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ON q-STEFFENSEN INEQUALITY

PREDRAG RAJKOVIĆ, MIOMIR STANKOVIĆ,

SLADJANA MARINKOVIĆ, MOKHTAR KIRANE

Abstract. In this article, we study an analogue of the classical integral in-

equality established by Steffensen in q-calculus. The difficulties ensued form
differences between the classical and q-integral. We exceed them in two direc-

tions: firstly, by restricting the area of parameter q, and another by modifying

the expression of the original inequality. We establish the conditions which
guarantee their holding on. Finally, we illustrate our considerations by the

examples.

1. Introduction

Integral inequalities have important role in the theory of functional analysis, dif-
ferential equations, and applied sciences. They can be used for studying qualitative
and quantitative properties of integrals.

The well-known Steffensen inequality [9, 11] has the form∫ b

b−λ
f(x) dx ≤

∫ b

a

f(x)g(x) dx ≤
∫ a+λ

a

f(x) dx, (1.1)

where λ =
∫ b
a
g(x) dx, and f(x) and g(x) are both integrable functions on [a, b], f(x)

is decreasing and 0 ≤ g(x) ≤ 1 for each x ∈ (a, b). This inequality has attracted the
attention of mathematicians since it was established in 1918, because of its unusual
and original form. A lot of generalizations and modifications have been presented,
such as those in [1, 6] and even applications to other sciences [4].

Although for a few inequalities, for example Chebyshev, Grüss and Hermite-
Hadamard inequality, it was a pretty obvious matter, here we confront with some
difficulties ensued from differences between the classical and q-integral [8].

The analogous of (1.1) for the q-integral (2.1) was not discussed; so we wish to
make a contribution to it through this article.

The paper is organized as follows: the next section deals with the problems with
a few basic inequalities for q-integrals. In the Section 3, we present the Steffensen
integral inequality in q-calculus with restrictions. Finally, in the las section, we find
a modification of the previous inequality which is valid on any interval of the form
(0, b) for every q ∈ (0, 1).
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2. Preliminaries

The q-integral of the function f over the interval [a, b] is defined by (see, for
example [2, 5, 7])

Iq(f ; a, b) =
∫ b

a

f(x) dqx =
∫ b

0

f(x) dqx−
∫ a

0

f(x) dqx (0 < q < 1), (2.1)

where ∫ b

0

f(x) dqx = b(1− q)
∞∑
j=0

f(bqj)qj . (2.2)

We say that f(x) is q-integrable on (a, b) if (2.1) exists. Obviously, if a function
f(x) is q-integrable and f(x) ≥ 0 over [0, b], then∫ b

0

f(x) dqx ≥ 0 (0 < q < 1).

If f is integrable over [0, b], then

lim
q↗1

Iq(f ; a, b) = I(f ; a, b) =
∫ b

a

f(t) dt (0 < a < b). (2.3)

Lacks of definition (2.1) was discussed in a few papers especially because of influence
of the points outside of the interval [a, b]. One way to overcome this problem was
suggested in [8] where the definition of the q-integral of the Riemann type was
considered. Another way was suggested in [3] by restricting the q-integral over
[a, b] to a finite sum with points only inside the interval [a, b]. Its number directly
depends on a, b and q and the nonnegativity is guaranteed. Namely, if a lower limit
of integral has the special form a = bqk (k ∈ N), q-integral reduces on the finite
sum ∫ b

bqk

f(x) dqx = b(1− q)
k−1∑
j=0

f(bqj)qj . (2.4)

Lemma 2.1. If a function f(x) is q-integrable, nonnegative and nondecreasing over
[0, b], then ∫ b

a

f(x) dqx ≥ 0 (0 ≤ a ≤ b; 0 < q < 1). (2.5)

Proof. From the definition, we have∫ b

a

f(x) dqx = (1− q)
∞∑
n=0

(
bf(bqn)− af(aqn)

)
qn.

Since a < b, 0 < q < 1 and f(x) ≥ 0, then af(aqn) ≤ bf(aqn). Also, since aqn ≤ bqn
and f(x) is nondecreasing, then bf(aqn) ≤ bf(bqn). Hence bf(bqn)− af(aqn) ≥ 0,
for every n ∈ N, wherefrom the nonnegativity of (2.5) follows. �

Note that some obvious integral inequalities in classical mathematical analysis
are not valid for q-integrals. Even more, the q-integral of a positive function does
not have to be positive.

For instance, for 0 < a < b < r, the function f(x) = x(r−x) is positive on (0, r).
However, q-integral∫ b

a

x(r − x) dqx = (b− a)
(
a+ b

1 + q
r − a2 + ab+ b2

1 + q + q2

)
.
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is equal to zero for

r = rq =
a2 + ab+ b2

a+ b

1 + q

1 + q + q2
.

In special case a = 9 and b = 10, we obtain rq = 271
19

1+q
1+q+q2 . For q ∈ (0, 0.9), the

parameter rq > 10, the function f(x) = x(rq − x) is positive on the interval (9, 10),
but ∫ 10

9

x(rq − x) dqx = 0,
∫ 10

9

x(c− x) dqx < 0 (10 < c < rq).

As it was illustrated by the previous discussion, the mean value theorem to
q-integrals is valid only in a restricted form (see [10]).

Lemma 2.2. Let u(x) be a continuous function on [a, b] and v(x) be a nonnegative
and integrable function such that Iq(v; a, b) > 0 for all q ∈ (0, 1]. Then thee exists
q̂ ∈ (0, 1) such that for every q ∈ (q̂, 1) exists ξ = ξ(q) ∈ (a, b) so that

Iq(uv; a, b) = u(ξ)Iq(v; a, b). (2.6)

Proof. Under the assumed conditions, the mean value theorem for the real integrals
(q = 1) states that

I(uv; a, b) = u(c)I(v; a, b),

where c ∈ (a, b). Using relation (2.3), we can write

lim
q→1

Iq(uv; a, b)
Iq(v; a, b)

= u(c).

Since u(x) is a continuous function on [a, b], it attains its minimum mu and maxi-
mum Mu. Let ε = min{Mu− u(c), u(c)−mu}. Then, there exists q̂ = q̂(ε) ∈ (0, 1)
such that for all q ∈ (q̂, 1) the following implication is true:

u(c)− ε < Iq(uv; a, b)
Iq(v; a, b)

< u(c) + ε ⇒ mu <
Iq(uv; a, b)
Iq(v; a, b)

< Mu.

Since u(x) takes all values between mu and Mu, we conclude that there exists
ξ = ξ(q) ∈ (a, b) so that

Iq(uv; a, b)
Iq(v; a, b)

= u(ξ).

�

Although for a few inequalities, for example Chebyshev, Grüss and Hermite-
Hadamard inequality, it was pretty obvious matter, here we confront with some
difficulties ensued form differences between the classical and q-integral.

Namely, it was easy in [3] to establish q-analog of (1.1) for the q-integrals of the
type (2.4) as a relation between finite sums with the values of a function in the
points between a and b.

If someone wants to make the analogous of (1.1) for the q-integral (2.1), the
infinite sums and to consider the points out of the interval (a, b) need to be consid-
ered. Probably, that why no-one has discussed it. In this article, we wish to make
a contribution.
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3. The q-Steffensen inequality with restricted parameter

Because of the properties mentioned above, inequality (1.1) is not valid for the
q-integrals in its original form for every parameter q. That is why we will examine
its feasible region.

Theorem 3.1 (q-Steffensen inequality). Let 0 < a < b, f(x) and g(x) are both
continuous functions on [a, b], f(x) is decreasing and 0 < g(x) < 1 on [a, b] and∫ d
a
g(x) dqx > 0 for every d ∈ (a, b). If we denote by λ =

∫ b
a
g(x) dqx, then there is

a q̂ ∈ (0, 1) such that∫ b

b−λ
f(x) dqx ≤

∫ b

a

f(x)g(x) dqx ≤
∫ a+λ

a

f(x) dqx (3.1)

for all q ∈ (q̂, 1).

Proof. Taking u ≡ g and v ≡ 1 in Lemma 2.2, there exists q1 ∈ (0, 1) such that for
every q ∈ (q1, 1), it exists ξ1 = ξ1(q) ∈ (a, b) so that

λ =
∫ b

a

g(x) dqx = g(ξ1)
∫ b

a

dqx = g(ξ1)(b− a).

Since 0 < g(x) < 1, it is 0 < λ < b− a.
For the same reasons, there exists q2 ∈ (q1, 1) such that for every q ∈ (q2, 1),

there exists ξ2 = ξ2(q) ∈ (a, b) so that∫ a+λ

a

g(x) dqx = λ g(ξ2) (a < ξ2 < a+ λ).

Hence ∫ a+λ

a

(1− g(x)) dqx = λ (1− g(ξ2)) > 0.

Let us consider the expression

RHS =
∫ a+λ

a

f(x) dqx−
∫ b

a

f(x)g(x) dqx,

which can be written as

RHS =
∫ a+λ

a

f(x) dqx−
∫ a+λ

a

f(x)g(x) dqx−
∫ b

a+λ

f(x)g(x) dqx

=
∫ a+λ

a

f(x) (1− g(x)) dqx−
∫ b

a+λ

f(x)g(x) dqx/

Let us apply Lemma 2.2 to the first integral with u ≡ f and v ≡ 1−g. We conclude
that there is q3 ∈ (q2, 1) such that, for all q ∈ (q3, 1), ξ ∈ (a, a+ λ) exists such that∫ a+λ

a

f(x) (1− g(x)) dqx = f(ξ)
∫ a+λ

a

(1− g(x)) dqx.

Since f(x) is decreasing and ξ < a+λ, it is obvious that f(ξ) > f(a+λ). Now, let
q ∈ (q3, 1). Then∫ a+λ

a

f(x) (1− g(x)) dqx > f(a+ λ)
∫ a+λ

a

(1− g(x)) dqx.
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Since∫ a+λ

a

(1− g(x)) dqx = λ−
∫ a+λ

a

g(x)dqx =
∫ b

a

g(x) dqx−
∫ a+λ

a

g(x) dqx,

we have ∫ a+λ

a

f(x) (1− g(x)) dqx > f(a+ λ)
∫ b

a+λ

g(x) dqx.

The previous inequality and the function f(x) begin decreasing, give

RHS > f(a+ λ)
∫ b

a+λ

g(x) dqx−
∫ b

a+λ

f(x)g(x) dqx

=
∫ b

a+λ

(
f(a+ λ)− f(x)

)
g(x) dqx.

Since the integrand is nonnegative on [a, b], there is q̂1 ∈ (q3, 1) ⊂ (0, 1) such that
RHS ≥ 0 for all q ∈ (q̂1, 1).

To prove left side inequality we consider G(x) = 1− g(x) and Λ =
∫ b
a
G(x) dqt =

b−a−λ. Applying just proven inequality we conclude that there is q̂2 ∈ (0, 1) such
that ∫ b

a

f(x)G(x) dqx ≤
∫ a+Λ

a

f(x) dqx,

i.e, ∫ b

b−λ
f(x) dqx−

∫ b

a

f(x)g(x) dqx ≤ 0,

for all q ∈ (q̂2, 1). If we denote by q̂ = max{q̂1, q̂2}, than the both sides of the
inequality hold on for all q ∈ (q̂, 1). �

When q → 1−, this reduces to the well-known Steffensen inequality (1.1). Here,
we will present a few examples which include different values for a bound q̂ which
illustrates the q-Steffensen inequality (3.1).

Example 3.2. The function f(x) = (9 − x2)/4 is decreasing and g(x) = x/4 is
bounded 0 ≤ g(x) ≤ 1 on [1, 3]. Thus, f(x) and g(x) fulfill the assumptions of
Theorem 3.1 and λ(q) = 2

1+q ∈ [1, 2]. Here,∫ b

b−λ
f(x) dqx ≤

∫ b

a

f(x)g(x) dqx (0 < q < 1),

but, the right inequality is valid for q on stricter interval, i.e.,∫ b

a

f(x)g(x) dqx ≤
∫ a+λ

a

f(x) dqx (q̂ < q < 1; q̂ ≈ 0.1383).

This is shown on Figure 1. Notice that, for q ∈ (0, 0.18), all integrals are neg-
ative although the functions are positive. Even more, the integral Iq[fg, a, b] =∫ b
a
f(x)g(x) dqx, for q ∈ (0, q̂), is not between the limit integrals Iq[f ; a, a+ λ] and

Iq[f ; b− λ, b] in any way.
Similarly, if we take both decreasing functions: f(x) = 1− x2 and g(x) = 2− x

on [1, 2], shown on the Figure 2, the both sides of inequality (3.1) are true for every
q ∈ (1/2, 1).
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Figure 1. The case f(x) = (9 − x2)/4 and g(x) = x/4 on [1, 3]
and the integrals.
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Figure 2. The case f(x) = 1− x2 and g(x) = 2− x on [1, 2] and the integrals.

4. The q-Steffensen inequality on (0, b)

It would be interesting to find modification of the previous inequality which is
valid for every q ∈ (0, 1). We will improve the results from [3] considering the
q-integrals (0, b) when they are represented by the infinite sums.

Theorem 4.1. Let 0 < q < 1, b > 0, f(x) and g(x) are both q-integrable functions
on [0, b], f(x) is non-negative and decreasing and 0 ≤ g(x) ≤ 1 for each x ∈ [0, b]
and λ =

∫ b
0
g(x) dqx. Let l, k ∈ N0 = N ∪ {0} be such that

l = blogq(1− λ/b)c, k = blogq(λ/b)c. (4.1)

Then

Lq(f ; 0, b) =
∫ b

bql

f(x) dqx ≤
∫ b

0

f(x)g(x) dqx ≤
∫ bqk

0

f(x) dqx = Uq(f ; 0, b). (4.2)

Proof. From condition (4.1), it follows that

b(1− ql) ≤ λ ≤ bqk.
Let us consider the right inequality

RHS =
∫ bqk

0

f(x) dqx−
∫ b

0

f(x)g(x) dqx

=
∫ bqk

0

f(x) dqx−
∫ bqk

0

f(x)g(x) dqx−
∫ b

bqk

f(x)g(x) dqx
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=
∫ bqk

0

f(x)
(
1− g(x)

)
dqx−

∫ b

bqk

f(x)g(x) dqx.

Using the definition of q-integral, we have∫ bqk

0

f(x) (1− g(x)) dqx = bqk(1− q)
∞∑
j=0

f(bqk+j)
(
1− g(bqk+j)

)
qj .

Because f(x) is decreasing, f(bqk+j) ≥ f(bqk) is valid for all j ∈ N0, so∫ bqk

0

f(x) (1− g(x)) dqx ≥ bqk(1− q)f(bqk)
∞∑
j=0

(
1− g(bqk+j)

)
qj

= f(bqk)
∫ bqk

0

(
1− g(x)

)
dqx.

Since ∫ bqk

0

dqx = bqk ≥ λ =
∫ b

0

g(x) dqx,

we can write

RHS ≥ f(bqk)
(∫ b

0

g(x) dqx−
∫ bqk

0

g(x) dqx
)
−
∫ b

bqk

f(x)g(x) dqx

= f(bqk)
∫ b

bqk

g(x) dqx−
∫ b

bqk

f(x)g(x) dqx

=
∫ b

bqk

(
f(bqk)− f(x)

)
g(x) dqx.

According to (2.4), we obtain∫ b

bqk

(
f(bqk)− f(x)

)
g(x) dqx = b(1− q)

k−1∑
j=0

(
f(bqk)− f(bqj)

)
g(bqj) ≥ 0,

which completes the proof of the right inequality in (4.2). The left inequality can
be proved in a similar manner. �

Example 4.2. The functions f(x) = 2 − x2

4 and g(x) = x
2 (x ∈ [0, 2]), fulfill the

conditions of the Theorem 4.1 and λ(q) ∈ [0, 2]. The integral Iq[fg; 0, b] for different
values q ∈ (0, 1) and appropriate Lq(f ; 0, b) and Uq(f ; 0, b) are shown on the Figure
3.

Corollary 4.3. Inequality (4.2) reduces to well-known Steffensen inequality (1.1)
when q increases to 1.

Proof. Let us notice that

lim
q↑1

qblogq xc = x (0 < q, x < 1).

Really, denoting by n = blogq xc, we can write n ≤ logq x < n+ 1, i.e., qn+1 < x ≤
qn. Hence x ≤ qn < x/q. Then

lim
q↑1

qn = x ⇒ lim
q↑1

qblogq xc = x.
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Figure 3. The case f(x) = 2− x2

4 and g(x) = x
2 on [0, 2].

Hence
lim
q↑1

bqblogq(1−λ/b)c = b− λ, lim
q↑1

bqblogq(λ/b)c = λ.

�

We can formulate and prove another version of q-Steffensen inequality.

Corollary 4.4. Let 0 < q < 1, b > 0, f(x) and g(x) are both q-integrable functions
on [0, b], f(x) is non-negative and decreasing and 0 ≤ g(x) ≤ 1 for each x ∈ [0, b]
and λ =

∫ b
0
g(x) dqx. Then

L̃q[f ; 0, b] ≤
∫ b

0

f(x)g(x) dqx ≤
b

λ

∫ λ

0

f(x) dqx = Ũq[f ; 0, b], (4.3)

where

L̃q[f ; 0, b] = max
{

0,
∫ b

b−λ
f(x) dqx−

(1
q
− 1
) ∫ b

0

f(x) dqx
}
. (4.4)

Proof. Since 0 < λ < b and 0 < q < 1, there exist l, k ∈ N0 such that

l = blogq(1− λ/b)c, k = blogq(λ/b)c.
Now, the following inequalities are valid:

bql+1 < b− λ ≤ bql, bqk+1 < λ ≤ bqk, (4.5)

1
q
>

bql

b− λ
≥ 1,

1
q
>
bqk

λ
≥ 1. (4.6)

Using Theorem 4.1, the right side in (4.3) can be written in the form

RHS =
b

λ

∫ λ

0

f(x) dqx−
∫ b

0

f(x)g(x) dqx ≥
b

λ

∫ λ

0

f(x) dqx−
∫ bqk

0

f(x) dqx.

Since f(x) is a decreasing function on (0, b) and in accordance to (4.5), we have
f(bqk+j) ≤ f(λqj), wherefrom∫ bqk

0

f(x) dqx−
∫ λ

0

f(x) dqx = (1− q)
(
bqk

∞∑
j=0

f(bqk+j)qj − λ
∞∑
j=0

f(λqj)qj
)

≤ (1− q)
(
bqk

∞∑
j=0

f(λqj)qj − λ
∞∑
j=0

f(λqj)qj
)
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= (1− q)
(
bqk − λ

) ∞∑
j=0

f(λqj)qj ,

where ∫ bqk

0

f(x) dqx−
∫ λ

0

f(x) dqx ≤
bqk − λ

λ

∫ λ

0

f(x) dqx.

Using (4.6), we obtain∫ bqk

0

f(x) dqx ≤
∫ λ

0

f(x) dqx+
bqk − λ

λ

∫ λ

0

f(x) dqx

=
bqk

λ

∫ λ

0

f(x) dqx

≤ b

λ

∫ λ

0

f(x) dqx,

where the right inequality in (4.3) follows.
Let us consider the left side inequality. If

∫ b
b−λ f(x) dqx ≤ 0, since the other

integrals are nonnegative, the inequality (4.3) is immediately fulfilled.
Let

∫ b
b−λ f(x) dqx > 0. By using the Theorem 4.1, we have

LHS ≥
∫ b

bql

f(x) dqx−
(∫ b

b−λ
f(x) dqx−

(1
q
− 1
)∫ b

0

f(x) dqx
)

= −
∫ bql

b−λ
f(x) dqx+

(1
q
− 1
)∫ b

0

f(x) dqx.

By definition of q-integral, we have

−
∫ bql

b−λ
f(x) dqx = (1− q)

∞∑
j=0

(
(b− λ)f

(
(b− λ)qj

)
− bqlf(bql+j)

)
qj .

Since f(x) is decreasing on [0, b], from (4.5) we have f
(
(b − λ)qj

)
> f(bql+j), i.e.,

−f(bql+j) > −f
(
(b− λ)qj

)
; therefore

−
∫ bql

b−λ
f(x) dqx ≥ (1− q)

∞∑
j=0

(
(b− λ)f

(
(b− λ)qj

)
− bqlf

(
(b− λ)qj

))
qj

= (1− q)
(
b− λ− bql

) ∞∑
j=0

f
(
(b− λ)qj

)
qj

=
b− λ− bql

b− λ

∫ b−λ

0

f(x) dqx.

Hence,

LHS ≥ −
∫ bql

b−λ
f(x) dqx+

(1
q
− 1
)∫ b

0

f(x) dqx

≥
(

1− bql

b− λ

)(∫ b

0

f(x)dqx−
∫ b

b−λ
f(x)dqx

)
+
(1
q
− 1
)∫ b

0

f(x)dqx

=
( bql

b− λ
− 1
)∫ b

b−λ
f(x) dqx+

(1
q
− bql

b− λ

)∫ b

0

f(x) dqx ≥ 0.
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�

Example 4.5. The functions f(x) = 9−x2

4 and g(x) = 1− 1
4 (x− 3

2 )2, on [0, 3] fulfill
the conditions of the Corollary 4.4 and λ(q) ∈ [0, 3]. The integral Iq[fg; 0, b] for
different values q ∈ (0, 1) and appropriate L̃q(f ; 0, b) and Ũq(f ; 0, b) are shown on
the Figure 4(a).

U
�

q@f;0,bD

Iq@fg;0,bD

L
�

q@f;0,bD

0.2 0.4 0.6 0.8 1.0
q0

1

2

3

4

5

Int

Iq@f;a,a+ΛD

Iq@fg;0,bD
Iq@f;b-Λ,bD

0.2 0.4 0.6 0.8 1.0
q0

1

2

3

4

5

Int

(a) proved (b) conjectured

Figure 4. Estimations of Iq[fg; 0, 3] for f(x) = 9−x2

4 and g(x) =
1− 1

4

(
x− 3

2

)2, on [0, 3]

Furthermore, we believe that the sharper estimation is valid as it is shown on
the Figure 4b) and supposed in the following conjecture. Using the Theorem 3.1
with a = 0, we can easy see that it is true on some interval (q̂, 1) ⊂ (0, 1), but it is
not sufficient.

Conjecture. Let 0 < q < 1 and b > 0. Suppose f(x) and g(x) are both nonnega-
tive and q-integrable functions on [0, b] and λ =

∫ b
0
g(x) dqx. If f(x) is decreasing

and g(x) ≤ 1 on [0, b], then

max
{

0,
∫ b

b−λ
f(x) dqx

}
≤
∫ b

0

f(x)g(x) dqx ≤
∫ λ

0

f(x) dqx.
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Matematički vesnik, 54 (2002), 171–178.

[11] J. F. Steffensen; On certain inequalities between mean values, and their application to actu-

arial problems, Skandinavisk Aktuarietidskrift, 82–97, 1918.

Predrag M. Rajković
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