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Abstract. We consider the Cauchy-problem for the parabolic equation

ut = ∆u+ f(u, |x|),
where x ∈ Rn, n > 2, and f(u, |x|) is either critical or supercritical with
respect to the Joseph-Lundgren exponent. In particular, we improve and gen-

eralize some known results concerning stability and weak asymptotic stability

of positive ground states.

1. Introduction

In this article we discuss the stability properties of positive radial solutions of
the equation

∆u+ f(u, |x|) = 0, (1.1)
where x ∈ Rn, n > 2, and f = f(u, |x|) is a potential (which is null for u = 0)
superlinear in u, and supercritical in a sense that will be specified just below. Such
solutions correspond to the positive steady states of the following Cauchy problem

ut = ∆u+ f(u, |x|), (1.2)

u(x, 0) = φ(x), (1.3)

where φ is the initial value.
Let u(x, t;φ) be the solution of (1.2)–(1.3). The analysis of the long time behav-

ior of u(x, t;φ) is strongly based on the separation properties of the radial solutions
of (1.1). If u(x) = U(|x|) is a radial solutions of (1.1), we find that U = U(r) solves

U ′′ +
n− 1
r

U ′ + f(U, r) = 0 , (1.4)

where “ ′ ” denotes the derivative with respect to r. In the whole paper we denote
by U(r, α) the unique solution of (1.4) with the initial condition U(0, α) = α > 0.

In the previous decades the Cauchy problem (1.2)–(1.3) has raised a great interest
in the mathematical community, starting from the model case f(u, |x|) = uq−1, and
it has been analyzed by several authors (see, e.g., [4, 12, 21, 22, 23, 31, 32, 33, 35,
36]).
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Since in the whole paper we are interested in positive solutions, there is no
ambiguity in using the notation uq−1. It is well known that the behavior of solutions
of (1.4), and consequently of (1.2), changes drastically as q passes through some
critical values. Here we focus on the case where q > 2∗ := 2n/(n − 2), so that for
any α > 0 the solution U(r, α) of (1.4) is positive and bounded for any r > 0, i.e.
it is a Ground State (GS), and especially in the case q ≥ σ∗, where

σ∗ :=

{
(n−2)2−4n+8

√
n−1

(n−2)(n−10) if n > 10,

+∞ if n ≤ 10,
(1.5)

so that GSs gain some stability properties (see [36]). Let us recall that 2∗ is the
Sobolev critical exponent, while σ∗ is the Joseph-Lundgren exponent (see [26]).

When 2∗ < q < σ∗ all the GSs intersect each other infinitely many times, and
this fact is used to construct suitable sub- and super-solutions for (1.1). Then, it
is possible to show that, in this range of parameters, GSs determine the threshold
between solutions of (1.2) that blow up in finite time, and solutions that exist for
any time t and fade away.

Theorem 1.1 ([36, 21]). Assume f(u, r) = uq−1, 2∗ < q < σ∗.
(1) If there is α > 0 such that φ(x) 	 U(|x|, α), then there is T (φ) such that

limt→T (φ)− ‖u(t, x;φ)‖∞ = +∞.
(2) If there is α > 0 such that φ(x) � U(|x|, α), then limt→+∞ ‖u(t, x;φ)‖∞ =

0.

On the other hand, when q ≥ σ∗, GSs are well ordered, and gain some stability
properties as we will see below. In fact, already in [36], the whole argument was
generalized to embrace the so called Henon-equation, i.e. when f(u, r) = rδuq−1,
and δ > −2. In this case there is a shift in the critical exponents, so we find
convenient to introduce the following parameters (see Section 2 below, see also [4]
for more details) which will be widely used through this article:

ls := 2
q + δ

2 + δ
and m(ls) :=

2
ls − 2

=
2 + δ

q − 2
. (1.6)

In this context, the previous discussion is still valid, but we have stability whenever
ls ≥ σ∗, and we lose it for 2∗ < ls < σ∗ (see [36]). Notice that ls reduces to q
for δ = 0. In both cases the GSs, U , decay as U(r) ∼ U(r,+∞) = P1r

−m(ls) for
r → +∞, and U(r,+∞) is the unique singular solution of (1.4).

To clarify the notion of stability we will use in the sequel, we recall the definition
of the following weighted norms (see, e.g., [21]), i.e.

‖ψ‖λ := sup
x∈Rn

|(1 + |x|λ)ψ(x)|,

|||ψ|||λ := sup
x∈Rn

∣∣∣ (1 + |x|λ)
[ln(2 + |x|)]

ψ(x)
∣∣∣,

where ψ is continuous, λ ∈ R, and k ∈ N.

Definition 1.2. We say that a GS, U(|x|) = U(|x|, α), is stable with respect to
the norm ‖ · ‖λ if for every ε > 0 there exists δ > 0 such that, when ‖ϕ− U‖λ < δ,
we have ‖u(·, t, ϕ)− U(| · |)‖λ < ε for all t > 0.

Further, we say that U(|x|) is weakly asymptotically stable with respect to ‖ · ‖λ
when U(|x|) is stable with respect to ‖ · ‖λ, and there exists δ > 0 such that
‖u(·, t, ϕ)− U(| · |)‖λ′ → 0 as t→∞ for all λ′ < λ, if ‖ϕ− U‖λ < δ.
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Let us consider the quadratic equation in λ,

λ2 +
(
n− 2− 4

q − 2

)
λ+ 2

(
n− 2− 2

q − 2

)
= 0. (1.7)

This problem admits two real and negative solutions, say λ2 ≤ λ1 < 0 if and only
if q ≥ σ∗, and they coincide if and only if q = σ∗.

Gui et al [21] proved the following theorem.

Theorem 1.3 ([36, 21]). Assume f(u, r) = uq−1, q ≥ σ∗. Let λ2 ≤ λ1 be the roots
of equation (1.7).

(1) If q > σ∗ any GS U(r, α) is stable with respect to the norm ‖ · ‖m(q)+|λ1|
and weakly asymptotically stable with respect to the norm ‖ · ‖m(q)+|λ2|.

(2) If q = σ∗ any GS U(r, α) is stable with respect to ||| · |||m(q)+|λ1| and weakly
asymptotically stable with respect to the norm ‖ · ‖m(q)+|λ1|.

There are several results aimed at extending the previous analysis to more general
potentials f = f(u, |x|) (see, e.g., [1, 10, 8, 38, 4]). In particular, the instability
result given by Theorem 1.1, and the stability result Theorems 1.3, have been
generalized also to the following equation

ut = ∆u+ k(r)rδuq−1, where δ > −2 and r = |x| (1.8)

assuming k(r) decreasing, uniformly positive and bounded, in the cases ls > σ∗

(see [10]), and ls = σ∗ (see [8]). In particular, these hypotheses imply that the
singular radial solution U(r,+∞) of (1.1) behaves like r−m(ls) both as r → 0 and
as r → +∞.

In such a case q is replaced by ls and also the values of λ1, λ2 change accordingly,
i.e. they solve

λ2 +
(
n− 2− 2

2 + δ

q − 2

)
λ+

2 + δ

q − 2

(
n− 2− 2 + δ

q − 2

)
= 0. (1.9)

In [4] we proposed a unifying approach which allows to extend Theorem 1.1 to
a more general class of nonlinearities f , including (1.8), but also more involved
dependence on u.

The goal of this paper is to continue the analysis of [4], extending the stability
results proved in Theorem 1.3 to a class of potentials f = f(u, |x|) larger than
the one considered therein. This purpose is achieved with an approach obtained
through the combination of the main ideas in [36, 21, 10], techniques borrowed from
the theory of non-autonomous dynamical systems (see [25, 4]), along with the use
of some new arguments.

As far as (1.8) is concerned we are able to drop the assumption of boundedness
on k, replacing it by the following:

k(r) ∼ r−η, as r → 0 with 0 ≤ η < 2 + δ. (1.10)

Then, we can allow two different behaviors for singular and slow decay solutions
(see [4]), namely: U(r) ∼ r−m(ls) as r → +∞ and U(r) ∼ r−m(lu) as r → 0, where

lu = 2
q + δ − η
2 + δ − η

and m(lu) =
2 + δ − η
q − 2

. (1.11)

We prove the following result.
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Theorem 1.4. Let f(u, r) be as in (1.8), where k(r) ∈ C1 satisfies (1.10), is
decreasing, and limr→+∞ k(r) > 0. Then

(1) If ls > σ∗ any GS U(r, α) is stable with respect to the norm ‖ · ‖m(ls)+|λ1|
and weakly asymptotically stable with respect to the norm ‖ · ‖m(ls)+|λ2|.

(2) If ls = σ∗ any GS U(r, α) is stable with respect to ||| · |||m(ls)+|λ1| and weakly
asymptotically stable with respect to the norm ‖ · ‖m(ls)+|λ1|.

Our approach is flexible enough to consider f = f(u, |x|) as a finite sum of powers
in u, i.e.

f(u, |x|) = k1(|x|)rδ1 |u|q1−1 + k2(|x|)rδ2 |u|q2−1, (1.12)
where q1 < q2, ki = ki(|x|), i = 1, 2, are supposed to be C1 (see Theorems 3.1 and
3.2 below).

Equation (1.12) has been already considered by Yang and Zhang [38], but just
in the particular situation of k1(r) = k2(r) ≡ 1. We emphasize that, even if it is
not explicitly stated, in [38] it is required that

2 + δ2
q2 − 2

(q2 − q1) + δ1 < 0, (1.13)

which excludes the relevant case δ1 = δ2 = 0. With these assumptions, Yang and
Zhang were able to prove Theorem 1.3-(1), replacing q by ls = 2 q2+δ2

2+δ2
, and changing

the values of m(ls) and of λi accordingly. We stress that condition (1.13) is in fact
needed to use the approach of [38], and also for the schema proposed in this paper;
See the discussion after Lemma 2.11 for more details on this point. However we
believe that (1.13) is just a technical requirement and that it might be removed
with the approach used by Bae and Naito in [2].

As a consequence of our main results we are able to generalize the results in [38]
and to prove Theorem 1.3, allowing ki to depend on r, and even to be unbounded,
i.e.

k1(r) ∼ r−η1 and k2(r) ∼ r−η2 , as r → 0, (1.14)
with 0 ≤ ηi < 2 + δi, i = 1, 2. However we still need to require (1.13).

Theorem 1.5. Let f(u, r) be as in (1.12), and assume (1.13), and (1.14). Suppose

that both k1(r)r
2+δ2
q2−2 (q2−q1)+δ1 and k2(r) are decreasing, k1(r) is positive and k2(r)

is uniformly positive. Then, setting ls = 2 q2+δ2
2+δ2

, we obtain the same conclusions as
in Theorem 1.4.

Notice that we can deal with non-monotone functions k1(r). Under, these as-
sumptions we are able to prove Theorem 1.3–(2) which is new even in the case
k1(r) = k2(r) ≡ 1 considered in [38].

The main ingredients to obtain our results on (1.2) are the separation and the
asymptotic properties of GSs. The separation properties are a result of independent
interest, and generalize the ones obtained in [9, Theorems 1,2], [37, Theorem 2]. As
a consequence we also get Proposition 2.13, which gives an insight on the behavior
of the singular solution of (1.4), which seems to play a key role in determining the
threshold between blowing up and fading solutions (see the Introduction in [36]).

To prove weak asymptotic stability, we need a suitable asymptotic expansion for
GSs, which refines and generalizes the ones of [10, 38] (see Proposition 2.16, below).
In fact in [10, 38] the highly nontrivial proof relies on an iterative scheme developed
by [36] in a simpler (and still nontrivial) context. Here, we followed a different idea:
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in fact we proved an asymptotic results for nonlinear systems of ODEs, which seems
to be new to the best of our knowledge, and that, in our opinion, is of intrinsic
mathematical interest (even for systems of ODEs). In this more general framework
the statement assumes a more comprehensible aspect, and the proof is simplified,
even if it is still quite cumbersome. So to keep the technical analytic machinery to
the minimum, we rely on the Appendix of reference [5] for a detailed proof of this
result.

Now, we briefly review some results which have been proved just in the setting
of Theorems 1.1, 1.3. First, using some sub- and super-solutions constructed on the
self-similar solutions, [22, 28] proved that U(|x|, α) is weakly asymptotically stable
in the norm ‖ · ‖λ for any m(q) + λ1 < λ < m(q) + λ2 + 2. Further Naito in [28]
showed that this result is optimal, i.e. in this range asymptotic stability does not
hold. Moreover Gui et al. in [22] proved that GSs are not even stable if we use
too coarse, but surprisingly also too fine norms, namely for λ < m(q) + λ1 and for
λ ≥ n. Notice that we have stability for λ = m(q) + λ1, but still there is a small
gap for m(q) + λ2 + 2 < n. Similarly the null solution is weakly asymptotically
stable if m(q) ≤ λ < n and unstable otherwise, [22].

Moreover, in a series of papers (see [11, 27, 28]) the authors showed that the
speed of convergence of solutions u(t, x;φ) depends linearly on the weight used
to measure the distance with respect to the GS. Namely if ‖φ(x) − U(|x|, α)‖λ
is small enough then tν‖u(t, x;φ) − U(|x|, α)‖λ′ is bounded for any t > 0, where
ν = 1

2 max{λ − λ′, λ −m(q) − λ1}, whenever m(q) + λ1 < λ < m(q) + λ2 + 2 and
0 < λ′ < λ.

If either the assumptions of Theorem 1.1 or of Theorem 1.3 are satisfied, following
[4] we can construct a family of sub-solutions φ for (1.4) with arbitrarily small L∞-
norm and decaying like r2−n for r large, and such that the solution u(t, x, φ) blows
up in finite time. This type of behavior contradicts the idea that the decay of the
singular solution, i.e. r−m(q), is the critical one to determine the threshold between
fading and blowing up solutions: The situation is indeed more intricate. This result
in fact extends to more general non-linearities f = f(u, |x|) (see [4]).

To conclude, we recall that when the non-linearity f(u, r) becomes unbounded as
r → 0, in general it is not possible to find classical solutions of (1.2)–(1.3). However
it is still possible to obtain mild solutions assuming that f(u, r)r` is bounded for a
certain 0 < ` < 2, and in fact the solutions u are classical for x 6= 0 and t > 0, and
they are Cα,α/2 also for x = 0 and t = 0 for any α ∈ (0, 2 − `). For an exhaustive
exposition about such a topic we refer to [36] (see also [4]).

This article is organized as follows: In Section 2 we collect all the preliminary
results concerning the solutions of (1.4). We prove ordering properties and asymp-
totic estimates for positive solutions of such a problem. Section 3 is devoted to the
proof of the main results of the paper (from which Theorems 1.4 and 1.5 follow
directly).

2. Ordering results and asymptotic estimates for the stationary
problem

In this section we give some preliminary results which are crucial for our analysis.
These results are obtained by applying the Fowler transformation to (1.4). To this
end we introduce the following quantities that will appear frequently in the whole
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paper, i.e.

m(l) =
2

l − 2
, A(l) = n− 2− 2m(l) , B(l) = m(l)[n− 2−m(l)], (2.1)

where l > 2 is a parameter (which is related to ls and lu, in (1.6) and in (1.11),
respectively) whose role will be explained few lines below. Set

r = es , y1(s, l) = U(es)em(l)s , y2(s, l) = ẏ1(s, l),

g(y1, s; l) = f(y1e−m(l)s, es)e(m(l)+2)s .
(2.2)

In what follows with “˙” we will denote the differentiation with respect to s (recall
that “ ′ ” indicates differentiation with respect to r). Using these transformations
we pass from (1.4) to the system(

ẏ1

ẏ2

)
=
(

0 1
B(l) −A(l)

)(
y1

y2

)
−
(

0
g(y1, s; l)

)
. (2.3)

Here and in the sequel, we write

y(s, τ ; Q; l̄) =
(
y1(s, τ ; Q; l̄), y2(s, τ ; Q; l̄)

)
(2.4)

to denote a trajectory of (2.3), where l = l̄, evaluated at s and starting from Q ∈ R2

for s = τ .
Assume first f(u, r) = rδuq−1 and set l = 2 q+δ2+δ , so that (2.3) reduces to the

autonomous system(
ẏ1

ẏ2

)
=
(

0 1
B(l) −A(l)

)(
y1

y2

)
−
(

0
(y1)q−1

)
. (2.5)

In this case we passed from a singular non-autonomous ODE to an autonomous
system from which the singularity has been removed. Also note that when δ = 0
we can simply take l = q. The sign of the constants A(l), B(l) defined in (2.1)
determines whether the system is sub- or supercritical, if there are slow decay
solutions (B(l) ≥ 0) or if they do not exist (B(l) < 0).

Remark 2.1. Under the previous assumptions, as r → 0, positive solutions U(r) of
(1.4) have two possible behaviors: Regular, i.e. limr→0 U(r) = α > 0, or Singular,
i.e. limr→0 U(r) = +∞.

Similarly, as r → +∞, we either have limr→+∞ U(r)rn−2 = β > 0 and we say
that U(r) has fast decay, or limr→+∞ U(r)rn−2 = +∞ and we say that U(r) has
slow decay.

In fact, the behavior of singular and slow decay solutions can be specified better,
see Proposition 2.9 below), and Proposition 2.16.

In this article we restrict the whole discussion to the case l > 2∗. Therefore
A(l) > 0 and B(l) > 0. System (2.5) admits three critical points for l > 2∗:
The origin O = (0, 0), P = (P1, 0) and −P, where P1 = [B(l)]1/(q−2) > 0. The
origin is a saddle point and admits a one-dimensional C1 stable manifold M

s
and

a one-dimensional C1 unstable manifold M
u
, see Figure 1. The origin splits M

u

in two relatively open components: We denote by Mu the component which leaves
the origin and enters into the semi-plane y1 ≥ 0. Since we are just interested
in positive solutions, with a slight abuse of notation, we will refer to Mu as the
unstable manifold.
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Remark 2.2. The critical point P of (2.5) is a stable focus if 2∗ < l < σ∗ and a
stable node if l ≥ σ∗.

As a consequence of some asymptotic estimates we deduce the following useful
fact (see, e.g. [17, 16]).

Remark 2.3. Let u(r) be a solution of (1.4) and let Y(s; l) be the corresponding
trajectory for the system (2.5), with l > 2∗. Then u(r) is regular (respectively
has fast decay) if and only if Y(s; l) converges to the origin as s → −∞ (resp.
as s → +∞), u(r) is singular (respectively has slow decay) if and only if Y(s; l)
converges to P as s→ −∞ (resp. as s→ +∞).

Using the Pohozaev identity introduced in [30], and adapted to this context in
[14], we can draw a picture of the phase portrait of (2.5) (see Figure 1 below) and
deduce information on positive solutions of (1.4). Then it is not hard to classify
positive solutions: In the supercritical case (l > 2∗) all the regular solutions are
GSs with slow decay, and there is a unique Singular Ground State (SGS) with slow
decay.

M u

O O

PP

   

2   <l<
σ

σ

Y

Y2

1 Y

Y

1

2

M u

l > ❋
❋ ❋

Figure 1. Sketches of the phase portrait of (2.3), for q > 2 fixed.

We stress that all the previous arguments concerning the autonomous Equation
(2.3) still hold for any autonomous super-linear system (2.3). More precisely, when-
ever g(y1, s; l) ≡ g(y1; l) and g(y1; l) has the following property, denoted by (A0)
(see [15] for a proof in the general p-Laplace context, see also [4]).

(A0) There is l > 2∗ such that g(0; l) = 0 = ∂y1g(0, l) and ∂y1g(y1, l) is a positive
strictly increasing function for y1 > 0 and limy1→+∞ ∂y1g(y1, l) = +∞.

When (A0) holds, we denote by P1 the unique positive solution in y1 of g(y1; l) =
B(l)y1. Hence (P1, 0) is again a critical point for (2.5). Further, we let σ∗ < σ∗ be
the real solutions of the equation in l given by

A(l)2 − 4
[
∂yg(P1, l)−B(l)

]
= 0, (2.6)

which reduces to A(l)2 − 4(q − 2)B(l) = 0 for g(y1) = (y1)q−1. We emphasize that
when f(u, r) = uq−1 the value of σ∗ coincides with the one given in (1.5). Notice
that Remarks 2.2, 2.3 continue to hold in this slightly more general context (see
[16, 17]).

2.1. Main assumptions and preliminaries. We collect below the assumptions
used in our main results.
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(A1) There is lu ≥ σ∗ such that for any y1 > 0 the function g(y1, s; lu) converges
to a s-independent C1 function g(y1,−∞; lu) 6≡ 0 as s → −∞, uniformly
on compact intervals. The function g(y1, s; lu) satisfies (A0) for any s ∈ R.
Further, there is $ > 0 such that lims→−∞ e−$s∂sg(y1, s; lu) = 0.

(A2) There is ls ≥ σ∗ such that for any y1 > 0 the function g(y1, s; ls) converges
to a s-independent C1 function g(y1,+∞, ls) 6≡ 0 as s → +∞, uniformly
on compact intervals. The function g(y1, s; ls) satisfies (A0) for any s ∈ R.
Further, there is $ > 0 such that lims→+∞ e+$s∂sg(y1, s; ls) = 0.

(A3) Condition (A2) holds and g(y1, s; ls) and ∂y1g(y1, s; ls) are decreasing in s
for any y1 > 0.

(A4) Condition (A2) is verified with $ = γ satisfying

g(P+
1 , s; ls) = g(P+

1 ,+∞; ls) + ce−γs + o(e−γs)

for a certain c 6= 0.
(A5) Either f is as in (1.8) or f is as in (1.12) and satisfies (1.13).

Assumptions (A1), (A2) are used to ensure that the phase portrait of (2.3) converges
to an autonomous system of the form (2.5) (with l ≥ σ∗), respectively as s→ ±∞.

Instead, (A3) is needed to prove the ordering properties of positive solutions and
generalizes the condition required in [10].

Assumption (A4) is used to derive asymptotic estimates on slow decay solutions
of (1.4), and it gives back the standard requirement when f(u, r) = k(r)uq−1, i.e.
k(r) = k(∞) + cr−γ + o(r−γ) (see [10]). Condition (A4) is assumed for definiteness
and may be weakened, at the price of some additional cumbersome technicalities.

Finally, condition (A5) is just a technical requirement we are not able to avoid,
which is in fact implicitly assumed also in [38]. It implies that there is c > 0 such
that

B(ls) =
g(P+

1 ,+∞; ls)
P+

1

= c|P+
1 |q−2 =

∂y1g(P+
1 ,+∞; ls)
q − 1

(2.7)

with q = q in the case of (1.8), and q = q2 for the potential (1.12).

Remark 2.4. Observe that (A1) and (A2) are satisfied, e.g., in the following cases:
• For equation (1.8) with k satisfying (1.10): ls and lu are as in (1.6) and

(1.11), respectively.
• When f is as in (1.12) and (1.14) holds: In this case ls is as in Theorem

1.5, i.e. ls = min
{

2 qi+δi2+δi
: i = 1, 2

}
, while lu = max

{
2 qi+δi−ηi2+δi−ηi : i = 1, 2

}
.

We also emphasize that, if we consider (1.12), then (1.13) amounts to ask
for 2 q2+δ2

2+δ2
≤ 2 q1+δ1

2+δ1
; so (A5) is not satisfied if δi = ηi = 0, since we find

ls = q1 < q2 = lu.

Lemma 2.5. Assume (A2) and (A3). Then we have the following condition
(A6) The function G(y1, s; 2∗) :=

∫ y1
0
g(a, s; 2∗)da is decreasing in s for any y1 >

0 strictly for some s.

Proof. Set G(z, s, ls) =
∫ z

0
g(a, s, ls)da, H(z, s) = G(z, s, ls)/z. Then

G(z, s, ls) =
∫ z

0

g(a, s, ls)
a

ada ≤ g(z, s, ls)
z

∫ z

0

ada =
zg(z, s, ls)

2

Therefore zg − G ≥ zg − 2G ≥ 0. Since ∂zH = (zg − G)/z2, then H(z, s) is
increasing in z and decreasing in s for (A3). Hence

G(y1, s, 2∗) = G(y1e−δs, s, ls)eδs = H(y1e−δs, s)y1 ,
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so we conclude that G(y1, s, 2∗) is decreasing in s. �

Observe that (A6) means that the system is supercritical with respect to 2∗, and
this ensures the existence of GSs for (1.4) (see e.g. [4, Proposition 2.12]). In the
sequel, in some cases, it will be convenient to use (A6) along with (A2), in place
of the combination of (A2) and (A3). In fact, the first couple of requirements is
slightly weaker than the second.

2.2. Stationary problem: spatial dependent case. Now we consider (2.3) in
the s-dependent case. The first step is to extend invariant manifold theory to the
non-autonomous setting.

Assume (A1). We introduce the following 3-dimensional autonomous system,
obtained from (2.3) by adding the extra variable z = e$t, i.e.,ẏ1

ẏ2

ż

 =

 0 1 0
B(lu) −A(lu) 0

0 0 $

y1

y2

z

−
 0
g(y1,

ln(z)
$ ; lu)
0

 . (2.8)

Similarly if (A2) is satisfied we set l = ls and ζ(t) = e−$t and we considerẏ1

ẏ2

ζ̇

 =

 0 1 0
B(ls) −A(ls) 0

0 0 $

y1

y2

ζ

−
 0
g(y1,− ln(ζ)

$ ; ls)
0

 . (2.9)

The technical assumptions at the end of (A1), (A2) are needed in order to ensure
that the systems are smooth respectively for z = 0 and ζ = 0.

We recall that if a trajectory of (2.3) does not cross the coordinate axes indefi-
nitely then it is continuable for any s ∈ R (see e.g. [16, Lemma 3.9], [7]). Consider
(2.8) (respectively (2.9)) each trajectory corresponding to a definitively positive
solution u(r) of (1.4) is such that its α-limit set is contained in the z = 0 plane (re-
spectively its ω-limit set is contained in the ζ = 0 plane). Moreover such a plane is
invariant and the dynamics reduced to z = 0 (respectively, ζ = 0) coincides with the
one of the autonomous system (2.3) where g(y1, s; lu) ≡ g(y1,−∞; lu) (respectively,
g(y1, s; ls) ≡ g(y1,+∞; ls)).

Note that the origin of (2.8) admits a 2-dimensional unstable manifold Wu(lu)
which is transversal to z = 0, and a 1-dimensional stable manifold Ms contained
in z = 0.

Following [18] (see also [25]), for any τ ∈ R we have that

Wu(τ ; lu) = Wu(lu) ∩ {z = e$τ} and Wu(−∞; lu) = Wu(lu) ∩ {z = 0}
are 1-dimensional immersed manifolds, i.e. the graph of C1 regular curves. More-
over, they inherit the same smoothness as (2.8) and (2.9), that is: Let K be a seg-
ment which intersects Wu(τ0; lu) transversally in a point Q(τ0) for τ0 ∈ [−∞,+∞),
then there is a neighborhood I of τ0 such that Wu(τ ; lu) intersects K in a point
Q(τ) for any τ ∈ I, and Q(τ) is as smooth as (2.8).

Since we need to compare Wu(τ ; lu) and W s(τ ; ls), we introduce the following
manifolds:

Wu(τ ; ls) :=
{
R = Q exp

((
m(ls)−m(lu)

)
τ
)
∈ R2 : Q ∈Wu(τ ; lu)

}
. (2.10)

Note that Wu(τ ; lu) and Wu(τ ; ls) are homothetic, since they are obtained from
each other simply multiplying by an exponential scalar. However, if lu > ls,
Wu(τ ; ls) becomes unbounded as τ → −∞.
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To deal with bounded sets, we also define the following manifold which will be
useful in Section 3, i.e.

Wu(τ ; l∗) :=
{
Wu(τ ; lu) if τ ≤ 0
Wu(τ ; ls) if τ ≥ 0 , ξ(τ) :=

{
z(τ) if τ ≤ 0
2− ζ(τ) if τ ≥ 0

and

Wu(l∗) :=
{

(Q, ξ(τ)) | Q ∈Wu(τ ; l∗)
}
.

(2.11)

The sets Wu(τ ; lu) may be constructed also using the argument of [6, §13],
simply requiring that (2.3) is C1 in y uniformly with respect to t for t ≤ τ in a
fixed neighborhood of the origin. With this second method we see that the tangent
space to Wu(τ ; lu) is simply the unstable space of the linearization of (2.3) in the
origin, and we obtain the following.

Remark 2.6. Assume (A1). Then, in the origin Wu(τ ; lu) is tangent to the line
y2 = m(lu)y1, for any τ ∈ R. Since Wu(τ ; lu), Wu(τ ; ls) and Wu(τ ; l∗) are homo-
thetic, they are all tangent to y2 = m(lu)y1 in the origin.

As in the s-independent case, we see that the regular solutions correspond to the
trajectories in Wu (see [18, 16]). More precisely, from [16, Lemma 3.5], we obtain
the following result.

Lemma 2.7. Assume (A1), (A2). Consider the trajectory y(s, τ,Q; lu) of (2.3)
with l = lu, the corresponding trajectory y(t, τ,R; ls) of (2.3) with l = ls and let
u(r) be the corresponding solution of (1.4). Then R = Q exp[(m(ls)−m(lu))τ ].

Further u(r) is a regular solution if and only if Q ∈ Wu(τ ; lu) or equivalently
R ∈Wu(τ ; ls).

Now, we consider singular and slow decay solutions of (1.4). Let P−1 , P+
1 be

the unique positive solutions in y1 respectively of B(lu)y1 = g(y1,−∞; lu) and of
B(ls)y1 = g(y1,+∞; ls), and set P± = (P±1 , 0). Then, it follows that (P−, 0) and
(P+, 0) are respectively critical points of (2.8) and (2.9).

If lu ≥ 2∗, then (P−, 0) admits a 1-dimensional exponentially unstable manifold,
transversal to z = 0 (the graph of a trajectory which will be denoted by y∗(s, ∗; lu))
for system (2.8), while if ls > 2∗ then (P+, 0) is stable for (2.9), so it admits a 3-
dimensional stable manifold (an open set).

From [4, Proposition 2.12] we find the following proposition.

Proposition 2.8 ([4]). Assume (A1), (A2), (A6). Then, all the regular solutions
U(r, α) of (1.4) are GSs with slow decay, there is a unique singular solution, say
U(r,∞), and it is a SGS with slow decay.

Proposition 2.9 ([4]). Assume (A1), (A2). Then if u(r) and v(r) are respectively
a singular and a slow decay solution of (1.4) we have u(r)rm(lu) → P−1 as r → 0
and u(r)rm(ls) → P+

1 as r → +∞.

2.3. Separation properties of stationary solutions. In this subsection we
adapt the argument of [10] and of [38] to obtain separation properties of (1.4). We
begin by the following Lemma which is rephrased from [37, Theorem 4.1], which is
a slight adaption of [10, Lemma 2.11]. We emphasize that condition (A5) is needed
to prove estimate (2.16) below, and it is in fact implicitly required in [37, Theorem
4.1], even if it is not explicitly stated.
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Lemma 2.10. Assume (A1), (A2), (A3), (A5). Let ȳ(s) be the trajectory of (2.3)
corresponding to the GS U(r, α) of (1.4). Then, for any s ∈ R we have ȳ2(s) =
˙̄y1(s) ≥ 0, 0 < ȳ1(s) < P+

1 and

g(ȳ1(s), s; ls) < B(ls)ȳ1(s) (2.12)

Proof. Let us recall that all the regular solutions are GSs: This is a direct conse-
quence of Proposition 2.8 and Lemma 2.7. Let ȳ(s; lu) = ȳ(s)e(αls−αlu )s be the
corresponding trajectory of (2.3) where l = lu, then, by standard facts in dynamical
system theory, see [6], we see that there are ci > 0 such that ȳi(s; lu)e−αlus → ci as
s→ −∞ for i = 1, 2. Hence ȳi(s) ∼ cieαlss → 0 as s→ −∞ for i = 1, 2: So (2.12)
is satisfied for s� 0.

Let us set

s0 := sup
{
S ∈ R | g(ȳ1(s), s; ls) < B(ls)ȳ1(s) for any s < S

}
, (2.13)

so that (2.12) holds for s < s0.
It follows that ˙̄y2(s) + A(ls)ȳ2(s) > 0 for s < s0, hence w(s) = ȳ2(s)eA(ls)s is

increasing for s < s0. Since w(s) → 0 as s → −∞ we find that ȳ2(s) > 0, for
s ≤ s0.

Further, assume by contradiction that there is s̃ < s0 such that ȳ1(s̃) = P+
1 .

Then, from (A3) we have

g(ȳ1(s̃),+∞; ls) ≤ g(ȳ1(s̃), s̃; ls) < B(ls)ȳ1(s̃) = g(P+
1 ,+∞; ls).

Since g(·,+∞; ls) is increasing we obtain ȳ1(s̃) < P+
1 , and this gives an absurd

conclusion. Thus, 0 < ȳ1(s) < P+
1 for s < s0.

Now, we show that s0 = +∞, so that (2.12) holds for any s ∈ R and the
Lemma is proved. Assume by contradiction that s0 < +∞. Consider the curve
ȳ(s) = (ȳ1(s), ȳ2(s)) defined for s ≤ s0. Since ȳ2(s) = ˙̄y1(s) > 0 for s ≤ s0, it
follows that ȳ(s) is a graph on the y1-axis, and we can parametrize it by ȳ1. Hence,
we set Q(ȳ1) := ˙̄y1(ȳ1) so that ȳ(s) for s ≤ s0 and Γ := Γ(y1) = (y1, Q(y1)) for
y1 ∈ (0, ȳ1(s0)] are reparametrization of the same curve. As a consequence we have

∂Q

∂ȳ1
=
∂Q

∂s

∂s

∂ȳ1
=

¨̄y1

˙̄y1
= −A(ls) +

B(ls)ȳ1 − g(ȳ1, s; ls)
Q(ȳ1)

. (2.14)

In the phase plane, consider the line r(µ) passing through R = (ȳ1(s0), 0) with
angular coefficient −µ, i.e.

r(µ) :=
{

(y1, y2) | y2 = µ(ȳ1(s0)− y1)
}
.

Since ȳ2(s0) = ˙̄y1(s0) > 0, we see that Γ(ȳ1(s0)) = (ȳ1(s0), ȳ2(s0)) lies above R.
By construction r(µ) intersects Γ at least in a point, for any µ > 0: We denote by(
Y1(µ), µ(ȳ1(s0) − Y1(µ))

)
the intersection with the smallest Y1. Then, it follows

that Y1 < ȳ1(s0) and ∂Q
∂ȳ1

(Y1) ≥ −µ. From these inequalities, along with (2.14),
and using the fact that

B(ls)ȳ1(s0) = g(ȳ1(s0), s0; ls) (2.15)



12 L. BISCONTI, M. FRANCA EJDE-2018/151

we obtain

− µ ≤ ∂Q

∂ȳ1
(Y1)

= −A(ls) +
B(ls)[Y1 − ȳ1(s0)] + [g(ȳ1(s0), s0; ls)− g(Y1, s; ls)]

µ[ȳ1(s0)− Y1]

≤ −A(ls)−
B(ls)
µ

+
g(ȳ1(s0), s0; ls)− g(Y1, s0; ls)

µ[ȳ1(s0)− Y1]

≤ −A(ls) +
1
µ

[
−B + ∂y1g(C, s0; ls)

]
≤ −A+

1
µ

[
−B +

(q̄ − 1)g(C, s0; ls)
C

]
< −A+

1
µ

[
−B +

(q̄ − 1)g(ȳ1(s0), s0; ls)
ȳ1(s0)

]
= −A+

B(q̄ − 2)
µ

(2.16)

where C ∈ (Y1, ȳ1(s0)) and we used the mean value theorem. Further q̄ stands for
q if f is of type (1.8) and it stands for q2 if f is of type (1.12). Therefore, using
(2.16) along with (2.15), we obtain

µ2 −Aµ+B(q̄ − 2) = µ2 −Aµ−B + ∂y1g(P+
1 ,+∞, ls) > 0, for any µ > 0.

But this is verified if and only if

A2 − 4B(q̄ − 2) = A2 − 4[∂y1g(P+
1 ,+∞, ls)−B] < 0,

which is equivalent to ls ∈ (σ∗, σ∗), cf (2.6), so we have found a contradiction.
Hence s0 = +∞. In particular, it follows that ȳ1(s) < P+

1 , ˙̄y1(s) > 0, for any
s ∈ R, and (2.12) holds. �

Lemma 2.11. Assume the hypotheses of Lemma 2.10 are verified. Also, assume
that condition (A5) holds. Then

∂g

∂y1
(ȳ1(s), s; ls) <

∂g

∂y1
(P+

1 ,+∞; ls) (2.17)

Proof. From a straightforward computation we see that, when f is as in (1.8), then
(2.12) implies (2.17). When f is as in (1.12),

∂y1g(y1, s, ls) = (q1 − 1)k1(es)yq1−2
1 + (q2 − 1)k2(es)yq2−2

1 ≤ (q2 − 1)g(y1, s, ls)/y1.

So, let ȳ(s) be a trajectory corresponding to a GS of (1.4) as above; If (A5) holds,
from (2.12) we obtain

∂g

∂y1
(ȳ1, s, ls) ≤ (q2 − 1)

g(ȳ1(s), s, ls)
ȳ1(s)

≤ (q2 − 1)
g(P+

1 ,+∞; ls)
P+

1

≤ ∂g

∂y1
(P+

1 ,+∞; ls),

(2.18)

so (2.17) follows and the proof is complete. �

We emphasize that Lemma 2.11 is already contained in the last lines of the proof
of Lemma 2.10. We decided to restate and prove it in details because this is the
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only point where the assumption (A5) is explicitly required. Such a condition is in
fact needed also in [38] where the stability problem for an f of the form

f(u, r) = rδ1uq1−1 + rδ2uq2−2 (2.19)

is discussed. Notice that (2.19) is a special case of (1.12) considered in this paper.
In [38] condition (A5), i.e. (1.13), is omitted, but in fact it is needed to prove [38,
Proposition 2.3]. To be more precise: In the important case δ1 = δ2 = 0, for which
(1.13) does not hold, we find that ls = q1, and m(ls) = 2/(q1 − 2). In general if
(1.13) does not hold we find that m(ls) (hence the asymptotic behavior of positive
solutions for r large, which is m1 in the notation of [38]) depends on q1, while
if (1.13) does not hold we find that m(ls) depends on q2. Consequently in the
former case we find g(y1,+∞; ls) = yq1−2

1 and in the latter g(y1,+∞; ls) = yq2−2
1 .

Hence, the last estimate in (2.18) holds in the latter case but not in the former.
Analogously, in the proof of [38, Proposition 2.3] (in the last two lines of page 112),
using the notation of [38] it is required that p1 is the largest exponent, which is
indeed equivalent to (1.13).

We believe that condition (A5), i.e. (1.13) is just technical, and that it might be
removed using the methods introduced by Bae and Naito in [2].

Proposition 2.12. Assume (A1)–(A3), (A5). Then U(r, α1) < U(r, α2) for any
r > 0, whenever α1 < α2.

We emphasize that if g(y1, s; l) is s-independent, as in [36], Lemma 2.10 implies
Proposition 2.12. This fact follows directly by noticing that Mu is a graph on the
y1-axis, since y1(s) = U(es, α)em(ls)s is increasing in s, for any α > 0. In view of
Lemma 2.10, we can parametrize the manifold Mu by α, then the ordering of the
regular solutions U(r, α) is preserved as s varies (i.e. as r varies), since they all
move along a 1-dimensional object.

When we turn to consider an s-dependent function g(y1, s; l), Proposition 2.12
needs a separate proof, which can be obtained by adapting the ideas developed in
[10, 38]. In fact, in such a case Wu(τ ; ls) is still one dimensional but may not be a
graph on the y1-axis, so a priori we may lose the ordering property.

Proof of Proposition 2.12. Let us set Q(s) = eλ1s and observe that

Q̈+AQ̇+ [∂y1g(P+
1 ,+∞; ls)−B]Q = 0. (2.20)

Denote by W (s) := [U(es, α2)− U(es, α1)]em(ls)s, and observe that

Ẅ +AẆ −BW +D(s) = 0, (2.21)

where

D(s) := g(U(es, α2)]em(ls)s, s; ls)− g(U(es, α1)]em(ls)s, s; ls). (2.22)

Using continuous dependence on initial data we see that U(r, α2) > U(r, α1) for r
small enough, so that D(s) > 0 for s � 0. Assume by contradiction that there is
r̄ = es̄ > 0 such that U(r, α2)−U(r, α1) > 0 for 0 ≤ r < r̄, and U(r̄, α2)−U(r̄, α1) =
0. Then, W (s), and D(s) are positive for s < s̄ and they are null for s = s̄.

Setting Z(s) := Ẇ (s)Q(s) −W (s)Q̇(s), by direct calculation we can easily see
that Ż(s) = Ẅ (s)Q(s)−W (s)Q̈(s). Then from (2.20) and (2.21) we obtain

Ż = −AZ(s) +Q(s)[∂y1g(P+
1 ,+∞; ls)W (s)−D(s)]. (2.23)



14 L. BISCONTI, M. FRANCA EJDE-2018/151

Observe now that W (s) ∼ (α2 − α1)em(ls)s, as s→ −∞, and also that

Ẇ (s) = m(ls)W (s) + [U ′(es, α2)− U ′(es, α1)]e[1+m(ls)]s ∼ m(ls)(α2 − α1)em(ls)s,

as s→ −∞. Hence, we obtain

Z(s) ∼ (m(ls)− λ1(ls))(α2 − α1)(e[m(ls)+λ1(ls)]s)→ 0 as s→ −∞ . (2.24)

Moreover λ1(ls) + A(ls) = −λ2(ls) > 0 and D(s) → 0 as s → −∞, hence
eAsQ(s)D(s) ∈ L1(−∞, s̄]. Since Z(s) is the unique solution of (2.23) satisfying
(2.24) we find

Z(s̄) =
∫ s̄

−∞
e−A(s̄−s)Q(s)[∂y1g(P+

1 ,+∞; ls)W (s)−D(s)]ds. (2.25)

From the mean value theorem we find that (see (2.22))

∂y1g(P+
1 ,+∞; ls)W (s)−D(s) = [∂y1g(P+

1 ,+∞; ls)− ∂y1g(U(s), s; ls)]W (s).

where U(s) lies between U(r, α1)rm(ls) and U(r, α2)rm(ls).
Since ∂y1g(y1, s; ls) is increasing in y1, and using (2.17), for s < s̄ we find

∂y1g(P+
1 ,+∞; ls)W (s)−D(s)

≥ [∂y1g(P+
1 ,+∞; ls)− ∂y1g(U(es, α2)em(ls)s, s; ls)]W (s) > 0

(2.26)

Hence, from (2.25) and (2.26) we obtain

0 < Z(s̄) = Ẇ (s̄)Q(s̄)−W (s̄)Q̇(s̄) = Ẇ (s̄)Q(s̄) ,

which gives Ẇ (s̄) > 0, but this contradicts the initial assumption that W (s) > 0
for s < s̄ and W (s̄) = 0: Hence U(r, α2)− U(r, α1) > 0 for any r ≥ 0. �

Now, we consider the singular solution U(r,∞).

Proposition 2.13. Under the hypotheses of Proposition 2.12, U(r,∞)rm(ls) is
non-decreasing for any r > 0, and U(r, α) < U(r,∞) for any r > 0, α > 0.

This proposition is new even for f of type f(u, r) = K(r)uq−1 or of type f(u, r) =
uq1−1 + uq2−1, which are considered, respectively, in [10, 38].

Proof. The result is well known when the system is autonomous: In fact in this
case U(r,∞)rm(ls) ≡ P+

1 and Wu
ls

= Wu
lu

is a graph on the y1-axis connecting the
origin and P+.

From the previous discussion we know that the manifold Mu of the autonomous
system (2.3), where l = lu and g = g(y1,−∞; lu), is a graph on the y1-axis connect-
ing the origin and the critical point P−. Now, we turn to consider the s-dependent
setting. Let us recall first that y∗(s; lu) is the trajectory corresponding to the
unique singular solution U(r,∞), and that lims→−∞ y∗(s; lu) = P−. Observe that
for any τ ∈ R the manifold Wu(τ ; lu) is a graph connecting the origin and y∗(s; lu).

We claim that Wu(τ ; lu) is a graph on the y1-axis, for any τ ∈ R. In fact
let Q,R ∈ Wu(τ ; lu), with Q = (Q1, Q2),R = (R1, R2), and let U(r, αQ) and
U(r, αR) be the corresponding solution of (1.4). From Proposition 2.12 we know
that if αQ < αR, then

Q1 = U(eτ , αQ)em(lu)τ < U(eτ , αR)em(lu)τ = R1 , (2.27)

so the claim follows.
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Moreover, we also get Q1 < y∗1(τ ; lu). Assume by contradiction that Q1 >
y∗1(τ ; lu). Then we can choose R in the branch ofWu(τ ; lu) between Q and y∗(τ ; lu),
so that αR > αQ and Q1 > R1 > y∗1(τ ; lu); but this contradicts (2.27). Similarly
if Q1 = y1(τ, ∗; lu), then R ∈ Wu(τ ; lu) is such that αR > αQ, and R1 > Q1 =
y1(τ, ∗; lu). But again we can choose R̃ in the branch of Wu(τ ; lu) between R
and y∗(τ ; lu), and reasoning as above we find again a contradiction. Therefore
U(r, α) < U(r,∞) for any r > 0, and any α > 0.

Further, since Wu(τ ; lu) and Wu(τ ; ls) are homothetic, cf (2.10), then Wu(τ ; ls)
is a graph on the y1-axis, which connects the origin and the trajectory y∗(s; ls)
corresponding to U(r,∞). Further Wu(τ ; ls) ⊂ {(y1, y2) | 0 < y1 < P+

1 , y2 > 0}
(see Lemma 2.10). Therefore y∗2(s; ls) ≥ 0 for any s ∈ R. Hence U(r,∞)rm(ls) is
non-decreasing for any r > 0, and the proof is concluded. �

Remark 2.14. Proposition 2.13 is interpreted in terms of system (2.3): Under the
hypotheses of Proposition 2.12 (hence of Proposition 2.13) we have that Wu(τ ; lu),
Wu(τ ; ls), and Wu(τ ; l∗) are graphs on the y1-axis respectively for any τ ∈ R.
Further they are contained in y2 ≥ 0 and connect the origin respectively with
y∗(τ ; lu), y∗(τ ; ls), and y∗(τ ; l∗).

2.4. Asymptotic estimates for slow decay solutions. In this subsection we
state the asymptotic estimates for slow decay solutions of (1.4), which are crucial
to prove our main results: We always assume (A1), (A2), and (A4).

In fact, we generalize the results obtained in [10, §3] for f(u, r) = k(r)uq−1

with q > σ∗, and in [8], for the same potential, in the case of q = σ∗. The
main argument in [10] has been reused in [38], and it is an adaptation to the
non-autonomous context of the scheme introduced by Li in [24] (and developed in
[21]). Here, we follow a different approach: We give an interpretation of the main
argument behind [10, § 3] in terms of some general facts of the ODE theory. This
approach contributes to make the scheme used in [10, §3] clearer.

From assumption (A4) we can now set ζ = e−γs in (2.9), and obtain a smooth
system which has P := (P+

1 , 0, 0) as critical point. For the remainder of this
subsection we consider this system and its linearization around P so we leave the
explicit dependence on ls unsaid. Hence, we consider (2.9) where $ = γ and the
following system ẏ1

ẏ2

ζ̇

 =

 0 1 0
B − ∂y1g+∞(P+

1 ) −A 0
0 0 −γ

y1

y2

ζ

 (2.28)

Let us denote by A the matrix in (2.28): It has 3 negative eigenvalues λ2 ≤ λ1 < 0
and −γ < 0. Observe that (A4) is needed to guarantee smoothness of the system
(2.9) for ζ = 0. Therefore the critical point P of (2.9) is a stable node.

Assume first that the 3 eigenvalues are simple, then we have 3 eigenvectors,
respectively v1 = (1,−m + λ1, 0), v2 = (1,−m + λ2, 0), and vz := v3 = (0, 0, 1).
Any solution `(t) of (2.28) can be written as

`(s) = āv1eλ1s + b̄v2eλ2s + zvze−γs (2.29)

for some ā, b̄, z ∈ R.
By standard facts in invariant manifold theory (see, e.g., [6, §13]), any trajectory

(y(s), ζ(s)) of (2.9) converging to P can be seen as a non-linear perturbation of
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a solution `(s) of (2.28). More precisely set n(s) = (n1(s), n2(s)) = (y1(s) −
P+

1 , y2(s)), then N(s) := (n1(s), n2(s), ζ(s)) = `(s) +O(|`(s)|2). Therefore

n1(s) = āeλ1s + b̄eλ2s + ze−γs +O(e2λ1s + e2λ2s + e−2γs)

In [5, Appendix] we prove that the expansion can be continued to an arbitrarily large
order: This is the content of Proposition 2.15 and of its general form containing
resonances, i.e. Proposition 2.16. Let us rewrite (2.3) as

~̇x = A~x+ ~N(~x) (2.30)

where ~x = (y1, y2, ζ), and A is as the matrix in (2.28).

Proposition 2.15. Assume for simplicity ~N ∈ C∞ and that the eigenvalues of
A are real, negative and simple and are rationally independent, i.e there is no
χ = (χ1, χ2, χ3) ∈ Z3\{(0, 0, 0)} such that χ1|λ1| + χ2|λ2| + χ3γ = 0, so that no
resonances are possible. Further assume for definiteness that |λ1| < γ.

Then for any k ∈ N we can find a polynomial P of degree k in 3 variables such
that

y1(t) = P (eλ1t, eλ2t, e−γt) + o(e[(k+1)λ1+ε]t)
as t→ +∞, for ε > 0 small enough.

We refer the interested reader to [5, Appendix] for further details.
Now, we rephrase the result in a more suitable form for our purpose. Let us set

Iθ =
{
χ = (χ1, χ2, χ3) ∈ N3 : χ1|λ1|+ χ2|λ2|+ χ3|γ| ≤ θ

}
. (2.31)

Then, we can expand n1(s) as

n1(s) = aeλ1s + beλ2s + ze−γs + Pθ(s) + o(e−θs), (2.32)

where the function Pθ(s) is completely determined by the values of the coefficients
a, b, z.

As a first case, assume that γ, |λ1|, |λ2| are rationally independent. Then, there
are constants cχ ∈ R such that

Pθ(s) =
∑

χ∈Iθ, |χ|≥2

cχe(χ1λ1+χ2λ2−χ3γ)s with χ = (χ1, χ2, χ3) (2.33)

and |χ| = χ1 + χ2 + χ3.
Let us now consider the resonant cases, i.e. when there are M0,M1, . . . ,M j , (a

j-ple resonance) M i = (χi1, χ
i
2, χ

i
3) ∈ Iθ, |M i| > 0 for i = 1, . . . , j, such that

χi1|λ1|+ χi2|λ2|+ χi3γ = θ̄ ≤ θ .

Then, we have to replace
∑j
i=0 cMie(χi1λ1+χi2λ2−χi3γ)s by

j∑
i=0

cMisie(χi1λ1+χi2λ2−χi3γ)s in the function Pθ, (2.34)

(notice that we have included the possible case of resonances with the linear terms,
e.g., χ2 multiple of χ1 etc.). The same happens when we have resonances within
the linear terms, e.g. |λ1| = |λ2| (i.e. ls = σ∗), or |λ1| = γ: We replace the terms
as done in (2.34).

Before collecting all these facts in Proposition 2.16 below, we need some further
notation. Let us introduce the following sets:

J|λ1| = {χ = (0, 0, χ3) ∈ N3 : 0 < χ3γ < |λ1|} , (2.35)
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J|λ2| = {χ = (χ1, χ2, χ3) ∈ N3 : |λ1| < χ1|λ1|+ χ3γ < |λ2|}. (2.36)

Observe that J|λ1| is empty if |λ1| ≤ γ, and J|λ2| is empty if |λ2| < 2|λ1| and
|λ2| ≤ γ. We denote

Ψ(s) =
∑

χ=(0,0,χ3)∈J|λ1|

cχe−χ3γs + χr(s)eλ1s (2.37)

where χr(s) = 0 if |λ1|/γ 6∈ N, and χr(s) = χrs if |λ1|/γ ∈ N and ls > σ∗, while
χr(s) = χrs

2 if |λ1|/γ ∈ N and ls = σ∗, for a certain χr ∈ R.

Proposition 2.16. Assume (A1), (A2), (A4). Let Īθ = Iθ\[{(1, 0, 0), (0, 1, 0)} ∪
J|λ1| ∪ J|λ2|]. Any trajectory (y1(s), y2(s), ζ(s)) converging to P is such that y1(s)
has the following expansion if ls > σ∗:

y1(s) = P+
1 + Ψ(s) + aeλ1s +Q1

θ(s) + beλ2s +Q2
θ(s) + o(e−θs), (2.38)

where

Q1,θ(s) =
∑

χ∈J|λ2|

cχe(χ1λ1+χ2λ2−χ3γ)s, with χ = (χ1, χ2, χ3), and

Q2,θ(s) =
∑
χ∈Īθ

cχe(χ1λ1+χ2λ2−χ3γ)s

as s→ +∞, if we do not have resonances; otherwise we need to replace the resonant
terms in Q1,θ(s) according to (2.34).

If ls = σ∗ so that λ1 = λ2 we have

y1(s) = P+
1 + Ψ(s) + aseλ1s + beλ1s +Q2,θ(s) + o(e−θs) (2.39)

as s → +∞, again if we do not have resonances, otherwise we need to replace the
resonant terms in Q2,θ(s) according to (2.34).

Remark 2.17. We emphasize that Q1,θ(s) contains terms which are negligible
with respect to aeλ1s while Q2,θ(s) contains terms which are negligible with respect
to beλ2s. Further if |λ1| < γ then Ψ(s) is identically null by definition.

The proof is developed in [5, Appendix] by means of an asymptotic expansion
result for ODEs, which seems to be new to the best of our knowledge. In fact, we
borrow some of the ideas from [10, 38].

Remark 2.18. Fix Q and τ ∈ R; then y1(t, τ,Q; ls) admits an expansion either
of the form (2.38) or of the form (2.39). All the coefficients in the expansions
are determined by the choice of a, b, which are in fact smooth functions of Q, i.e.
a = a(Q), b = b(Q).

In fact, all the coefficients in Ψ(s) are determined when the non-linearity g and
τ are fixed; the coefficients in Q1,θ are assigned (and can be determined) once a is
fixed, while Q2,θ is assigned once a and b are assigned.

Remark 2.19. Fix Q and τ , the coefficients a = a(Q), b = b(Q) may be evaluated
through the method explained in [10]. However from the previous discussion we
have the following. Let a1, b1, z1 be such that (Q−P+, e−γτ ) = a1v1 + b1v1 + z1vz.
Then a = a1 +O(|Q−P+|2) and b = b1 +O(|Q−P+|2).

The proof of what is stated in these two remarks is provided in [5, Appendix].
For further details about these points see [5, Remarks 4.12, 4.16].

Now, we translate Proposition 2.16 for the original equation (1.4).
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Lemma 2.20. Assume (A1), (A2) with lu ≥ ls ≥ σ∗, (A3), (A4). Consider either
a GS U(r, α) for α > 0, or the SGS U(r,∞); Then there are continuous functions
A : (0,+∞] → R, B : (0,+∞] → R, such that A is monotone increasing, and if
ls > σ∗

U(r, α) =
P+

1

rm
+

Ψ(ln(r))
rm

+A(α)rλ1−m +
Q1,θ(ln(r))

rm

+ B(α)rλ2−m +
Q2,θ(ln(r))

rm
+ o(r−θ−m)

(2.40)

as r → +∞. If ls = σ∗ we have

U(r, α) =
P+

1

rm
+

Ψ(ln(r))
rm

+A(α) ln(r)rλ1−m + B(α)rλ2−m

+
Q2,θ(ln(r))

rm
+ o(r−θ−m).

(2.41)

Remark 2.21. If we replace (A3) with the weaker assumption (A6) in Lemma
2.20, then we still have the expansions in (2.40), (2.41), but we cannot ensure that
A is monotone decreasing.

Proof of Lemma 2.20. Fix τ ∈ R; let y(s, τ,Q(α); ls) be the trajectory of (2.3)
corresponding to U(r, α), so that Q(α) ∈ Wu

ls
(τ). Then we can apply Proposition

2.16 to y1(s, τ,Q(α); ls) and we find the expansions (2.40), (2.41), where, according
to Remark 2.18, the coefficients a, b are a = a(Q(α)) and b = b(Q(α)). We set

A(α) = a(Q(α)), and B(α) = b(Q(α)). (2.42)

It follows that A : (0,+∞) → R and B : (0,+∞) → R are continuous functions.
Finally if (A3) holds, then U(r, α1) < U(r, α2) if α1 < α2 for any r > 0, and in
particular for r large, so A(α) is monotone increasing. �

3. Main results: Stability and asymptotic stability

Let us state Theorems 3.1 and 3.2 from which Theorems 1.3, 1.4, 1.5 follow
directly. Let r > 0, we denote by [[r]] := {k ∈ Nk − 1 < r ≤ k}. We have the
following results

Theorem 3.1. Suppose f is Ck where k = [[|λ1|/γ]]. Assume (A1)–(A5). Then
any radial GS U(r, α) of (1.2) is stable with respect to the norm ‖ · ‖m(ls)+λ1 if
ls > σ∗, and with respect to the norm ||| · |||m(ls)+|λ1| if ls = σ∗.

Theorem 3.2. Assume the hypotheses of Theorem 3.1. Then any radial GS U(r, α)
of (1.2) is weakly asymptotically stable with respect to the norm ‖ · ‖m(ls)+|λ2| if
ls > σ∗, and with respect to the norm ‖ · ‖m(ls)+|λ1| if ls = σ∗.

Let us recall that the stability of positive GS U(|x|, α) of (1.2) has been analyzed
in a number of papers, (see [10, 21, 22, 36]). In [21], when f(u, |x|) = uq−1 and
q > σ∗, the authors proved that the positive GS of (1.2) are stable in the norm
‖ · ‖m+|λ1|, and weakly asymptotically stable with respect to ‖ · ‖m+|λ2|. These
results have been subsequently extended in [10] to functions f(u, |x|) of the form
k(|x|)rδ|u|q−1 where K is a monotone decreasing uniformly positive and bounded
function. Here we drop the assumption that k is bounded: This will allow us to
consider potentials giving rise to singular solutions U(r,∞) having two different
behaviors as r → 0 (i.e. U(r,∞) ∼ P−r−m(lu)) and as r → ∞ (i.e. U(r,∞) ∼
P+r−m(ls)).
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3.1. Proof of Theorem 3.1. We first introduce some standard definitions.

Definition 3.3. We say that φ is a super-solution of (1.1) if ∆φ + f(φ, |x|) ≤ 0;
analogously φ is a sub-solution of (1.1) if ∆φ+ f(φ, |x|) ≥ 0.

We refer to [36] or to [4, §3] for an extension of these definitions to weak and mild
solutions. Also, depending on a number of very relevant factors (for instance, the
type of domain and of the boundary conditions, the regularity of the forcing term,
etc.) the notion of weak solution for parabolic equations can change considerably
as described, e.g., in [23, 19, 20, 35]. In particular, we mention that, a dynamical
approach to study a generalized parabolic equation on an unbounded strip-like
domain is given in [34]: In this case a suitable definition of weak solutions, on
weighted Sobolev (and Bochner) spaces, is considered and the author proved the
existence of a global attractor. Then, this situation is further generalized in [3].

Both Theorems 3.1, 3.2 depend strongly on the following well known fact, proved
in [36, Theorem 2.4], see also [4, Theorem 3.10].

Lemma 3.4. Assume (A1), (A2) and let U1(r) and U2(r) be positive solutions of
(1.4) respectively for r ≤ R1 and for r ≥ R2, where R1 > R2, and let R ∈ (R2, R1)
be such that U1(R) = U2(R). Consider

φ(x) =

{
U1(r) if 0 < |x| ≤ R,
U2(r) if |x| ≥ R.

We have

• If U ′1(R) ≥ U ′2(R), then φ(x) is a continuous weak super-solution of (1.1).

• If U ′1(R) ≤ U ′2(R), then φ(x) is a continuous weak sub-solution of (1.1).

Lemma 3.5. Assume (A1), (A2):

(i) If the initial value φ in (1.3) is a continuous weak super-(sub-) solution
of (1.1), then the solution u(t, x;φ) of (1.2)-(1.3) is non-increasing (non-
decreasing) in t as long as it exists, for any x; strictly if φ is not a solution.

(ii) If φ is radial, then u(t, x;φ) is radial in the x variable for any t > 0.

To prove Theorem 3.1 we adapt the main ideas developed in [21, 10, 38].
As a consequence of the proof of Proposition 2.12 we obtain the following result

(see Lemma 3.6 below) which will be useful to prove the stability of the solutions,
and replaces a longer elliptic estimate performed in [10, Lemma 4.3] and adapted
in [38, 8]. We stress that in fact the proof in the critical case, considered in [8],
suffers from a flaw.

Lemma 3.6. Assume (A1)–(A5). Assume β > α then A(β) > A(α).

Proof. Since U(r, β) > U(r, α) for any r > 0 (see Lemma 2.12), we already know
that A(β) ≥ A(α), so we just need to prove that the inequality is strict. Set
h(s) = [U(es, α2)−U(es, α1)]e(m(ls)−λ1)s, and, following the notation of Proposition
2.12, Q(s) = eλ1s. Following the main line in the proof of Proposition 2.12 we
see that ḣ(s) = Z(s)/Q2(s). In particular, from (2.25) and (2.26), ḣ(s) > 0 for
any s ∈ R. Since lims→−∞ h(s) = 0 we see that h(s) > 0 for any s ∈ R, and
lims→+∞ h(s) > 0.

If ls > σ∗, then lims→+∞ h(s) = A(β)−A(α) > 0, and the proof is complete.
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Assume now ls = σ∗, and also assume by contradiction that A(β) = A(α). In
this case we see that lims→+∞ h(s) = B(β) − B(α) ∈ (0,+∞). However, from
(2.25), since A = −2λ1, for any s̄ ∈ R we find

ḣ(s̄) =
∫ s̄

−∞
eAsQ(s)[∂y1g(P+

1 ,+∞; ls)W (s)−D(s)] > 0 .

Therefore lim infs→+∞ ḣ(s) ≥ ḣ(0) > 0, hence B(β)−B(α) = lims→+∞ h(s) = +∞,
but this is a contradiction. Hence A(β) > A(α). �

Lemma 3.7. Assume (A1)–(A5) and lu ≥ ls. If ls > σ∗.
Then ‖U(r, β)− U(r, α)‖m+|λ1| → 0 as β → α,
while if ls = σ∗, then |||U(r, β)− U(r, α)|||m+|λ1| → 0 as β → α.

Proof. We develop the proof assuming ls > σ∗, the case ls = σ∗ is completely
analogous. It is well known that, for any fixed R > 0 and any ε > 0, there is
δ1(ε, α,R) > 0 such that

sup{|U(r, β)− U(r, α)| | 0 ≤ r ≤ R} < ε (3.1)

whenever |β − α| < δ1 (this is a continuous dependence on initial data argument
for the singular equation (1.4)). Further from (2.40) we see that for r large enough
we have∣∣(U(r, β)− U(r, α)

)∣∣(1 + rm−λ1) ∼= |A(β)−A(α)|+ o(r|λ2−λ1|/2) (3.2)

Thus, for any ε > 0 there exists M(ε) such that |o(r|λ2−λ1|/2)| ≤ Cε, when r ≥
M(ε). Further from Lemma 2.20 we see that for any ε > 0 we can find δ2(ε, α) > 0
such that |A(β)−A(α)| ≤ ε if |β − α| < δ2. Therefore∣∣(U(r, β)− U(r, α)

)∣∣ (1 + rm−λ1) ≤ ε , for r ≥M . (3.3)

The proof follows from (3.2)–(3.3), choosing M = R and δ(R,α, ε) = min{δ1, δ2}.
�

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We give the proof just in the case ls > σ∗, when ls = σ∗

the calculations are completely analogous and we omit them. Fix ε > 0 (small)
and α > 0; let φ(x) be such that ‖U(|x|, α)− φ(x)‖m+|λ1| = δ, where δ > 0 will be
chosen below.

Let |η| < α and set

z(r, η) = [U(r, α+ η)− U(r, α)](1 + rm−λ1) (3.4)

Observe that z(0, η) = η and limr→+∞ z(r, η) = A(α+ η)−A(α). So we can set

z(η) = min{|z(r, η)| | r > 0} and z(η) = max{|z(r, η)| | r > 0}. (3.5)

Moreover z(r, η) is uniformly positive (respectively negative) for any r > 0 if η > 0
(resp. η < 0), so z(η) > 0 if η 6= 0: This follows from Lemmas 2.12 and 3.6.

Finally, from Lemma 3.7, we know that limη→0 z(η) = limη→0 z(η) = 0. Then,
for any ε > 0 we can find d = d(ε) > 0 such that z(−d) < ε, and z(d) < ε. Set
α1 = α− d, α2 = α+ d, and choose δ = min{z(−d) , z(d)}. Then

U(|x|, α1) < φ(x) < U(|x|, α2),

‖U(|x|, αi)− U(|x|, α)‖m−λ1 ≤ ε for i = 1, 2
(3.6)
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Therefore, from the comparison principle (see, e.g., [20, Appendix]), we have that

U(|x|, α1) < u(t, x;φ) < U(|x|, α2), for any t ≥ 0, x ∈ Rn, (3.7)

and the proof is complete. �

3.2. Weak asymptotic stability. To prove weak asymptotic stability we follow
the outline of the proof of [21, Theorem 4.1] and adapted in [10, 38].

Proposition 3.8. Assume the hypotheses of Theorem 3.1 and consider the station-
ary problem (1.4). Then, for any radial GS U(·, d) of (1.4), there is a sequence of
radial strict super-solutions U

(1)
(·, e1) > U

(2)
(·, e2) > . . . > U(·, d) of (1.1) and a

sequence of radial strict sub-solutions U (1)(·, c1) < U (2)(·, c2) < . . . < U(·, d) such
that U(·, d) is the only solution of (1.1) satisfying U (k)(·, ck) < U(·, d) < U

(k)
(·, ek),

for every k. Moreover

lim
k→∞

U (k)(·, ck) = U(·, d) = lim
k→∞

U
(k)

(·, ek) (3.8)

Proof. Let h : [0,+∞) → [0, 1] be a monotone decreasing C∞ function such that
h(0) = 1 and h(r) ≡ 0 for r ≥ 1. Let G(y1, s; ls) = g(y1, s; ls) − g(y1,+∞; ls) and
observe that G(y1, s; ls) ≥ 0 and it is decreasing in s for any y1, s.

Assume first G(y1, s) 6≡ 0, i.e. consider the generic case, and denote

g(k)(y1, s) = g(y1, s; ls) +
h(es)

2k
G(y1, s; ls)

g(k)(y1, s) = g(y1, s; ls)−
h(es)

2k
G(y1, s; ls)

and let f
(k)

, f (k) be the corresponding functions obtained via (2.2). Notice that by
construction g(k)(y1, s), and g(k)(y1, s) are both decreasing in s for any k ≥ 1; Hence

f
(k) ≥ f ≥ f (k) satisfy (A1)–(A5) so that Lemma 2.10, and Proposition 2.12 hold.

In particular all the regular solutions of the respective problem (1.4), say U
(k)

(r, α),
U(r, α), U (k)(r, α), are GSs. Further the corresponding trajectories of (2.3), say
y(k)(s, α), y(s, α), y(k)(s, α) are monotone increasing in their first component and
converge to P+, and have the asymptotic expansion as described in Proposition
2.16. More precisely they both have either the expansion (2.40) or (2.41), where
the function Ψ(ln(r)) coincide for r ≥ 1, while the coefficients a = A(k)

(α), a =
A(k)(α) and b = B(k)

(α), b = Bk(α) are different, see Lemma 2.20. Further by
construction, U

(k)
(r, α), U (k)(r, α) are respectively super- and sub-solutions for the

original problem (1.4).
We divide our argument in several steps.

Step 1. If there is R > 0 such that U(R, d) = U
(k)

(R, c) (respectively U(R, d) =
U (k)(R, e)), then U(r, d) ≥ U

(k)
(r, c) (respectively U(r, d) ≤ U (k)(r, e)) for any

r ≥ R.
Let τ(ξ) : (0, 2) → R be the inverse of the function ξ(τ) defined in (2.11). We

consider ẏ1

ẏ2

ξ̇

 =

 0 1 0
B(l∗) −A(l∗) 0

0 0 C

y1

y2

ξ

−
 0
g(y1, τ(ξ); l∗)

0

 , (3.9)
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where A(l∗), B(l∗), C coincide with A(lu), B(lu), $ for s ≤ 0 and with A(ls),
B(ls), γ for s ≥ 0, and similarly g(y1, τ(ξ); l∗) equals g(y1,

ln(ξ)
$ ; lu) for ξ ≤ 1 (i.e.

s ≤ 0) and g(y1,
ln(2−ξ)
$ ; ls) for ξ ≥ 1 (i.e. s ≥ 0). Notice that (3.9) coincides with

(2.8) when ξ ≤ 1 (i.e. s ≤ 0) and it is equivalent to (2.9) when ξ ≥ 1 (i.e. s ≤ 0
and ζ ≤ 1, it differs from (2.9) just in the fact that ξ = 2 − ζ). Further we recall
that the unstable manifold Wu(l∗) defined in (2.11) has dimension 2 and connects
the ξ-axis and the graph of y∗(s, l∗); Further it is a graph on the y2 = 0 plane, see
Remark 2.14. Let us denote

E = {(y1, y2, ξ) : 0 < y1 < yu1 (τ(ξ), l∗) , 0 < ξ < 2}

and by E0 := Wu(l∗). It follows that E0 ⊂ E and E0 splits E in 2 open components,
say E+ and E− (the one with larger and smaller y2).

By construction the flow of the modified system (3.9) where g is replaced re-
spectively by gk and by gk on Wu(l∗) points towards E− and E+ respectively for

s ≤ 0, and it is tangent to E0 for s ≥ 0. So the corresponding manifolds W
u,(k)

(l∗)
and Wu,(k)(l∗) lie respectively in E− and E+.

Now assume U(R, d) = U
(k)

(R, c) and consider the corresponding trajectories
y(s; l∗), and y(k)(s; l∗): Then y1(ln(R); l∗) = y

(k)
1 (ln(R); l∗) and y2(ln(R); l∗) ≥

y
(k)
2 (ln(R); l∗). Hence y1(s; l∗) ≥ y

(k)
1 (s; l∗) for s in a right neighborhood of ln(R).

Then the claim in Step 1 concerning U
(k)

(r, c) follows. The claim concerning
U (k)(r, e) is analogous.

We continue the discussion for later purposes. We know that y2(ln(R); l∗) ≥
y

(k)
2 (ln(R); l∗), assume first y2(ln(R); l∗) > y

(k)
2 (ln(R); l∗). Then y1(s; l∗) > y

(k)
1 (s; l∗)

for s in a right neighborhood of ln(R).
Assume now y2(ln(R); l∗) = y

(k)
2 (ln(R); l∗): Then R ≥ 1. In fact assume for

contradiction that 0 < R < 1, then y(ln(R); l∗) = Q = y(k)(ln(R); l∗) is such
that (Q, ξ(ln(R)) ∈ E0, but from (2.3) we obtain ẏ2(ln(R); l∗) < ẏ

(k)
2 (ln(R); l∗).

Hence y(k)(r; l∗) crosses transversally E0 at s = ln(R), going from E+ to E−, in
particular it is in E+ when s is in a sufficiently small left neighborhood of ln(R).
But (y(k)(s; l∗), ξ(s)) ∈W

u,(k)
(l∗) ⊂ E−, and this is a contradiction, so R > 1.

Observe that if R ≥ 1 then y(k)(s; l∗) and y(s; l∗) are solutions of the same
equation (2.3) for s ≥ 0 which coincide for s = ln(R), so they coincide for s ≥ 0.

We have already proved the following result, i.e.
Step 2. For any 0 < r < 1 we have that

U
(k)

(r, d) < U(r, d) < U (k)(r, d) (3.10)

and either (3.10) holds for any r > 0 or the functions coincide for any r ≥ 1.
Moreover A(k)

(d) ≤ A(d) ≤ A(k)(d).
Step 3. Fix d and the corresponding coefficient A(d). It is possible to choose
ck ≤ d ≤ ek so that A(k)(ek) = A(k)

(ck) = A(d).
Fix τ > 0 and 0 < c < d < e; let y(s, τ,P; ls), y(s, τ,Q; ls), y(s, τ,R; ls) be

the trajectories of (2.3) corresponding to the solutions U(r, c), U(r, d), U(r, e) of
(1.4). It follows that P,Q,R are points in Wu(τ, ls) and P, R are respectively
the closest to and the farthest from the origin. Let us consider the lines `l, `r

parallel to the y2-axis and passing through P and R respectively: We denote by
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P(k) and R(k), the intersections of W
u,(k)

(τ, ls) respectively with `l and with `r.
Using continuous dependence on initial data of ODE we see that P(k) → P and
R(k) → R as k → ∞. Since a(Q) is continuous, see Remark 2.18 and (2.42), we
see that a(P(k)) → a(P) = A(c) < A(d), while a(R(k)) → a(R) = A(e) > A(d).
Therefore we can choose N large enough so that a(P(k)) < A(d) < a(R(k)) for any
k ≥ N . Hence we can find Q

(k) ∈ Wu,(k)
(τ, ls) between P(k) and R(k) such that

a(Q
(k)

) = A(d). Correspondingly we find ek such that A(k)
(ek) = a(Q

(k)
) = A(d).

Note that in view of Step 2 we have ek ≥ d. The proof for A(k)(ck) is analogous.

Then, putting together Step 1 and Step 3, we see that U(r, d) is the unique
solution of the original equation (1.4) such that

U (k)(r, ck) ≤ U(r, d) ≤ U (k)
(r, ek), for any r ≥ 0 (3.11)

Step 4. Formula (3.8) and the following Remark hold.

Remark 3.9. B(k)
(ek) and B(k)(ck) are respectively strictly decreasing and in-

creasing in k and they both converge to B(d).

Proof. To prove (3.8) it is sufficient to observe that, by construction, the functions
Uk(r, ck) and U

k
(r, ek) are bounded and monotonically respectively increasing and

decreasing in k. Then, from standard elliptic estimates we see that they both
converge to solutions of the original problem (1.4) as k → +∞. Then, from Step 3
we see that the limit of both Uk(r, ck) and U

k
(r, ek) is the same solution U(r, d) of

the original problem (1.4).
Now, we consider Remark 3.9. From Step 3 we know that A(k)(ek) = A(d) =

A(k)
(ck). Further from the previous argument we also infer that B(k)

(ek) and
B(k)(ck) are respectively decreasing and increasing and converge to B(d). As next
step, we show that B(k)(ck) < B(k−1)(ck−1) < B(d) < B(k−1)

(ek−1) < B(k)
(ek), i.e.

B(k)(ck) and B(k)
(ek) are strictly increasing and decreasing. As usual we just prove

the last inequality, the others being analogous. Let uj(x) be the radial function
defined by uj(x) = U

j
(|x|, ej). Observe that ∆[uk(x)) − uk−1(x)] ≤ 0, hence

from standard arguments (see [29, Theorem 3.8]), we see that there is C > 0 such
that U

k
(r, ek) − Uk−1

(r, ek−1) > Cr−(n−2). Assume B(k)
(ek) = B(k−1)

(ek−1) for
contradiction. Since A(k)

(ek) = A(d) for any k, from the construction in Lemma
2.20 it follows that y(k)(s, ek; ls) ≡ y(k−1)(s, ek−1; ls) for any s ≥ 0, i.e. U

k
(r, ek) =

U
k−1

(r, ek−1) for r ≥ 1, but this is a contradiction and the Remark is proved. �

From Remark 3.9 we see that the inequalities in (3.11) are strict for r large. Then,
from Step 1 we conclude the proof of Proposition 3.8 in the case G(y1, s) 6≡ 0.

Assume now G(y1, s) ≡ 0, this is the case, e.g., when f(u, r) = cu|u|q−2.
Following [21] we denote by f (k)(u, r) := [1 − µh(r)/k]f(u, r) and f

(k)
(u, r) :=

[1 + µh(r)/k]f(u, r), for k ∈ N and where µ > 0 is chosen small enough so that
f (1)(u, r) satisfies (A6); then it is easy to check that f (k)(u, r) and f

(k)
(u, r) satisfy

(A6) for any k ∈ N. So Proposition 2.8 holds, and in all the 3 cases all the regular
solutions of (1.4), denoted respectively by U (k)(r, α), U(r, α), U

(k)
(r, α), are GSs,
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but a a priori they might not be ordered. However repeating the argument of Step
1 in [21, Theorem 4.1], it it easy to prove that

U
(k)

(r, α) ≤ U(r, α) ≤ U (k)(r, α) (3.12)

for any r > 0 and any α > 0. The proof might be concluded arguing as in [21,
Theorem 4.1]. However notice that we can also repeat the argument at the end of
Step 1 of this proof to get (3.10) for any r > 0, and then carry on through Step
2,3,4, of this proof and conclude also in this case, with no further changes. �

3.3. Proof of the weak asymptotic stability. Now we consider d > 0 fixed,
and we use the shorthand notation U

(1)
(r, e1) = U(r), U (1)(r, c1) = U(r), u(t, x) =

u(t, x;U(|x|)), u(t, x) = u(t, x;U(|x|)).

Lemma 3.10. Under the hypotheses of Theorem 3.1, we have u(t, x) ↘ U(|x|, d)
and u(t, x)↗ U(|x|, d) as t→ +∞, with the norm ‖ · ‖l, for any 0 ≤ l < m+ |λ2|.

Notice that if ls = σ∗ then ‖ · ‖m+|λ1| = ‖ · ‖m+|λ2|.

Proof. Let us set B := lim|x|→+∞[U(|x|)− U(|x|)]|x|m+|λ2| and notice that B > 0
is finite, see Proposition 3.8 and Remark 3.9. Fix 0 ≤ l < m + |λ2| and observe
that for any ε > 0 we can find ρ > 0 such that

[U(|x|)− U(|x|)]|x|l < 2B|x|l−m−|λ2| < ε/2 (3.13)

for ‖x‖ ≥ ρ.
Since U(|x|) and U(|x|) are respectively a radial super- and sub-solution of (1.1),

then u(t, x) and u(t, x) are respectively radially symmetric super- and sub-solution
of (1.2). Further they are resp. monotone decreasing and increasing in t, so they
converge to a radial solution of (1.1), see Lemma 3.5. From Lemma 3.8 we know
that U(r, d) is the unique solution of (1.4) between U(r) and U(r), so u(t, x) and
u(t, x) converge monotonically to U(|x|, d) as t→ +∞, for any fixed x ∈ Rn. Then,
from the equiboundedness of the functions involved and of their derivatives we see
that the convergence is uniform in any ball of radius R > 0 fixed. Hence setting
R = ρ > 0, for any ε > 0 we find T (ε) > 0 such that

[u(x, t)− u(x, t)]|x|l ≤ ε/2 (3.14)

for any |x| ≤ ρ. Further from (3.13) and the comparison principle we easily find
that

[u(x, t)− u(x, t)]|x|l ≤ [U(|x|)− U(|x|)]|x|l ≤ ε/2 (3.15)
for |x| ≥ ρ. Hence the Lemma follows from (3.14) and (3.15). �

Proof of Theorem 3.2. Assume for definiteness ls > σ∗, the case ls ≥ σ∗ being
analogous. Fix d > 0 and denote

W (r, d) = [U(r)− U(r, d)](1 + rm+|λ2|) , δ = inf
r>0

W (r, d)

W (r, d) = [U(r, d)− U(r)](1 + rm+|λ2|) , δ = inf
r>0

W (r, d)
(3.16)

Observe that W (r, d), W (r, d) are both positive for any r > 0, see Proposition
3.8. Further W (0, d) = e1 − d > 0, W (0, d) = d − c1 > 0, limr→+∞W (r, d) =
B

(1)
(e1) − B(d) > 0, limr→+∞W (r, d) = B(d) − B(1)(c1) > 0, see Remark 3.9. It

follows that δ = min{δ, δ} > 0.
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Now let us consider φ such that ‖φ − U(| · |, d)‖m+|λ2| < δ: by construction we
have U(|x|) ≤ φ(x) ≤ U(|x|), for any x ∈ Rn. Therefore

u(t, x) ≤ u(t, x;φ) ≤ u(t, x)

for any t > 0 and any x ∈ Rn. So from Lemma 3.10 we easily complete the
proof. �
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