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HOMOCLINIC SOLUTIONS FOR SECOND-ORDER NONLINEAR
DIFFERENCE EQUATIONS WITH JACOBI OPERATORS

FEI XIA

Communicated by Paul H. Rabinowitz

Abstract. We obtain sufficient conditions for the existence of a nontrivial

homoclinic solution to a second-order nonlinear difference equation with Jacobi
operator. To do this, we use variational methods and critical point theory. An

example is provided to illustrate our main result.

1. Introduction

Difference equations, the discrete analogs of differential equations [8, 9, 15, 28],
occur in numerous settings and forms, both in mathematics itself and in its ap-
plications to statistics, computing, electrical circuit analysis, dynamical systems,
economics, biology and other fields. For the general background of difference equa-
tions, we refer to the monographs [1, 2, 5].

We denote by N, Z and R the sets of all natural numbers, integers and real
numbers respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . . },Z(a, b) = {a, a +
1, . . . , b} when a ≤ b. Moreover, I denotes the identity operator.

In this article, we consider the second-order nonlinear difference equation

Lu(t)− ωu(t) = f(t, u(t+ Γ), . . . , u(t), . . . , u(t− Γ)), t ∈ Z (1.1)

containing both advances and retardations. Here the operator L is the Jacobi
operator

Lu(t) = a(t)u(t+ 1) + a(t− 1)u(t− 1) + b(t)u(t),

where a(t) and b(t) are real valued for each t ∈ Z, ω ∈ R, f ∈ C(R2Γ+2,R), Γ is a
given nonnegative integer, a(t), b(t) and f(t, yΓ, . . . , y0, . . . , y−Γ) are all M -periodic
in t for a given positive integer M .

Jacobi operators appear in a variety of applications [27]. They can be viewed
as the discrete analogue of Sturm-Liouville operators and their investigation has
many similarities with Sturm-Liouville theory. Whereas numerous books about
Sturm-Liouville operators have been written, only few on Jacobi operators exist.
In particular, there are currently fewer researches available which cover some basic
topics (like stability, attractivity, positive solutions, periodic operators, homoclinic
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solutions, boundary value problems, etc.) typically found in textbooks on Sturm-
Liouville operators [17].

We may regard (1.1) as being a discrete analog of the second-order differential
equation

Su(s)− ωu(s) = f(s, u(s+ Γ), . . . , u(s), . . . , u(s− Γ)), s ∈ R, (1.2)

where S is the Sturm-Liouville differential expression and ω ∈ R, Γ is a given
nonnegative integer, f ∈ C(R2Γ+2,R).

Equation (1.2) includes the equation

c2u′′(s) = V ′(u(s+ 1)− u(s))− V ′(u(s)− u(s− 1)), s ∈ R. (1.3)

Equations similar in structure to (1.3) arise in the study of the existence of solitary
waves of lattice differential equations and the existence of homoclinic solutions for
functional differential equations, see [10, 11, 26] and the references cited therein.

Assuming that f(t, 0, . . . , 0, . . . , 0) = 0 for t ∈ Z, then {u(t)}t∈Z = {0} is a
solution of (1.1), which is called the trivial solution. As usual, we say that a solution
{u(t)}t∈Z of (1.1) is homoclinic (to 0) if (1.1) holds. In addition, if {u(t)}t∈Z 6= {0},
then u is called a nontrivial solution.

It is well known that homoclinic solutions (homoclinic orbits) play a very im-
portant role in the study of chaos in dynamical systems. It has been proved that
the system must be chaotic provided it has the transversely intersected homoclinic
solutions. Homoclinic solutions have been extensively studied since the time of
Poincaré, see [3, 14, 19, 21, 22, 23, 24, 25, 28, 30] and the references therein. There-
fore, it possesses important theoretical significance and practical value to investigate
the existence of homoclinic solutions of (1.1) emanating from zero.

By using the Symmetric Mountain Pass Theorem, Chen and Tang [4] established
some existence criteria to guarantee the fourth-order difference system containing
both advance and retardation

∆4u(t− 2) + q(t)u(t) = f(t, u(t+ 1), u(t), u(t− 1)), t ∈ Z (1.4)

has infinitely many homoclinic solutions.
Deng, Liu, Shi and Zhou [7] in 2011 proved the existence of nontrivial homoclinic

solutions for a second-order nonlinear p-Laplacian difference equation

∆(ϕp(∆u(t− 1)))− ϕp(u(t)) = λ(t)f(t, u(t+ 1), u(t), u(t− 1)), t ∈ Z, (1.5)

without any assumptions on periodicity using the critical point theory.
When Γ = 1, (1.1) reduces to the special equation

Lu(t)− ωu(t) = f(t, u(t+ 1), u(t), u(t− 1)), t ∈ Z, (1.6)

containing both advance and retardation. Liu, Zhang and Shi [13] considered the
existence of a nontrivial homoclinic solution for (1.6) by using the Mountain Pass
Lemma in combination with periodic approximations.

In 2016, Shi, Liu and Zhang [22] obtained the existence of a nontrivial homoclinic
solution for a second-order p-Laplacian difference equation containing both advance
and retardation

∆(ϕp(∆u(t− 1)))− q(t)ϕp(u(t)) + f(t, u(t+M), u(t), u(t−M)) = 0, (1.7)

for t ∈ Z, by using critical point theory.
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Deng, Chen and Shi in [6] studied the existence of homoclinic solutions for
second-order discrete Hamiltonian systems by using the critical point theory. How-
ever, to the best of our knowledge, the results on homoclinic solutions of second-
order nonlinear difference equation (1.1) which contains both many advances and
retardations are very scarce in the literature (see [22]), because there are only few
known methods to establish the existence of homoclinic solutions of discrete sys-
tems.

Motivated by the articles [13, 22], our main purpose is to establish new criteria
for the existence of nontrivial homoclinic orbits to a class of second-order nonlinear
difference equations which contains both several advances and retardations with
Jacobi operators. Our results do not suppose that the system satisfies the well-
known global Ambrosetti-Rabinowitz superquadratic assumption. Some existing
results are generalized and improved; see Remarks 1.2 and 1.3 for details.

Throughout this article, for a function F , we let F ′i (y1, . . . , yi . . . , yn) denote
the partial derivative of F on the i variable. For basic knowledge of variational
methods, the reader is referred to [18, 20].

Our main results are obtained using the following hypotheses:
(H1) a(t) 6= 0, b(t)− |a(t− 1)| − |a(t)| > ω, for all t ∈ Z;
(H2) there exists a function F (t, yΓ, . . . , y0) which is continuously differentiable

in the variable from yΓ to y0 for every t ∈ Z and satisfies

F (t+M,yΓ, . . . , y0) = F (t, yΓ, . . . , y0),
0∑

i=−Γ

F ′2+Γ+i(t+ i, yΓ+i, . . . , yi) = f(t, yΓ, . . . , y0, . . . , y−Γ);

(H3) lim%→0
f(t,yΓ,...,y0,...,y−Γ)

y0
= 0 for t ∈ Z, % = (

∑Γ
i=−Γ y

2
i )1/2;

(H4) limδ→0
F (t,yΓ,...,y0)

δ2 = 0 for t ∈ Z, δ = (
∑Γ
i=0 y

2
i )1/2;

(H5) limδ→∞
F (t,yΓ,...,y0)

δ2 =∞ for all t ∈ Z, δ = (
∑Γ
i=0 y

2
i )1/2;

(H6) for any t ∈ Z, F (t, 0, . . . , 0) = 0, F (t, yΓ, . . . , y0) ≥ F (t, y0) ≥ 0;
(H7) for any r > 0, there exist p = p(r) > 0, q = q(r) > 0 and ν < 2 such that(

2 +
1

p+ q
(∑Γ

i=0 y
2
i

) ν
2

)
F (t, yΓ, . . . , y0) ≤

0∑
i=−Γ

F ′2+Γ+i(t, yΓ, . . . , y0)y−i,

for all t ∈ Z,
(∑Γ

i=0 y
2
i

)1/2
> r.

Theorem 1.1. Assume that (H1)–(H7) are satisfied. Then (1.1) has a nontrivial
homoclinic solution.

Remark 1.2. Theorem 1.1 extends Theorem 1.1 in [13] which is the special case
of our Theorem 1.1 by letting Γ = 1.

Remark 1.3. In the superquadratic case, almost all the existing results (see e.g.
[6, 7, 12, 16, 21]) need the following well-known global Ambrosetti-Rabinowitz su-
perquadratic condition:

(AR) there exists a constant β > 2 such that
0 < βF (t, u) ≤ uf(t, u) for all t ∈ Z and u ∈ R \ {0}.

Note that (H5)–(H7) are much weaker than the Ambrosetti-Rabinowitz condition.
Therefore, our result improves that the existing ones.
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Theorem 1.4. Assume that (H1)–(H4) and the following assumption are satisfied:
(H8) F (t, yΓ, . . . , y0) ≥ 0 and there exists a constant β > 2 such that

0 < βF (t, yΓ, . . . , y0) ≤
Γ∑
i=0

F ′2+i(t, yΓ, . . . , y0)yΓ−i,

for all t ∈ Z, (yΓ, . . . , y0) ∈ RΓ+1 \ {(0, . . . , 0)}.
Then (1.1) has a nontrivial homoclinic solution.

The rest of this article is organized as follows. First, in Section 2, we shall
establish the variational framework associated with (1.1) and transfer the problem
of the existence of homoclinic orbits of (1.1) into that of the existence of critical
points of the corresponding functional. Then, in Section 3, some related lemmas
will be stated. Next, in Section 4, we shall complete the proof of the results by
using variational methods and the critical point method. Finally, in Section 5, we
shall give an example to illustrate the applicability of the main result.

2. Variational structure

To apply the critical point theory, the corresponding variational framework for
equation (1.1) is established. We start by some basic notation for the reader’s
convenience.

Let S be the vector space of all real sequences of the form

u = {u(t)}t∈Z = (. . . , u(−t), . . . , u(−1), u(0), u(1), . . . , u(t), . . . ),

namely S = {{u(t)} : u(t) ∈ R, t ∈ Z}. Define

E =
{
u ∈ S :

+∞∑
t=−∞

[(L− ωI)u(t) · u(t)] < +∞
}
.

The space is a Hilbert space with the inner product

〈u, v〉 =
+∞∑
t=−∞

[(L− ωI)u(t)v(t)], ∀u, v ∈ E, (2.1)

and the corresponding norm

‖u‖ =
√
〈u, u〉 =

√√√√ +∞∑
t=−∞

[(L− ωI)u(t)u(t))], ∀u ∈ E. (2.2)

Next, we define

l2 =
{
u ∈ S :

+∞∑
t=−∞

u2(t) < +∞
}
, l∞ =

{
u ∈ S : sup

t∈Z
|u(t)| < +∞

}
,

and their norms are

‖u‖2 =
( +∞∑
t=−∞

u2(t)
)1/2

, ∀u ∈ l2,

‖u‖∞ = sup
t∈Z
|u(t)|, ∀u ∈ l∞,

respectively.
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For u ∈ E, we define the functional J on E as follows:

J(u) :=
+∞∑
t=−∞

[1
2

(L− ωI)u(t) · u(t)− F (t, u(t+ Γ), . . . , u(t))
]

=
1
2
‖u‖2 −

+∞∑
t=−∞

F (t, u(t+ Γ), . . . , u(t)).

(2.3)

The functional J is a well-defined C1 functional on E and (1.1) is easily recognized
as the corresponding Euler-Lagrange equation for J . Therefore, we are looking for
nonzero critical points of J .

3. Main lemmas

To apply variational methods and critical point theory for the existence of a
nontrivial homoclinic solution of (1.1), we shall state some lemmas which will be
used in the proofs of our main results.

Lemma 3.1 ([18]). Let E be a real Banach space with its dual space E∗ and suppose
that J ∈ C1(E,R) satisfies

max{J(0), J(e)} ≤ η0 < η ≤ inf
‖u‖=ρ

J(u),

for some η0 < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Υ

max
0≤s≤1

J(γ(s)),

where Υ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 to e; then there exists {uk}k∈N ⊂ E such that J(uk) → c and (1 +
‖uk‖)‖J ′(uk)‖E∗ → 0 as k →∞.

Lemma 3.2 ([13]). Assume that (H1) holds. Then there exists a constant λ such
that the following inequalities hold:

λ‖u‖22 ≤ ‖u‖2, (3.1)

λ‖u‖2∞ ≤ ‖u‖2, (3.2)

where λ = inft∈Z(b(t)− ω − |a(t− 1)| − |a(t)|) > 0.

Lemma 3.3. Assume that (H1)–(H7) are satisfied. Then there exists a constant
c > 0 and a sequence {uk}k∈N satisfying

J(uk)→ c, ‖J ′(uk)‖(1 + ‖uk‖)→ 0, k →∞. (3.3)

Proof. By (H4), there exists a constant ρ > 0 such that for any
√
y2

Γ + · · ·+ y2
0 ≤ ρ,

F (t, yΓ, . . . , y0) ≤ λ

4(Γ + 1)
(y2

Γ + · · ·+ y2
0), ∀t ∈ Z. (3.4)

If ‖u‖ =
√
λρ := η, then by (3.2), |u(t)| ≤ ρ for all t ∈ Z. For any u ∈ E, ‖u‖ = ρ,

it follows from (2.3) and (3.4) that

J(u) =
1
2
‖u‖2 −

+∞∑
t=−∞

F (t, u(t+ Γ), . . . , u(t))

≥ 1
2
‖u‖2 − λ

4(Γ + 1)

+∞∑
t=−∞

[u2(t+ Γ) + · · ·+ u2(t)]
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≥ 1
2
‖u‖2 − λ

4
‖u‖22,

≥ 1
4
‖u‖2 =

1
4
η2.

Let u0(0) = 1, u0(t) = 0 for t 6= 0. By (H2), (H3), (H5) and (2.3), we have

J(su0) =
s2

2
‖u0‖2 −

+∞∑
t=−∞

F (t, su0(t+ Γ), . . . , su0(t))

≤ s2

2
‖u0‖2 − F (0, su0(Γ), . . . , su0(0))

≤ s2
[1
2
‖u0‖2 −

F (0, su0(Γ), . . . , su0(0))
|su0(0)|2

]
≤ 0

for large enough s > 0.
Choose s1 > 1 such that s1‖u0‖ > η and J(s1u0) ≤ 0. Let e = s1u0, then e ∈ E,

‖e‖ > η and J(e) ≤ 0. By Lemma 3.1, there exists a constant c ≥ 1
4η

2 and a
sequence {uk}k∈N ⊂ E such that (3.3) holds. �

Lemma 3.4. Assume that (H1)–(H7) are satisfied. Then any {uk}k∈N satisfying

J(uk)→ c > 0, 〈J ′(uk), uk〉 → 0, k →∞ (3.5)

is bounded in E.

Proof. It follows from (H4) that there exists a constant 0 < ρ < 1 such that for any√
u2
k(t+ Γ) + · · ·+ u2

k(t) ≤ ρ,

|F (t, uk(t+ Γ), . . . , uk(t))| ≤ λ

4(Γ + 1)

Γ∑
i=0

u2
k(t+ i), ∀t ∈ Z. (3.6)

For t ∈ Z, by (H7), we have
0∑

i=−Γ

F ′2+Γ+i(t, uk(t+Γ), . . . , uk(t))uk(t−i) > 2F (t, uk(t+Γ), . . . , uk(t)) ≥ 0, (3.7)

and t ∈ Z,
√
u2
k(t+ Γ) + · · ·+ u2

k(t) > ρ, we have

F (t, uk(t+ Γ), . . . , uk(t))

≤
[
p+ q(

Γ∑
i=0

u2
k(t+ i))

ν
2

][ 0∑
t=−Γ

F ′2+Γ+i(t, uk(t+ Γ), . . . , uk(t))uk(t− i)

− 2F (t, uk(t+ Γ), . . . , uk(t))
]
.

(3.8)

By (2.1), (2.3) and (3.5), there exist constants C1 and C2 such that

C1 ≥ 2J(uk)− 〈J ′(uk), uk〉

=
+∞∑
t=−∞

[ 0∑
i=−Γ

F ′2+Γ+i(t, uk(t+ Γ), . . . , uk(t))uk(t− i)

− 2F (t, uk(t+ Γ), . . . , uk(t))
] (3.9)

and
J(uk) ≤ C2. (3.10)
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From (2.3), (3.2), (3.6), (3.7), (3.8), (3.9) and (3.10) it follows that

1
2
‖uk‖2

= J(uk) +
+∞∑
t=−∞

F (t, uk(t+ Γ), . . . , uk(t))

= J(uk) +
∑

t∈Z
(

(
PΓ
i=0 u

2
k(t+i))1/2≤ρ

)F (t, uk(t+ Γ), . . . , uk(t))

+
∑

t∈Z
(

(
PΓ
i=0 u

2
k(t+i))1/2>ρ

)F (t, uk(t+ Γ), . . . , uk(t))

≤ J(uk) +
λ

4(Γ + 1)

∑
t∈Z((

PΓ
i=0 u

2
k(t+i))1/2≤ρ)

Γ∑
i=0

u2
k(t+ i)

+
∑

t∈Z
(

(
PΓ
i=0 u

2
k(t+i))1/2>ρ

)
[
p+ q(

Γ∑
i=0

u2
k(t+ i))

ν
2

]

×
[ 0∑
i=−Γ

F ′2+Γ+i(t, uk(t+ Γ), . . . , uk(t))uk(t− i)− 2F (t, uk(t+ Γ), . . . , uk(t))
]

≤ C2 +
1
4
‖uk‖2 +

∑
t∈Z

[
p+ q(

Γ∑
i=0

u2
k(t+ i))

ν
2

]
×
[ 0∑
i=−Γ

F ′2+Γ+i(t, uk(t+ Γ), . . . , uk(t))uk(t− i)− 2F (t, uk(t+ Γ), . . . , uk(t))
]

≤ C2 +
1
4
‖uk‖2 + [p+ q(Γ + 1)‖uk‖ν∞]

×
[ 0∑
i=−Γ

F ′2+Γ+i(t, uk(t+ Γ), . . . , uk(t))uk(t− i)− 2F (t, uk(t+ Γ), . . . , uk(t))
]

≤ C2 +
1
4
‖uk‖2 + C1[p+ q(Γ + 1)‖uk‖ν∞]

≤ C2 +
1
4
‖uk‖2 + C1[p+ λ−

ν
2 q(Γ + 1)‖uk‖ν ], k ∈ N.

Since ν < 2, from the above inequality it follows that {uk}k∈N is bounded. The
proof is complete. �

4. Proof of main results

In this Section, we shall prove our main results by using the critical point theory.

Proof of Theorem 1.1. Lemma 3.3 implies that the existence of a sequence {uk}k∈N ⊂
E satisfying (3.3), and so (3.5). By Lemma 3.4, {uk}k∈N is bounded in E. Thus,
combining with (3.2), there exists a constant C3 > 0 such that√

λ‖uk‖∞ ≤ ‖uk‖ ≤ C3, ∀k ∈ N. (4.1)
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Hence, by (H2)–(H4), for t ∈ Z, with
(∑Γ

i=0 u
2
k(t+ i)

)1/2 ≤ 1√
λ
C3, we have

∣∣1
2
f(t, uk(t+ Γ), . . . , uk(t), . . . , uk(t− Γ))uk(t)− F (t, uk(t+ Γ), . . . , uk(t))

∣∣
≤ cλ

4C2
3

u2
k(t) +

cλ

4(Γ + 1)C2
3

Γ∑
i=0

u2
k(t+ i).

(4.2)

Define ε := lim supk→∞ ‖uk‖∞. We state that ε > 0. For the sake of contradic-
tion, we assume that ε = 0. From (H3), (2.3), (3.5) and (4.2), we have

c = J(uk)− 1
2
〈J ′(uk), uk〉+ o(1)

=
1
2

+∞∑
t=−∞

f(t, uk(t+ Γ), . . . , uk(t), . . . , uk(t− Γ))uk(t)

−
+∞∑
t=−∞

F (t, uk(t+ Γ), . . . , uk(t)) + o(1)

≤ cλ

4C2
3

+∞∑
t=−∞

u2
k(t) +

cλ

4(Γ + 1)C2
3

+∞∑
t=−∞

Γ∑
i=0

u2
k(t+ i) + o(1)

≤ cλ

4C2
3

‖uk‖22 +
cλ

4C2
3

‖uk‖22 + o(1)

≤ c

2
+ o(1), k →∞.

This contradiction shows that ε > 0.
First, going to a subsequence if necessary, we can assume that the existence of

tk ∈ Z depending on uk such that

|uk(tk)| = ‖uk‖∞ >
ε

2
. (4.3)

Hence, making such shifts, we can assume that tk ∈ Z(0,M−1) in (4.3). Moreover,
passing to a subsequence of ks, we can even assume that tk = t0 is independent of
k.

Next, we extract a subsequence, still denote by uk, such that

uk(t)→ u(t), k →∞, ∀t ∈ Z.

Inequality (4.3) implies that |u(t0)| ≥ ξ and, hence, u = {u(t)} is a nonzero se-
quence. Moreover,

Lu(t)− ωu(t)− f(t, u(t+ Γ), . . . , u(t), . . . , u(t− Γ))

= lim
k→∞

[Luk(t)− ωuk(t)− f(t, uk(t+ Γ), . . . , uk(t), . . . , uk(t− Γ))]

= lim
k→∞

0 = 0.

So u = {u(t)} is a solution of (1.1).
Finally, for any fixed D ∈ Z and k large enough, we have

D∑
t=−D

|uk(t)|2 ≤ 1
λ
‖uk‖2 ≤ C2

3 .
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Since C2
3 is a constant independent of k, passing to the limit, we have

D∑
t=−D

|u(t)|2 ≤ C2
3 .

Because of the arbitrariness of D, u ∈ l2. Therefore, u satisfies u(t)→ 0 as |t| → ∞.
The existence of a nontrivial homoclinic solution is obtained. �

Proof of Theorem 1.4. By a proof similar to the one in Theorem 1.1 and the process
in [13], we can prove Theorem 1.4. For simplicity, the proof is omitted. �

5. Example

As an application of Theorem 1.1, we give an example that illustrates our main
result. For t ∈ Z, assume that

u(t+ 1) + u(t− 1)− (2 + ω)u(t)

= 3
Γ∑
j=0

{
2u(t) ln

[
1 + (

Γ∑
i=0

u2(t+ i− j))1/2
]

+

{∑Γ
i=0 u

2(t+ i− j)
)1/2

u(t)

1 +
(∑Γ

i=0 u
2(t+ i− j)

)1/2 },
(5.1)

where ω < −4. We have a(t) = a(t− 1) ≡ 1, b(t) ≡ −2, and

F (t, u(t+ Γ), . . . , u(t)) = 3
Γ∑
i=0

u2(t+ i) ln
[
1 + (

Γ∑
i=0

u2(t+ i))1/2
]
.

Then
0∑

i=−Γ

F ′2+Γ+i(t, u(t+ Γ), . . . , u(t))u(t− i)

= 3
[
2

Γ∑
i=0

u2(t+ i) ln
[
1 + (

Γ∑
i=0

u2(t+ i))1/2
]

+

(∑Γ
i=0 u

2(t+ i)
)3/2

1 +
(∑Γ

i=0 u
2(t+ i)

)1/2 ]
≥
[
2 +

1

1 + (
∑Γ
i=0 u

2(t+ i))1/2

]
F (t, u(t+ Γ), . . . , u(t)) ≥ 0.

This shows that (H7) holds with p = q = ν = 1. It is easy to verify that all
the assumptions of Theorem 1.1 are satisfied. Consequently, (5.1) has a nontrivial
homoclinic solution.
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