖2L2 + |u|2Iα−∞

)1/2

.

Let the space Iα−∞(R) denote the completion of C∞0 (R) with respect to the norm
‖ · ‖Iα−∞ , i.e.,

Iα−∞(R) = C∞0 (R)
‖·‖Iα−∞ .

Next, we define the fractional Sobolev space Hα(R) in terms of the Fourier trans-
form. For 0 < α < 1, define the semi-norm

|u|α = ‖|w|αû‖L2 ,

and the norm
‖u‖α = (‖u‖2L2 + |u|2α)1/2,

and let
Hα(R) := C∞0 (R)

‖·‖α
.

We note that a function u ∈ L2(R) belongs to Iα−∞(R) if and only if

|w|αû ∈ L2(R).

In particular, |u|Iα−∞ = ‖|w|αû‖L2(R). Therefore Hα(R) and Iα−∞(R) are equivalent,
with equivalent semi-norm and norm (see [22]).

Analogous to Iα−∞(R), we introduce Iα∞(R). Let us define the semi-norm

|u|Iα∞ := ‖xDα
∞‖L2(R),

and norm
‖u‖Iα∞ := (‖u‖2L2 + |u|2Iα∞)1/2,

and let
Iα−∞(R) = C∞0 (R)

‖·‖Iα−∞ .

Moreover Iα∞(R) and Iα−∞(R) are equivalent, with equivalent semi-norm and norm.

Lemma 2.4 ([22]). If α > 1/2, then Hα(R) ⊂ C(R) and there is a constant
C = Cα such that

‖u‖L∞ = sup
x∈R
|u(x)| ≤ C‖u‖α (2.3)

where C(R) denote the space of continuous functions on R.

Remark 2.5. If u ∈ Hα(R), then u ∈ Lq(R) for all q ∈ [2,∞], since∫
R
|u(x)|qdx ≤ ‖u‖q−2

L∞ ‖u‖
2
L2 .

In what follows, we introduce the fractional space in which we will construct the
variational framework of (1.3). Let

Xα =
{
x ∈ Hα(R,Rn) :

∫
R
|−∞Dα

t x(t)|2 + L(t)x(t) · x(t)dt <∞
}
.

The space Xα is a reflexive and separable Hilbert space with the inner product

(x, y)Xα =
∫

R
(−∞Dα

t x(t).−∞Dα
t y(t)) + L(t)x(t) · y(t)dt,
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and the corresponding norm is

‖x‖Xα =
√

(x, x)Xα .

For λ > 0, we also need the following inner product

(x, y)λ =
∫

R
(−∞Dα

t x(t) · −∞Dα
t y(t) + λL(t)x(t) · y(t))dt,

and the corresponding norm

‖x‖λ =
√

(x, x)λ.

Set Xα
λ = (Xα, ‖ · ‖λ). Observing ‖x‖λ ≥ ‖x‖Xα for all λ ≥ 1.

Lemma 2.6. If L satisfies (A6) then, Xα is continuously embedded in Hα(R,Rn).

Proof. By (A6) and (2.3) we have∫
R
|x(t)|2dt

=
∫
{L<b}

|x(t)|2dt+
∫
{L≥b}

|x(t)|2dt

≤ ‖x‖2L∞ meas({L < b}) +
1
b

∫
{L≥b}

L(t)x(t) · x(t)dt

≤ c2α meas({L < b})
(∫

R
(|−∞Dα

t x(t)|2 + |x(t)|2)dt
)

+
1
b

∫
{L≥b}

L(t)x(t) · x(t)dt.

Therefore,

‖x‖2L2 ≤
max{c2α meas({L < b}), 1

b}
1− c2α meas({L < b})

‖x‖2Xα (2.4)

and

‖x‖2α =
∫

R
(|−∞Dα

t x(t)|2 + |x(t)|2)dt

≤
(

1 +
max{c2α meas({L < b}), 1

b}
1− c2α meas({L < b})

)
‖x‖2Xα ,

(2.5)

which yields that the embedding Xα ↪→ Hα(R,RN ) is continuous. �

Remark 2.7. Using the same conditions and techniques in (2.4) and (2.5), for all
λ ≥ 1

bc2α meas({L<b}) , we also obtain

‖x‖2L2 ≤
c2α meas({L < b})

1− c2α meas({L < b})
‖x‖2λ, (2.6)

‖x‖2α ≤
(

1 +
c2α meas({L < b})

1− c2α meas({L < b})

)
‖x‖2λ. (2.7)

Furthermore, using (2.3), (2.5) and (2.6), for every p ∈ (2,∞) and

λ ≥ 1
bc2α meas({L < b})

,
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we have∫
R
|x(t)|pdt

≤ ‖x‖p−2
L∞

∫
R
|x(t)|2dt

≤ cp−2
α

(∫
R

(|−∞Dα
t x(t)|2 + |x(t)|2)dt

) p−2
2 c2α meas({L < b})

1− c2α meas({L < b})
‖x‖2λ

≤ cp−2
α

(
1 +

c2α meas({L < b})
1− c2α meas({L < b})

) p−2
2 ‖x‖p−2

λ

c2α meas({L < b})
1− c2α meas({L < b})

‖x‖2λ

=
(

1 +
c2α meas({L < b})

1− c2α meas({L < b})

) p−2
2 cpα meas({L < b})

1− c2α meas({L < b})
‖x‖pλ

= meas({L < b})( c2α
1− c2α meas({L < b})

)p/2‖x‖pλ

:= δpp‖x‖
p
λ.

(2.8)

3. Proof of Theorem 1.2 and Corollary 1.3

For this purpose, we establish the corresponding variational framework to obtain
solutions of (1.3). To this end, define the functional Iλ : Xα

λ → R by

Iλ(x) =
∫

R

[1
2
|−∞Dα

t x(t)|2 +
λ

2
L(t)x(t) · x(t)−W (t, x(t)) + f(t) · x(t)

]
dt

=
1
2
‖x‖2λ −

∫
R
W (t, x(t))dt+

∫
R
f(t) · x(t)dt.

Under assumptions (A3), (A4), (A6)–(A8), we see that Iλ is a continuously Fréchet-
differentiable functional defined on Xα

λ ; i.e., Iλ ∈ C1(Xα
λ ,R). Moreover, we have

I ′λ(x)y

=
∫

R
[(−∞Dα

t x(t).−∞Dα
t y(t)) + λL(t)x(t) · y(t)−∇W (t, x(t)) · y(t) + f(t) · y(t)]dt,

(3.1)
for all x, y ∈ Xα

λ , which yields

I ′λ(x)x = ‖x‖2λ −
∫

R
∇W (t, x(t)) · x(t)dt+

∫
R
f(t) · x(t)dt. (3.2)

We know that to find a solutions of (1.3), it suffices to obtain the critical points of
Iλ; see [22]. For this purpose the lemma below is useful.

Recall that φ ∈ C1(E,R) satisfy the Palais-Smale condition (PS) if any sequence
(xn) ⊂ E, for which (φ(xn)) is bounded and φ′(xn) → 0 as n → ∞, possesses a
convergent subsequence in E.

Lemma 3.1 ([20]). Let E be a real Banach space and φ ∈ C1(E,R) satisfying the
Palais-Smale condition. If φ satisfies the following conditions:

(i) φ(0) = 0,
(ii) there exist constants ρ, γ > 0 such that φ/∂Bρ(0) ≥ γ,

(iii) there exist e ∈ E\Bρ(0) such that φ(e) ≤ 0.
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Then φ possesses a critical value c ≥ γ given by

c = inf
g∈Γ

max
s∈[0,1]

φ(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

To find the critical points of Iλ, we shall show that Iλ satisfies the (PS) condition.
Because of the lack of the compactness of the Sobolev embedding, we require

the following convergence result.

Lemma 3.2. Assume that xn ⇀ x in Xα
λ , (A3), (A4), (A7) are satisfied and

f ∈ L2. Then

Iλ(xn − x) = Iλ(xn)− Iλ(x) + o(1) as n→ +∞, (3.3)

I ′λ(xn − x) = I ′λ(xn)− I ′λ(x) + o(1) as n→ +∞. (3.4)

In particular, if (xn) is a (PS) sequence of Iλ such that Iλ(xn)→ c for some c ∈ R
then

Iλ(xn − x)→ c− Iλ(x) as n→ +∞, (3.5)

I ′λ(xn − x)→ 0 as n→ +∞, (3.6)

after passing to a subsequence.

Proof. As xn ⇀ x in Xα
λ , we have (xn, x)λ → (x, x)λ as n→∞. Then

‖xn‖2λ = (xn − x, xn − x)λ + (x, xn)λ + (xn − x, x)λ

= ‖xn − x‖2λ + ‖x‖2λ + o(1).

Obviously,
(xn, z)λ = (xn − x, z)λ + (x, z)λ, ∀z ∈ Xα

λ .

Hence, to show (3.3) and (3.4) it suffices to prove that∫
R

(W (t, xn)−W (t, xn − x)−W (t, x))dt = o(1), (3.7)

sup
ϕ∈Xαλ ,‖ϕ‖λ=1

∫
R

(∇W (t, xn)−∇W (t, xn − x)−∇W (t, x)) · ϕdt = o(1). (3.8)

Here, we only prove (3.8) the proof of (3.7) is similar. Setting yn := xn − x, then
yn ⇀ 0 in Xα

λ and yn(t) → 0 a.e. t ∈ R. From (A3), for every ε > 0, there exist
σ = σ(ε) ∈ (0, 1) such that

|∇W (t, u)| ≤ ε|u|, ∀t ∈ R, |u| ≤ σ. (3.9)

By (A4) and (3.9), we have

|∇W (t, u)| ≤ ε|u|+ cε|u|2, ∀t ∈ R, |u| ≤ N1, (3.10)

where

N1 := sup
n
{‖yn‖L∞ , ‖yn + x‖L∞ , ‖x‖L∞ + 1}, cε = max

|u|∈[σ,N1]
W (u)σ−2.

By (3.10) and the Young Inequality, for each ϕ ∈ Xα
λ with ‖ϕ‖λ = 1, we have

|(∇W (t, yn + x)−∇W (t, yn)).ϕ|
≤ ε(|yn + x|+ |yn|)|ϕ|+ cε(|yn + x|2 + |yn|2)|ϕ|,
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≤ c(ε|yn||ϕ|+ ε|x||ϕ|+ cε|yn|2|ϕ|+ cε|x|2|ϕ|),
≤ c(ε|yn|2 + ε|x|2 + ε|ϕ|2 + ε|yn|3 + c′ε|ϕ|3 + c′′ε |x|3),

and
|(∇W (t, yn + x)−∇W (t, yn)−∇W (t, x)) · ϕ|
≤ c(ε|yn|2 + ε|x|2 + ε|ϕ|2 + ε|yn|3 + c′ε|ϕ|3 + c′′ε |x|3).

(3.11)

If we take

ψn(t) := max{|(∇W (t, yn + x)−∇W (t, yn)−∇W (t, x))ϕ| − cε(|yn|2 + |yn|3), 0},

we obtain

0 ≤ ψn(t) ≤ c(ε|x|2 + ε|ϕ|2 + c′ε|ϕ|3 + c′′ε |x|3) ∈ L1(R,RN ).

The Dominated Convergence Theorem implies that∫
R
ψn(t) dt→ 0 asn→∞. (3.12)

It follows from the definition of ψn(t) that

|(∇W (t, yn + x)−∇W (t, yn)−∇W (t, x)).ϕ| ≤ ψn(t) + εc(|yn|2 + |yn|3),

and then

|
∫

R
(∇W (t, yn + x)−∇W (t, yn)−∇W (t, x)) · ϕdt|

≤ ‖ψn(t)‖L1 + εc(‖yn‖2L2 + ‖yn‖3L3),

for all n. Because ϕ is arbitrary in Xα
λ , we obtain

sup
ϕ∈Xαλ , ‖ϕ‖λ=1

∣∣ ∫
R

(∇W (t, yn + x)−∇W (t, yn)−∇W (t, x)) · ϕ dt
∣∣

≤ ‖ψn(t)‖L1 + εc(‖yn‖2L2 + ‖yn‖3L3),

which, jointly with (2.8) and (3.12) shows that

sup
ϕ∈Xαλ , ‖ϕ‖λ=1

∣∣ ∫
R

(∇W (t, yn + x)−∇W (t, yn)−∇W (t, x)) · ϕdt
∣∣ ≤ εc,

for n sufficiently large. Therefore, (3.8) holds.
If moreover Iλ(xn) → c and I ′λ(xn) → 0 as n → ∞, equations (3.3) and (3.4)

respectively, imply that

Iλ(xn − x)→ c− Iλ(x) + o(1),

and
I ′λ(xn − x) = −I ′λ(x) asn→ +∞.

We show that I ′λ(x) = 0. For every ζ ∈ C∞0 (R,RN ), we have

I ′λ(x)ζ = lim
n→∞

I ′λ(xn)ζ = 0.

Consequently, I ′λ(x) = 0 and (3.6) holds. �

Lemma 3.3. Suppose that f ∈ L2 and (A3), (A4), (A6), (A8) are satisfied. Then,
there exists λ0 > 0 such that any bounded (PS) sequence of Iλ has a convergent
subsequence when λ > λ0.
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Proof. Let (xn) be a bounded sequence such that (Iλ(xn)) is bounded and I ′λ(xn)→
0 as n → ∞. Then, after passing to a subsequence, we have xn ⇀ x in Xα

λ and
yn → 0 in L2({L(t) < b}) where yn := xn − x. Moreover,

‖yn‖2L2 ≤
1
λb

∫
{L≥b}

λL(t)yn · yndt+
∫
{L<b}

|yn|2dt ≤
1
λb
‖yn‖2λ + o(1). (3.13)

Setting N2 := supn ‖yn‖L∞ . By (A4), we obtain

|W̃ (t, yn)| =
∣∣1
2
∇W (t, yn) · yn −W (t, yn)

∣∣ ≤ max
|u|∈[0,N2]

W (u)(N2 + 1), ∀n,

which, jointly with (3.13) and (A8) yields∫
|yn|≥R1

∇W (t, yn) · yndt ≤ c1
∫
|yn|≥R1

W̃ (t, yn)|yn|2−βdt

≤ cc1R−β1

∫
|yn|≥R1

|yn|2dt

≤ cc1
λb
‖yn‖2λ + o(1).

(3.14)

Furthermore, using (A4), (3.9) and (3.13), we have∫
|yn|<R1

∇W (t, yn)yndt

≤
∫
|yn|≤σ

ε|yn|2dt+
∫
σ<|yn|<R1

|∇W (t, yn)||yn|dt

≤ ε
∫
|yn|≤δ

|yn|2dt+ max
|u|∈[σ,R1]

W (u)σ−1

∫
R
|yn|2dt

≤ c

λb
‖yn‖2λ + o(1).

(3.15)

Because f ∈ L2, one has, for any ε > 0, there exists Tε > 0 such that(∫
|t|≥Tε

|f(t)|2dt
)1/2

< ε.

Using (2.8) and the Hölder inequality, we have∣∣ ∫
|t|≥Tε

f(t)yndt
∣∣ ≤ (∫

|t|≥Tε
|f(t)|2dt

)1/2(∫
R
|yn|2dt

)1/2

≤ cε ∀n. (3.16)

Obviously∫
|t|<Tε

f(t) · yndt ≤
(∫

R
|f(t)|2dt

)1/2(∫
|t|<Tε

|yn|2dt
)1/2

→ 0, (3.17)

as n→∞. By (3.16) and (3.17), we have∫
R
f(t) · yn(t)dt→ 0, (3.18)

as n→∞. Consequently, a combination of (3.4), (3.14), (3.15) and (3.18) implies

o(1) = I ′λ(yn)yn = ‖yn‖2λ −
∫

R
∇W (t, yn) · yndt+

∫
R
f(t) · yndt

≥ (1− cc1
λb
− c

λb
)‖yn‖2λ + o(1).
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Choosing λ0 > 0 large enough such the term (1 − cc1
λb −

c
λb ) is positive. When

λ > λ0, we obtain yn → 0 and then xn → x in Xα
λ . �

Lemma 3.4. If f ∈ L2 and (A3), (A4), (A6)–(A8) are satisfied, then Iλ satisfies
the (PS) condition whenever λ > λ0.

Proof. Let (xn) be a (PS) sequence of Iλ. By Lemma 3.3, it suffices to prove
that (xn) is bounded. Indeed, assume that ‖xn‖λ → ∞ as n → ∞ and setting
yn := xn

‖xn‖λ . Then ‖yn‖λ = 1 and ‖yn‖Lp ≤ δp for p ∈ [2,+∞]. Moreover, we have

o(1) =
I ′λ(xn)xn
‖xn‖2λ

= 1−
∫

R

∇W (t, xn) · xn
‖xn‖2λ

dt+ o(1),

as n→∞. We obtain∫
R

∇W (t, xn) · yn
|xn|

|yn|dt =
∫

R

∇W (t, xn) · xn
‖xn‖2λ

dt→ 1, (3.19)

as n → ∞. Let 0 ≤ α1 < α2 and ωα1,α2
n := {t ∈ R;α1 ≤ |xn(t)| < α2}. By (2.8)

and because (xn) is a (PS) sequence of Iλ, then there exists N0 > 0 such that for
n ≥ N0 we have

c+ ‖xn‖λ ≥ Iλ(xn)− 1
2
I ′λ(xn)xn

≥
∫

R
W̃ (t, xn)dt+

1
2

∫
R
f(t) · xndt

≥
∫

R
W̃ (t, xn)dt− δ2

2
‖f‖L2‖xn‖λ.

This implies, for n ≥ N0, that

c(1 + ‖xn‖λ)

≥
∫

R
W̃ (t, xn)dt

=
∫
ω

0,α1
n

W̃ (t, xn)dt+
∫
ω
α1,α2
n

W̃ (t, xn)dt+
∫
ω
α2,∞
n

W̃ (t, xn)dt.

(3.20)

By (A3), for any ε > 0(ε < 1
3 ) there exists κε > 0 such that

|∇W (t, u)| ≤ (
ε

δ2
2

)|u|, ∀|u| ≤ κε, t ∈ R.

Thus,∫
ω0,κε

|∇W (t, xn)|
|xn|

|yn|2dt ≤
∫
ω0,κε

ε

δ2
2

|yn|2dt ≤
ε

δ2
2

‖yn‖2L2 ≤ ε, ∀n. (3.21)
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Because β > 1 and by (A8), (2.8) and (3.20) we can choose θε ≥ R1 large enough
such that ∫

ωθε,+∞

∇W (t, xn)xn
‖xn‖2λ

dt ≤
∫
ωθε,+∞

c1
|yn|W̃ (t, xn)
|xn|β−1‖xn‖λ

dt

≤ c1‖yn‖L∞
∫
ωθε,+∞

W̃ (t, xn)

θβ−1
ε ‖xn‖λ

≤ cc1‖yn‖L∞(1 + ‖xn‖λ)

θβ−1
ε ‖xn‖λ

≤ cδ∞

θβ−1
ε

< ε, ∀n ≥ N0.

(3.22)

By (A7), we have W̃ (t, xn(t)) ≥ Cθεκε |xn|
2 for t ∈ ωκε,θεn . Noting Cθεκε > 0 it follows

from (3.20) that ∫
ωκε,θε

|yn|2dt =
1

‖xn‖2λ

∫
ωκε,θε

|xn|2dt

≤ 1
Cθεκε‖xn‖2λ

∫
ωκε,θε

W̃ (t, xn)dt

≤ c(1 + ‖xn‖λ)
Cθεκε‖xn‖2λ

→ 0,

(3.23)

as n→ +∞, which yields that∫
ωκε,θε

|∇W (t, xn)|
|xn|

|yn|2dt ≤ τε
∫
ωκε,θε

|yn|2dt→ 0, (3.24)

as n→∞, where τε = max|u|∈[κε,θε]W (u) ·κε. Hence, by (3.21), (3.22) and (3.24),
we have ∫

R

∇W (t, xn) · yn
|xn|

|yn| ≤
∫

R

|∇W (t, xn)|
|xn|

|yn|2 ≤ 3ε < 1,

for n large enough, a contradiction with (3.19) and then (xn) is bounded in Xα
λ . �

Lemma 3.5. If (A3) holds and f ∈ L2, then there exist ρ, γ, f0 > 0 such that
Iλ(x)/‖x‖λ=ρ ≥ γ when ‖f‖L2 < f0.

Proof. By (A3), for ε := 1
4δ22

there exists σ1 = σ1(ε) such that

|W (t, x)| ≤ ε|x|2,∀t ∈ R, |x| ≤ σ1. (3.25)

Thus, for ‖x‖λ ≤ ρ := σ1/δ∞, by (3.25), we obtain

Iλ(x) ≥ 1
2
‖x‖2λ − ε

∫
R
|x|2dt− ‖f‖L2‖x‖L2 ≥ ‖x‖λ

(1
4
‖x‖λ − ‖f‖L2δ2

)
.

Let γ := ρ( 1
4δ2
ρ− ‖f‖L2δ2). Then, if ‖f‖L2 < f0 := 1

4δ22
ρ, we have Iλ(x)/‖x‖λ=ρ ≥

γ. �

Lemma 3.6. If ‖f‖L2 < f0 and (A3), (A7) are satisfied, then there exists x1 ∈
Xα
λ \{0} such that I ′λ(x1) = 0.
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Proof. Since f ∈ L2\{0}, we can choose ξ ∈ Xα
λ such that

∫
R f(t) · ξ(t)dt < 0. By

(A3) and (A7) we have W ≥ 0 and

Iλ(sξ) ≤ s2

2
‖ξ‖2λ + s

∫
R
f(t) · ξ(t)dt < 0,

for s small enough. Thus C1 := inf{Iλ(x), x ∈ Bρ(0)} < 0, where ρ is the constants
given by Lemma 3.5. From Ekeland’s variational principle there exists a sequence
(xn) ⊂ Bρ such that C1 ≤ Iλ(xn) < C1 + 1

n . Then, by a standard procedure,
we can show that (xn) ⊂ Xα

λ is bounded (PS) sequence. Consequently, Lemma
3.3 implies that, there exist x1 ∈ Xα

λ such that xn → x1 ∈ Xα
λ , I

′
λ(x1) = 0 and

Iλ(x1) = C1 < 0 when λ > λ0. �

3.1. Proof of Theorem 1.2. Let h(s) = s−2W (t, sx0) for t ∈ R, s > 0. Then, by
(A7),

h′(s) = s−3[−2W (t, sx0) +∇W (t, sx0).sx0] > 0, for t ∈ R, s > 0.

Integrating the above from 1 to η, we obtain

W (t, ηx0) ≥ η2W (t, x0), for t ∈ R, η > 1. (3.26)

From (3.26), we have for s > 1,

Iλ(sx0) =
∫

R
(λs2L(t)x0 · x0 −W (t, sx0))dt+ s

∫
R
f(t) · x0dt

≤ s2(
∫

R
λL(t)x0 · x0 −W (t, x0)dt) + s

∫
R
f(t) · x0dt.

Let

e(t) =

{
sx0, if t ∈ [−T0, T0]
0, if t ∈ R\[−T0, T0],

By (A9) there exists s0 ≥ 1 such that ‖e‖λ > ρ and Iλ(e) < 0. Since Iλ(0) = 0
and all the assumptions of Lemma 3.1 are satisfied, so Iλ possesses a critical point
x2 ∈ Xα

λ with I ′λ(x2) = 0 and Iλ(x2) = C2 > 0 whenever λ > λ0.

3.2. Proof of Corollary 1.3. If (A9’) holds, let e ∈ C∞0 (R)\{0}. Then, by Fatou’s
Lemma and by W ≥ 0 we have

Iλ(se) ≤ s2[
1
2
‖e‖2λ −

∫
e 6=0

W (t, se)
(se)2

e2 dt] + s

∫
R
f(t).e(t)dt→ −∞

as s → +∞, which implies that Iλ(se) < 0 for s > 0 large. Combining this with
Lemmas 3.4 and 3.5, all the assumptions of Lemma 3.1 are satisfied, so Iλ possesses
a critical point x3 ∈ Xα

λ with I ′λ(x3) = 0 and Iλ(x3) > 0 whenever λ > λ0.

4. An example

Let L(t) = h(t)IN where

h(t) =


0, if |t| < 1,
2n2|t− n|, if |t| ≥ 1, |t− n| ≤ 1

2n2 (n ∈ Z, |n| ≥ 1),
1, elsewhere,

W (t, x) = k(t)|x|2 ln(1 + |x|2),



14 A. BENHASSINE EJDE-2017/93

where k : R→ R+ is a continuous bounded function with inf k(t) > 0. A straight-
forward computation shows that L and W satisfies Theorem 1.2 and Corollary 1.3
but they do not satisfy the corresponding results on the above papers, in particular
W do not satisfy the Ambrosetti- Rabinowitz Condition (A5).

Acknowledgments. The author would like to thank the referee for their careful
reading, critical comments and helpful suggestions, which helped to improve the
quality of this article.
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