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BIFURCATION AND MULTIPLICITY RESULTS FOR CRITICAL
MAGNETIC FRACTIONAL PROBLEMS

ALESSIO FISCELLA, EUGENIO VECCHI

Abstract. This article concerns the bifurcation phenomena and the existence

of multiple solutions for a non-local boundary value problem driven by the
magnetic fractional Laplacian (−∆)s

A. In particular, we consider

(−∆)s
Au = λu+ |u|2

∗
s−2u in Ω, u = 0 in Rn \ Ω,

where λ is a real parameter and Ω ⊂ Rn is an open and bounded set with
Lipschitz boundary.

1. Introduction

The aim of this article is to study a critical non-local boundary value problem
that could be considered as the magnetic fractional version of the famous Brézis-
Nirenberg problem [9]. More precisely, we deal with the following problem

(−∆)sAu = λu+ |u|2
∗
s−2u, in Ω,

u = 0, in Rn \ Ω,
(1.1)

where Ω ⊂ Rn is an open and bounded set with Lipschitz boundary ∂Ω, dimension
n > 2s with s ∈ (0, 1), 2∗s := 2n/(n− 2s) is the fractional critical Sobolev exponent
and λ ∈ R is a parameter. In particular, we are interested in the extension to the
magnetic setting of a classical result due to Cerami, Fortunato and Struwe [11],
that has recently been generalized to the diamagnetic fractional case in [14].

A first motivation for the study of (1.1) is the increasing interest in the non-local
magnetic PDEs, driven by the so called magnetic fractional Laplacian (−∆)sA;
see e.g. [1, 2, 5, 12, 15, 18, 21, 22, 36]. This operator has been introduced in
[12] through the following representation, when acting on smooth complex-valued
functions u ∈ C∞0 (Rn,C),

(−∆)sAu(x) = 2 lim
ε→0+

∫
Rn\B(x,ε)

u(x)− ei(x−y)·A( x+y
2 )u(y)

|x− y|n+2s
dy, x ∈ Rn, (1.2)

where B(x, ε) denotes the ball of center x and radius ε. We can consider (−∆)sA as
a fractional counterpart of the magnetic Laplacian (∇ − iA)2, with A : Rn → Rn
being a L∞loc-vector potential; see e.g. [19, Chapter 7]. In this context, when n = 3,
the curl of A represents a magnetic field acting on a charged particle.
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While, it is clear that for A = 0 and u smooth real-valued function, (−∆)sA
coincides with the standard fractional Laplacian defined as principal value integral

(−∆)su(x) = lim
ε→0+

∫
Rn\B(x,ε)

u(x)− u(y)
|x− y|n+2s

dy, x ∈ Rn.

We refer to [13, 23] and the references therein for further details on the fractional
Laplacian. Furthermore, (−∆)sA appears quite naturally in the definition of mag-
netic fractional Sobolev spaces and some non–local functionals that has been re-
cently used in [25, 26, 27, 28, 34] to study characterizations of magnetic Sobolev
spaces in the spirit of the works by Bourgain, Brézis and Mironescu [6], Maz’ya and
Shaposhnikova [20], and Nguyen [24].

We also want to mention that, for s = 1/2, the definition of the fractional
operator in (1.2) goes back to the ’80’s, and is related to the proper definition
of a quantized operator corresponding to the symbol of the classical relativistic
Hamiltonian, namely√

(ξ −A(x))2 +m2 + V (x), (ξ, x) ∈ Rn × Rn.

More precisely, it is related to the kinetic part of the above symbol. We point
out that in the literature there are at least three definitions for such a quantized
operator. Two of them are given in terms of pseudo-differential operators, and the
third one as the square root of a non–negative operator, see e.g. [17, 16]. The survey
[17] also shows that these three non–local operators are in general different, but they
coincide when the vector potential A is assumed to be linear, an assumption which
is equivalent to require a constant magnetic field when we are in the physically
relevant situation of R3.

Another reason to study critical magnetic fractional problems like (1.1) is pro-
vided by the rich background of results concerning the diamagnetic fractional ver-
sion of the Brézis-Nirenberg problem, namely

(−∆)su = λu+ |u|2
∗
s−2u, in Ω,

u = 0, in Rn \ Ω.
(1.3)

In [33], they prove the existence of a non-trivial weak solution of (1.3), whenever
n ≥ 4s and λ ∈ (0, λ1,s), with λ1,s the first Dirichlet eigenvalue of (−∆)s. In [29],
a generalization of a classical result due to Capozzi, Fortunato and Palmieri [10]
is given, stating the existence of a solution of (1.3), for every λ > 0 which is not
a variational Dirichlet eigenvalue of (−∆)s. Another result in the same spirit is
proved in [32], with the requirement that n ∈ (2s, 4s). One of the key points of
the aforementioned papers is the introduction of a suitable functional space which
allows them to encode in a proper way the non–local boundary condition of (1.3).
Also, a crucial ingredient is the knowledge of the family of functions attaining the
best fractional Sobolev constant. This latter aspect is however not necessary to
prove the fractional counterpart of [11] in [14]. We mention here [3, 35] for other
results concerning fractional Brézis-Nirenberg-type problems.

Motivated by the above papers, we study a bifurcation phenomena for problem
(1.1) by a variational approach. However, because of the presence of a critical
term in (1.1) and the lack of compactness at critical level L2∗s , the related Euler–
Lagrange functional does not satisfy a global Palais-Smale condition. For this, as in
the classical and in the fractional diamagnetic cases, we provide the Palais-Smale
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condition in a certain range strongly depending on the best magnetic fractional
Sobolev constant given by

SA := inf
v∈X0,A\{0}

∫∫
R2n

|v(x)− ei(x−y)·A( x+y
2 )v(y)|2

|x− y|n+2s
dx dy(∫

Ω

|v(x)|2
∗
dx
)2/2∗

, (1.4)

where X0,A denotes the suitable functional space, where finding solutions of (1.1).
See Section 2 for a detailed description of X0,A. Of course by the continuous
embedding X0,A ↪→ L2∗s (Ω,C), given in [15, Lemma 2.2], the constant SA is well
defined and strictly positive.

Considering the presence of a linear term in (1.1), we also study the following
auxiliary eigenvalue problem

(−∆)sAu = λu, in Ω,

u = 0, in Rn \ Ω.
(1.5)

Inspired by the classical case, we call variational Dirichlet eigenvalues, the values of
the real λ’s for which (1.5) admits a non-trivial weak solution u ∈ X0,A, that will be
called eigenfunction. Among many properties, we will show that there is a sequence
of isolated variational Dirichlet eigenvalues whose associated eigenfuctions form an
orthogonal basis of the space X0,A. To the best of our knowledge, a systematic
study and variational characterizations (akin to the classical one) of the variational
Dirichlet eigenvalues of the magnetic fractional Laplacian (−∆)sA are not explicitly
stated in the literature. We refer to Section 3 for more details. In the diamagnetic
case, we recall that the variational Dirichlet eigenvalues of (−∆)s are introduced in
[31].

We are now ready to state our main result.

Theorem 1.1. Let s ∈ (0, 1), n > 2s, Ω ⊂ Rn be an open and bounded set with
Lipschitz continuous boundary ∂Ω. Let λ ∈ R and let λ∗ be the variational Dirichlet
eigenvalue of problem (1.5) given by

λ∗ := min{λk : λ < λk}. (1.6)

Call m ∈ N its multiplicity. Assume that

λ ∈
(
λ∗ − SA

|Ω|2s/n
, λ∗
)
, (1.7)

with SA defined in (1.4). Then problem (1.1) admits at least m pairs of non-trivial
weak solutions {−uλ,i, uλ,i}, whose functional norm satisfies

‖uλ,i‖X0,A
→ 0, as λ→ λ∗,

for every i = 1, . . . ,m.

The proof of Theorem 1.1 relies on an abstract result due to Bartolo, Benci and
Fortunato [4] and on the study of the variational Dirichlet eigenvalues performed
in Section 3.

This paper is organized as follows. In Section 2, we introduce the necessary
functional and variational setup to study the boundary value problem (1.1). In
Section 3, we study the variational Dirichlet eigenvalues of (−∆)sA. In Section 4,
we provide the Palais–Smale condition on a suitable range. In the last Section 5,
we finally prove Theorem 1.1.
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2. Functional and variational setup

Throughout this article, we indicate with |Ω| the n-dimensional Lebesgue mea-
sure of a measurable set Ω ⊂ Rn. Moreover, for every z ∈ C we denote by <z its
real part, and by z its complex conjugate. Let Ω ⊂ Rn be an open set. We denote
by L2(Ω,C) the space of measurable functions u : Ω→ C such that

‖u‖L2(Ω) =
(∫

Ω

|u(x)|2 dx
)1/2

<∞,

where | · | is the Euclidean norm in C.
For s ∈ (0, 1), we define the magnetic Gagliardo semi-norm as

[u]Hs
A(Ω) :=

(∫∫
Ω×Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|n+2s
dx dy

)1/2

.

We denote by Hs
A(Ω) the space of functions u ∈ L2(Ω,C) such that [u]Hs

A(Ω) <∞,
normed with

‖u‖Hs
A(Ω) :=

(
‖u‖2L2(Ω) + [u]2Hs

A(Ω)

)1/2

.

For A = 0, this definition is consistent with the usual fractional space Hs(Ω). We
stress out that C∞0 (Rn,C) ⊆ Hs

A(Rn), see [12, Proposition 2.2].
However, to encode the boundary condition u = 0 in Rn \ Ω, the natural func-

tional space introduced in [15] to deal with weak solutions of problem (1.1) is

X0,A :=
{
u ∈ Hs

A(Rn) : u = 0 a.e. in Rn \ Ω
}
,

which generalizes to the magnetic framework the space introduced in [30]. As in
[12], we define the following real scalar product on X0,A

〈u, v〉X0,A
:= <

∫∫
R2n

(
u(x)− ei(x−y)·A( x+y

2 )u(y)
)(
v(x)− ei(x−y)·A( x+y

2 )v(y)
)

|x− y|n+2s
dxdy,

which induces the norm

‖u‖X0,A
:=
(∫∫

R2n

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|n+2s
dxdy

)1/2

.

By arguing as in [30, Lemma 7], we see that (X0,A, 〈·, ·〉X0,A
) is a Hilbert space and

hence reflexive.
We can now describe the variational formulation of problem (1.1). We will say

that a function u ∈ X0,A is a weak solution of (1.1) if

〈u, ϕ〉X0,A
= λ<

∫
Ω

u(x)ϕ(x) dx+ <
∫

Ω

|u(x)|2
∗
s−2u(x)ϕ(x) dx,

for every ϕ ∈ X0,A. Clearly, the weak solutions of (1.1) are the critical points of
the Euler–Lagrange functional JA,λ : X0,A → R, associated with (1.1), that is

JA,λ(u) := ‖u‖2X0,A
− λ

2
‖u‖2L2(Ω) −

1
2∗s
‖u‖2

∗
s

L2∗s (Ω)
. (2.1)

It is easy to see that JA,λ is well-defined and of class C1(X0,A,R).
Hence, to prove Theorem 1.1, we apply the following abstract critical point

theorem to our functional JA,λ.

Theorem 2.1 ([4, Theorem 2.4]). Let (H, ‖ · ‖H) be a real Hilbert space. Let
J : H → R be a C1 functional satisfying the following conditions:
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(A1) J (u) = J (−u) and J (0) = 0;
(A2) there exists a positive real constant c > 0 such that J satisfies the Palais-

Smale condition at the level c;
(A3) there exist two closed subspaces V , W ⊂ H, and there exist positive real

constants ρ, δ, β > 0, with δ < β < c, such that
(i) J (w) ≤ β, for every w ∈W ;
(ii) J (v) ≥ δ, for every v ∈ V with ‖v‖H = ρ;

(iii) codimV <∞ and dimW ≥ codimV .
Then, there exist at least dimW − codimV pairs of critical points of the functional
J , with critical values contained in the interval [δ, β].

3. Variational Dirichlet eigenvalues of the fractional magnetic
Laplacian

In this section we define the variational Dirichlet eigenvalues of the non-local
operator (−∆)sA and we provide a few results concerning them. Our guideline will
be the content of [31, Proposition 9].

We say that λ ∈ R is a variational Dirichlet eigenvalue of (−∆)sA with eigen-
function u ∈ X0,A, if there exists a non-trivial weak solution u ∈ X0,A of (1.5),
namely

〈u, ϕ〉X0,A
= λ<

∫
Ω

u(x)ϕ(x) dx, for every ϕ ∈ X0,A. (3.1)

To simplify the readability, from now on we will write just eigenvalue in place of
variational Dirichlet eigenvalue. The rest of this section is devoted to prove some
properties of the eigenvalues of the fractional magnetic Laplacian. For this, let us
define

Φ(u) =
1
2
‖u‖2X0,A

.

Then Φ admits a local minimum, as follows.

Lemma 3.1. Let X∗A be a non-empty weakly closed subspace of X0,A and let

M∗ := {u ∈ X∗A : ‖u‖L2(Ω) = 1}.

Then there exists u∗ ∈M∗ such that

min
u∈M∗

Φ(u) = Φ(u∗), (3.2)

and there exists λ∗ := 2Φ(u∗) such that

〈u, ϕ〉X0,A
= λ∗<

∫
Ω

u∗(x)ϕ(x) dx, for every ϕ ∈ X∗A. (3.3)

Proof. Let {uj}j ⊂M∗ be a minimizing sequence for the functional Φ, namely

Φ(uj)→ inf
u∈M∗

Φ(u) ≥ 0, as j →∞. (3.4)

We recall that the bound from below of infu∈M∗ Φ(u) follows from the fact that
Φ(u) ≥ 0 for every u ∈ X0,A. It follows that {Φ(uj)}j is a bounded sequence
in R, and therefore {uj}j is a bounded sequence in R as well. By the reflexivity
of (X0,A, 〈·, ·〉X0,A

), there exists a weakly convergent subsequence of {uj}j , still
denoted by {uj}j , and since X∗A is weakly closed, there exists u∗ ∈ X∗A such that

uj ⇀ u∗, in X0,A.
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Since {uj}j is a bounded sequence in X0,A and X0,A ↪→ L2(Ω,C) is compact by
[15, Lemma 2.2], we have that

uj → u∗, in L2(Ω,C).

In particular, this shows that ‖u∗‖L2(Ω) = 1, and therefore u∗ ∈ M∗. By Fatou
Lemma, we can now conclude that

lim
j→∞

Φ(uj) ≥ Φ(u∗) ≥ inf
u∈M∗

Φ(u),

which, combined with (3.4) proves (3.2).
For the second statement, by (3.2) there exists a Lagrange multiplier λ∗ such

that (3.3) holds true. By taking ϕ = u∗ in (3.3), since ‖u∗‖L2(Ω) = 1 we conclude
λ∗ = ‖u∗‖2X0,A

= 2Φ(u∗). �

The second technical result establishes that eigenfunctions of (1.5) correspond-
ing to different eigenvalues are orthogonal with respect to the real scalar product
〈·, ·〉X0,A

.

Lemma 3.2. Let λ 6= λ̃ be two different eigenvalues of (1.5), with eigenfunctions
f , f ∈ X0,A. Then

<
∫

Ω

f(x)f(x) dx = 〈f, f〉X0,A
= 0.

Proof. Since both f 6≡ 0 and f 6≡ 0, we can set F := f/‖f‖L2(Ω) and F := f/‖f‖L2(Ω)

two eigenfunctions respectively of λ and λ̃. Now, recalling that for every z, w ∈ C
<(zw̄) = <(wz̄),

and combining it with (3.1), we obtain

λ<
∫

Ω

F (x)F(x) dx

= <
∫∫

R2n

(
F (x)− ei(x−y)·A( x+y

2 )F (y)
)(
F(x)− ei(x−y)·A( x+y

2 )F(y)
)

|x− y|n+2s
dx dy

= <
∫∫

R2n

(
F(x)− ei(x−y)·A( x+y

2 )F(y)
)(

F (x)− ei(x−y)·A( x+y
2 )F (y)

)
|x− y|n+2s

dx dy

= λ̃<
∫

Ω

F(x)F (x) dx; (3.5)

that is,

(λ− λ̃)<
∫

Ω

F (x)F(x) dx = 0.

Since λ 6= λ̃, we have

<
∫

Ω

F (x)F(x) dx = 0,

and by (3.5) this completes the proof. �

We want to provide a variational characterization of the eigenvalues by means
of Rayleigh-type quotients. To this aim, we start defining the following family of
subspaces, for any k ∈ N,

Ek+1 :=
{
u ∈ X0,A : 〈u, fj〉X0,A

= 0, for every j = 1, . . . , k
}
, (3.6)
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where fj ∈ X0,A are given in Proposition 3.3. It is easy to see that

Ek+2 ⊆ Ek+1 ⊆ X0,A, for any k ∈ N. (3.7)

Starting from this, we can state the following results for eigenvalues and eigenfunc-
tions of (1.5).

Proposition 3.3. Let us define

λ1 := min
u∈X0,A\{0}

‖u‖2X0,A

‖u‖2L2(Ω)

, (3.8)

and by induction

λk+1 := min
u∈Ek+1\{0}

‖u‖2X0,A

‖u‖2L2(Ω)

, for any k ∈ N. (3.9)

Then λ1 and λk+1 are eigenvalues of (1.5).
Also, there exist f1 ∈ X0,A and fk+1 ∈ Ek+1 which are eigenfunctions respectively

of λ1 and λk+1, and attain the minimums in (3.8) and (3.9).

Proof. We start studying the case of λ1. Lemma 3.1 ensures that the minimum
in (3.8) is well defined, due to (3.2) with X∗A = X0,A, and λ1 is an eigenvalue of
(−∆)sA because of (3.3). By using again (3.2), we find a function f1 ∈ X0,A, with
‖f1‖L2(Ω) = 1, which attains the minimum in (3.8). In particular, by (3.3) with
X∗A = X0,A, we see that f1 is an eigenfunction related to λ1.

We pass to the case of λk+1 with k ∈ N. First we observe that X∗A = Ek+1 is
weakly closed by construction, hence Lemma 3.1 yields that the minimum in (3.9)
is well defined and it is achieved by a certain function fk+1 ∈ Ek+1. It remains to
prove that λk+1 in (3.9) is an eigenvalue with corresponding eigenfunction given by
fk+1. By (3.3) with X∗A = Ek+1, we have

〈fk+1, ϕ〉X0,A
= λk+1<

∫
Ω

fk+1(x)ϕ(x) dx, for every ϕ ∈ Ek+1. (3.10)

We must prove that (3.10) holds for every ϕ ∈ X0,A. Arguing by induction, we
assume that the claim holds for 1, . . . , k. The base of induction has been already
proved, since λ1 is an eigenvalue of (1.5). Now, we can decompose the space X0,A

as

X0,A = spanR{f1, . . . , fk} ⊕ (spanR{f1, . . . , fk})⊥ = spanR{f1, . . . , fk} ⊕ Ek+1,

where the orthogonal complement has to be intended with respect to the real scalar
product 〈·, ·〉X0,A

defined on X0,A. The former decomposition implies that we can
write any function w ∈ X0,A as w = w1 + w2, with w2 ∈ Ek+1, and

w1 =
k∑
i=1

cifi,

where ci are real constants. By (3.10) with ϕ = w2 = w − w1, we obtain

〈fk+1, w〉X0,A
− λk+1<

∫
Ω

fk+1(x)w(x) dx

=
k∑
i=1

ci〈fk+1, fi〉X0,A
− λk+1<

∫
Ω

fk+1(x)fi(x) dx.
(3.11)
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By inductive assumption, we know that fi is an eigenfunction corresponding to λi
for every i = 1, . . . , k, therefore we can plug it into (3.1) finding

0 = 〈fk+1, fi〉X0,A
= λi <

∫
Ω

fk+1(x)fi(x) dx,

which implies

〈fk+1, fi〉X0,A
= 0 = <

∫
Ω

fk+1(x)fi(x) dx,

for every i = 1, . . . , k. Plugging the former relation into (3.11), we complete the
proof. �

The next three technical results are essential for proving that the eigenvalues
constitute an orthonormal basis of L2(Ω,C) and an orthogonal one of X0,A, see
Proposition 3.7.

Proposition 3.4. The eigenfunctions {fk}k are orthogonal with respect to both the
real L2-scalar product and the real scalar product 〈·, ·〉X0,A

.

Proof. Let j, k ∈ N with j 6= k. Without loss of generality, we can assume that
j > k. Therefore,

fj ∈ Ej = (spanR{f1, . . . , fj−1})⊥ ⊆ (spanR{fk})
⊥
,

which implies
〈fj , fk〉X0,A

= 0.
Now, since fj is an eigenfunction, by (3.1) we obtain

0 = 〈fj , fk〉X0,A
= λj <

∫
Ω

fj(x)fk(x) dx,

as desired. �

Proposition 3.5. The eigenvalues of problem (1.5) form a sequence of real positive
numbers {λk}k with

0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . , (3.12)
and

λk →∞, as k →∞. (3.13)

Proof. By Proposition 3.3 we know that λ1 > 0, while by (3.7) follows (3.12). To
prove (3.13), assume by contradiction that there exists a positive real constant l > 0
such that λk → l as k → ∞. This implies that the sequence {λk}k is bounded in
R. Moreover, since by Proposition 3.3 fk attains the minimum in (3.9), we have
‖fk‖2X0,A

= λk. Thus, by [15, Lemma 2.2] there exists a subsequence {fkj
}j ⊂ X0,A

such that
fkj
→ f, in L2(Ω,C),

for some f ∈ L2(Ω,C). This implies that {fkj
}j is a Cauchy sequence in L2(Ω,C).

On the other hand, when i 6= j by Proposition 3.4 we have that fkj and fki are
orthogonal in L2(Ω,C), hence

‖fkj
− fki

‖2L2(Ω) = ‖fkj
‖2L2(Ω) + ‖fki

‖2L2(Ω) = 2,

which yields a contradiction.
We have to prove that the sequence {λk}k provides all the eigenvalues of (1.5).

Suppose that there exists at least one eigenvalue λ /∈ {λk}k. Let us denote by
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f ∈ X0,A its corresponding eigenfunction. Without loss of generality, we can also
assume that ‖f‖L2(Ω) = 1. Now, by (3.1) with ϕ = f , we obtain

2Φ(f) =
∫∫

R2n

|f(x)− ei(x−y)·A( x+y
2 )f(y)|

|x− y|n+2s
dx dy = λ. (3.14)

Since λ1 is minimal in (3.8), it holds that

λ1 = Φ(f1) ≤ Φ(f) = λ.

For this and (3.12), we have that there exists j ∈ N such that

λj < λ < λj+1.

We claim now that f /∈ Ej+1. Indeed, if f ∈ Ej+1, then by (3.9) and (3.14),

λj+1 ≤ 2 Φ(f) = λ,

which yields a contradiction. Thus, since f /∈ Ej+1, there exists i ∈ {1, . . . , j}
such that 〈f, fi〉X0,A

6= 0, which is in contrast with Lemma 3.2. This concludes the
proof. �

Lemma 3.6. If v ∈ X0,A is such that 〈v, fk〉X0,A
= 0 for every k ∈ N, then v ≡ 0.

Proof. By contradiction, suppose that there exists v ∈ X0,A with v 6≡ 0 and such
that 〈v, fk〉X0,A

= 0 for every k ∈ N. Without loss of generality, we can assume
that ‖v‖L2(Ω) = 1. By (3.13), we know that there exists k ∈ N such that

2Φ(v) < λk+1.

Therefore v /∈ Ek+1, and this implies that there exists j ∈ N such that 〈v, fj〉X0,A
6=

0, which is impossible. This completes the proof. �

Proposition 3.7. The sequence of eigenfunctions {fk}k corresponding to {λk}k is
an orthonormal basis of L2(Ω,C) and an orthogonal basis of X0,A.

Proof. The orthogonality follows from Proposition 3.4. Let us prove that {fk}k is
a basis of X0,A. To this aim, let us define Fk := fk/‖fk‖X0,A

. Moreover, for any
g ∈ X0,A, we consider

gj :=
j∑

k=1

〈g, Fk〉X0,A
Fk,

which yields that gj ∈ spanR{f1, . . . , fj} for any j ∈ N. We want to show that
gj → g in X0,A as j → ∞. We define vj := g − gj and, since by Proposition 3.4,
the {fk}k are orthogonal with respect to 〈·, ·〉X0,A

, we have

0 ≤ ‖vj‖2X0,A
= ‖g‖2X0,A

+ ‖gj‖2X0,A
− 2〈g, gj〉X0,A

= ‖g‖2X0,A
+ 〈gj , gj〉X0,A

− 2
j∑

k=1

〈g, Fk〉2X0,A

= ‖g‖2X0,A
−

j∑
k=1

〈g, Fk〉2X0,A
,

which implies that
j∑

k=1

〈g, Fk〉2X0,A
≤ ‖g‖2X0,A

,
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and hence
∞∑
k=1

〈g, Fk〉2X0,A
is a convergent series. We can then consider the partial

sum

τj :=
j∑

k=1

〈g, Fk〉2X0,A
,

which is a Cauchy sequence in R. Moreover, due to the orthogonality of {fk}k with
respect to 〈·, ·〉X0,A

, we have

‖vh − vj‖2X0,A
=
∥∥ h∑
k=j+1

〈g, Fk〉X0,A
Fk
∥∥2

X0,A
= τh − τj , (3.15)

for h > j. Since {τj}j is a Cauchy sequence in R, (3.15) implies that {vj}j is a
Cauchy sequence in X0,A. Hence, there exists v ∈ X0,A such that vj → v in X0,A

as j →∞. We now note that, if j ≥ k, then 〈gj , Fk〉X0,A
= 〈g, Fk〉X0,A

. Therefore,
for j ≥ k,

〈vj , Fk〉X0,A
= 〈g, Fk〉X0,A

− 〈gj , Fk〉X0,A
= 0.

On the other hand, since vj → v in X0,A, we obtain

〈v, Fk〉X0,A
= 0, for every k ∈ N.

By Lemma 3.6, we know that v ≡ 0, hence

gj = g − vj → g − v = g ∈ X0,A, as j →∞,
and this shows that {fk}k is a basis in X0,A, since gj ∈ spanR{f1, . . . , fj} for any
j ∈ N.

Let us conclude by showing that {fk}k is a basis in L2(Ω,C). For this, let
v ∈ L2(Ω,C) and vj ∈ C∞0 (Ω,C) be such that ‖vj − v‖L2(Ω) ≤ 1/j. By combining
[12, Proposition 2.2] and [15, Lemma 2.1], we have C∞0 (Ω,C) ⊂ X0,A, implying
vj ∈ X0,A. We also know that {fk}k is a basis of X0,A, therefore there exists
kj ∈ N and a function wj ∈ spanR{f1, . . . , fkj} such that

‖vj − wj‖X0,A
≤ 1
j
.

Now, by [15, Lemma 2.1] we have

‖vj − wj‖L2(Ω) ≤ ‖vj − wj‖Hs
A(Rn) ≤ C‖vj − wj‖X0,A

≤ C

j
.

By triangle inequality, we obtain that

‖v − wj‖L2(Ω) ≤ ‖v − vj‖L2(Ω) + ‖vj − wj‖L2(Ω) ≤
C + 1
j

,

which shows that {fk}k is a basis of L2(Ω,C). �

We conclude this section with a proposition showing that for any k ∈ N each
eigenvalue λk has finite multiplicity.

Proposition 3.8. Let h ≥ 0 and k ∈ N. If λk has multiplicity h+ 1, namely

λk−1 < λk = . . . = λk+h < λk+h+1,

then the set of the eigenfunctions corresponding to λk is given by

spanR{fk, . . . , fk+h}.
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Proof. By Proposition 3.3, we know that every element g ∈ spanR{fk, . . . , fk+h} is
an eigenfunction of (1.5) corresponding to the eigenvalue λk = . . . = λk+h.

Conversely, we need to show that any eigenfunction ψ ∈ X0,A corresponding to
λk belongs to spanR{fk, . . . , fk+h}. First, we consider the orthogonal decomposition

X0,A = spanR{fk, . . . , fk+h} ⊕ (spanR{fk, . . . , fk+h})⊥ .

Thus, we can write ψ = ψ1 + ψ2, where

ψ1 ∈ spanR{fk, . . . , fk+h} and ψ2 ∈ (spanR{fk, . . . , fk+h})⊥ , (3.16)

which implies by Proposition 3.4,

〈ψ1, ψ2〉X0,A
= 0. (3.17)

Being ψ an eigenfunction corresponding to λk, by (3.1) and (3.17) we obtain

λk‖ψ‖2L2(Ω) = ‖ψ‖2X0,A
= ‖ψ1‖2X0,A

+ ‖ψ2‖2X0,A
. (3.18)

Since {fk, . . . , fk+h} are eigenfunctions corresponding to λk by Proposition 3.3, ψ1

is an eigenfunction corresponding to λk as well. Therefore, by also (3.17) we obtain

λk<
∫

Ω

ψ1(x)ψ2(x) dx = 〈ψ1, ψ2〉X0,A
= 0,

which implies

‖ψ‖2L2(Ω) = ‖ψ1 + ψ2‖2L2(Ω) = ‖ψ1‖2L2(Ω) + ‖ψ2‖2L2(Ω). (3.19)

Now, by definition of ψ1, there exist ck, . . . , ck+h real constants, such that

ψ1 =
k+h∑
i=k

ci fi.

Byo the orthogonality of {fi}i in Proposition 3.4 and considering each fi attains
the minimum in (3.9) by Proposition 3.3, we have

‖ψ1‖2X0,A
=
k+h∑
i=k

c2i ‖fi‖2X0,A
=
k+h∑
i=k

c2iλi = λk

k+h∑
i=k

c2i = λk‖ψ1‖2L2(Ω). (3.20)

Now, since ψ and ψ1 are eigenfunctions corresponding to λk, and ψ2 = ψ − ψ1, it
follows that ψ2 must be an eigenfunction corresponding to λk as well. Therefore,
by Lemma 3.2

〈ψ2, f1〉X0,A
= . . . = 〈ψ2, fk−1〉X0,A

= 0,

which, together with (3.16), implies

ψ2 ∈
(

spanR{f1, . . . , fk+h}
)⊥ = Ek+h+1. (3.21)

Now, we claim that ψ2 ≡ 0. Assume by contradiction that this is not the case.
Then, by (3.9) and (3.21)

λk < λk+h+1 = min
u∈Ek+h+1

‖u‖2X0,A

‖u‖2L2(Ω)

≤
‖ψ2‖2X0,A

‖ψ2‖2L2(Ω)

. (3.22)

We can now compute by (3.18), (3.19), (3.20) and (3.22)

λk‖ψ‖2L2(Ω) = ‖ψ1‖2X0,A
+ ‖ψ2‖2X0,A

> λk‖ψ1‖2L2(Ω) + λk‖ψ2‖2L2(Ω) = λk‖ψ‖2L2(Ω),
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which yields a contradiction, hence proving that ψ2 ≡ 0. In particular, this and
(3.16) imply that

ψ = ψ1 ∈ spanR{fk, . . . , fk+h},
as desired. �

4. Palais-Smale condition

In this section we verify that the functional JA,λ satisfies the (PS)c condition
under a suitable level, depending on the magnetic Sobolev constant given in (1.4).
For this, we recall that {uj}j ⊂ X0,A is a Palais-Smale sequence for JA,λ at level
c ∈ R (in short (PS)c sequence) if

JA,λ(uj)→ c and J ′A,λ(uj)→ 0 as j →∞. (4.1)

We say that JA,λ satisfies the Palais-Smale condition at level c if any Palais–Smale
sequence {uj}j at level c admits a convergent subsequence in X0,A.

Proposition 4.1. Let c ∈ (−∞, sSn/(2s)A /n). Then the functional JA,λ satisfies
the Palais-Smale condition at any level c.

Proof. The proof follows its diamagnetic counterpart in [14]. Let {uj}j ⊂ X0,A

be any sequence verifying (4.1). As usual, we first need to prove the boundedness
of {uj}j in X0,A. To this aim, since uj 6≡ 0 and by (4.1), there exists a positive
constant k > 0, independent of j, such that

|JA,λ(uj)| ≤ k and
∣∣∣〈J ′A,λ(uj),

uj
‖uj‖X0,A

〉∣∣∣ ≤ k, (4.2)

for every j ∈ N. Now, a direct computation combined with (4.2), shows that

k (1 + ‖uj‖X0,A) ≥ JA,λ(uj)−
1
2
〈J ′A,λ(uj), uj〉 =

s

n
‖uj‖

2∗s
L2∗s (Ω)

, for any j ∈ N.
(4.3)

From this, by Hölder inequality and considering that 2/2∗s < 1, we have

‖uj‖2L2(Ω) ≤ k∗
(
1 + ‖uj‖X0,A

)
, for any j ∈ N, (4.4)

with k∗ > 0 another suitable constant independent of j. By (4.2), (4.3) and (4.4),
it follows that there exists a constant k̃ > 0, independent of j, such that

k ≥ JA,λ(uj) ≥
1
2
‖uj‖2X0,A

− k̃
(
1 + ‖uj‖X0,A

)
, for any j ∈ N,

and this is sufficient to conclude that the sequence {uj}j ⊂ X0,A is bounded.
Since the space (X0,A, 〈·, ·〉X0,A

) is a Hilbert space, there exists u∞ ∈ X0,A such
that uj ⇀ u∞ in X0,A as j →∞, that is

lim
j→∞

<
∫∫

R2n

(
uj(x)− ei(x−y)·A( x+y

2 )uj(y)
)(
ϕ(x)− ei(x−y)·A( x+y

2 )ϕ(y)
)

|x− y|n+2s
dx dy

= <
∫∫

R2n

(
u∞(x)− ei(x−y)·A( x+y

2 )u∞(y)
)(
ϕ(x)− ei(x−y)·A( x+y

2 )ϕ(y)
)

|x− y|n+2s
dx dy,

(4.5)
for any ϕ ∈ X0,A. Also, by [15, Lemma 2.2] and [7, Theorem 4.9], up to a subse-
quence still labeled by {uj}j , we have

uj ⇀ u∞ in L2∗s (Ω,C), uj → u∞ in L2(Ω,C), uj → u∞ a.e in Ω, (4.6)
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as j →∞. By (4.3) and the boundedness of {uj}j in X0, we have that ‖uj‖L2∗s (Ω)

is uniformly bounded in j, and therefore the sequence {|uj |2
∗
s−2uj}j is uniformly

bounded in L2∗s/(2
∗
s−1)(Ω). Thus, by (4.6)

|uj |2
∗
s−2uj ⇀ |u∞|2

∗
s−2u∞, in L2∗s/(2

∗
s−1)(Ω,C), (4.7)

as j →∞.
Now, by passing to the limit as j →∞ on (4.1) and considering (4.5), (4.6) and

(4.7), we have

<
∫∫

R2n

(
u∞(x)− ei(x−y)·A( x+y

2 )u∞(y)
)(
ϕ(x)− ei(x−y)·A( x+y

2 )ϕ(y)
)

|x− y|n+2s
dxdy

= λ<
∫

Ω

u(x)ϕ(x) dx+ <
∫

Ω

|u(x)|2
∗
s−2u(x)ϕ(x) dx,

(4.8)

for any ϕ ∈ X0,A. This proves that u∞ ∈ X0,A is a weak solution of (1.1).
By (4.5) and since (X0,A, 〈·, ·〉X0,A

) is a Hilbert space, we have

‖uj‖2X0,A
= ‖uj − u∞‖2X0,A

+ ‖u∞‖2X0,A
+ o(1), as j →∞. (4.9)

While, by (4.6) and [8, Theorem 1] we have

‖uj‖
2∗s
L2∗s (Ω)

= ‖uj − u∞‖
2∗s
L2∗s (Ω)

+ ‖u∞‖
2∗s
L2∗s (Ω)

+ o(1), as j →∞. (4.10)

Therefore, by (4.6), (4.9) and (4.10), we obtain

JA,λ(uj) =
1
2
‖uj − u∞‖2X0,A

+
1
2
‖u∞‖2X0,A

− λ

2
‖u∞‖2L2(Ω)

− 1
2∗s
‖uj − u∞‖

2∗s
L2∗s (Ω)

− 1
2∗s
‖u∞‖

2∗s
L2∗s (Ω)

+ o(1)

= JA,λ(u∞) +
1
2
‖uj − u∞‖2X0,A

− 1
2∗s
‖uj − u∞‖

2∗s
L2∗s (Ω)

+ o(1),

(4.11)

as j →∞.
Furthermore, by (4.1), (4.5), (4.6), (4.7) and considering u∞ as solution of (1.1),

we obtain

o(1) = 〈J ′A,λ(uj)− J ′A,λ(u∞), uj − u∞〉

=
∫∫

R2n

|uj(x)− ei(x−y)·A( x+y
2 )uj(y)|2

|x− y|n+2s
dxdy

− 2<
∫∫

R2n

(
uj(x)− ei(x−y)·A( x+y

2 )uj(y)
)(
u∞(x)− ei(x−y)·A( x+y

2 )u∞(y)
)

|x− y|n+2s
dx dy

+
∫∫

R2n

|u∞(x)− ei(x−y)·A( x+y
2 )u∞(y)|2

|x− y|n+2s
dxdy

−<
∫

Ω

(
|uj(x)|2

∗
s−2uj(x)− |u∞(x)|2

∗
s−2u∞(x)

)(
uj(x)− u∞(x)

)
dx+ o(1)

=
∫∫

R2n

|uj(x)− ei(x−y)·A( x+y
2 )uj(y)|2

|x− y|n+2s
dxdy

−
∫∫

R2n

|u∞(x)− ei(x−y)·A( x+y
2 )u∞(y)|2

|x− y|n+2s
dxdy
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−
∫

Ω

|uj(x)|2
∗
sdx+

∫
Ω

|u∞(x)|2
∗
sdx+ o(1) as j →∞,

from which, by (4.9) and (4.10), we obtain the formula

‖uj − u∞‖2X0,A
= ‖uj − u∞‖

2∗s
L2∗s (Ω)

+ o(1), (4.12)

as j →∞. Hence, combining (4.11) and (4.12), we obtain

JA,λ(uj) = JA,λ(u∞) +
s

n
‖uj − u∞‖2X0,A

+ o(1), as j →∞.

From this, recalling (4.1), combining (2.1) and (4.8) with ϕ = u∞, we obtain as
j →∞

c = JA,λ(u∞) +
s

n
‖uj − u∞‖2X0,A

+ o(1)

=
s

n

(
‖u∞‖2X0,A

+ ‖uj − u∞‖2X0,A

)
+ o(1).

(4.13)

By the boundedness of {uj}j in X0, up to a subsequence, we also have

‖uj − u∞‖2X0,A
→ L ∈ [0,∞), as j →∞. (4.14)

Combining formula (4.12) with (4.14), and recalling (1.4), we obtain

L2/2∗sSA ≤ L

which implies that either L = 0 or L ≥ Sn/(2s)A . Let us assume by contradiction
L ≥ Sn/(2s)A . Then, by (4.13) and (4.14) we obtain

c =
s

n
(‖u∞‖2X0,A

+ L) ≥ s

n
L ≥ s

n
Sn/(2s)A ,

in contrast with our standing assumption on c. Therefore L = 0 and from (4.14)
we conclude the proof. �

5. Proof of Theorem 1.1

In this section we prove our main result given in Theorem 1.1. To state the
number of solutions of problem (1.1), we must explicitly describe λ∗ with its mul-
tiplicity, as in (1.6). Since, λ∗ = λk for some k ∈ N, with multiplicity m ∈ N by
assumption, we have that

λ∗ = λ1 < λ2 if k = 1

λk−1 < λ∗ = λk = · · · = λk+m−1 < λk+m if k ≥ 2 .
(5.1)

Also, we have to observe that, under condition (1.7), the parameter λ > 0.
Indeed, by definition of λ∗ and taking into account Proposition 3.5, it is easily seen
that

λ∗ ≥ λ1. (5.2)
Now, by Hölder inequality,

‖u‖2L2(Ω) ≤ |Ω|
2s/n‖u‖2

L2∗s (Ω)
.

From this, (1.4) and (3.8), we obtain

λ1 ≥ SA|Ω|−2s/n ,

which combined with (5.2) yields

λ? ≥ SA|Ω|−2s/n .

Hence, as a consequence of this and of (1.7), we obtain λ? > 0.
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Lemma 5.1. Let λ ∈ R satisfy (1.7), with λ? in (1.6) counted with multiplicity
m ∈ N. Then, for any w ∈ spanR {f1, . . . , fk+m−1}, we have

JA,λ(w) ≤ s

n
(λ? − λ)n/(2s)|Ω|.

Proof. Let u ∈ spanR{f1, . . . , fk+m−1}. Then, we have

u(x) =
k+m−1∑
i=1

cifi(x)

with ci ∈ R, for i = 1, . . . , k +m− 1.
By Proposition 3.7, and taking into account (5.1), we obtain

‖u‖2X0,A
=
k+m−1∑
i=1

c2i ‖fi‖2X0,A
=
k+m−1∑
i=1

λic
2
i

≤ λk
k+m−1∑
i=1

c2i = λk‖u‖2L2(Ω)

= λ?‖u‖2L2(Ω) ,

so that, by using Hölder inequality, we have

JA,λ(u) =
1
2
‖u‖2X0,A

− λ

2
‖u‖2L2(Ω) −

1
2∗s
‖u‖2

∗
s

L2∗s (Ω)

≤ 1
2

(λ? − λ)‖u‖2L2(Ω) −
1
2∗s
‖u‖2

∗
s

L2∗s (Ω)

≤ 1
2

(λ? − λ)|Ω|2s/n‖u‖2
L2∗s (Ω)

− 1
2∗s
‖u‖2

∗
s

L2∗s (Ω)
.

(5.3)

Now, for t ≥ 0 we define the function

g(t) :=
1
2

(λ? − λ)|Ω|2s/nt2 − 1
2∗s
t2
∗
s .

Note that the function g is differentiable in (0,∞) and

g′(t) = (λ? − λ)|Ω|2s/nt− t2
∗
s−1,

with (λ?−λ)|Ω|2s/n > 0 since λ < λ? by (1.7). Thus, we have g′(t) ≥ 0 if and only
if

t ≤ t̃ :=
[
(λ? − λ)|Ω|2s/n

]1/(2∗s−2)
.

As a consequence of this, t̃ is a maximum point for g and so for any t ≥ 0

g(t) ≤ max
t≥0

g(t) = g(t̃) =
s

n
(λ? − λ)n/(2s)|Ω|. (5.4)

By (5.3) and (5.4) we obtain

sup
u∈spanR{f1,...,fk+m−1}

JA,λ(u) ≤ max
t≥0

g(t) =
s

n
(λ? − λ)n/(2s)|Ω|,

concluding the proof. �

Lemma 5.2. Let λ ∈ R satisfy (1.7), with λ? in (1.6) counted with multiplicity
m ∈ N. Then, there exists δ > 0, with

δ <
s

n
(λ? − λ)n/(2s)|Ω|,
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and ρ > 0 such that JA,λ(v) ≥ δ, for any v ∈ V with ‖v‖X0,A
= ρ, where

V =

{
X0 if k = 1
Ek if k ≥ 2 ,

(5.5)

with Ek given in (3.6).

Proof. Let u ∈ V . Then
‖u‖2X0,A

≥ λ?‖u‖2L2(Ω) (5.6)
Indeed, if u ≡ 0, then the assertion is trivial, while if u ∈ V \ {0} it follows from
the variational characterization of λ? = λk, given by (3.8) and (3.9).

Thus, by (1.4), (5.6) and taking into account that λ > 0, as seen above, it follows
that

JA,λ(u) ≥ 1
2

(
1− λ

λ?

)
‖u‖2X0,A

− 1

2∗sS
1/2
A

‖u‖2
∗
s

X0,A

= ‖u‖2X0,A

(1
2

(
1− λ

λ?

)
− 1

2∗sS
1/2
A

‖u‖2
∗
s−2
X0,A

)
.

(5.7)

Thus, let u ∈ V be such that ‖u‖X0,A
= ρ > 0. Since 2∗s > 2, to conclude the proof

it is enough to choose ρ sufficiently small so that
1
2

(
1− λ

λ?

)
− 1

2∗sS
1/2
A

ρ2∗s−2 > 0, (5.8)

and

ρ2
(1

2

(
1− λ

λ?

)
− 1

2∗sS
1/2
A

ρ2∗s−2
)

) <
ρ2

2

(
1− λ

λ?

)
<
s

n
(λ? − λ)n/(2s)|Ω|. (5.9)

�

Proof of Theorem 1.1. Let λ ∈ R satisfy (1.7), with λ? in (1.6) counted with mul-
tiplicity m ∈ N.

By (2.1) it is immediate to see that JA,λ satisfies (A1) of Theorem 2.1. While
(A2) and (A3) hold true thanks to Proposition 4.1, Lemmas 5.1 and 5.2, considering
W = spanR {e1, . . . , ek+m−1}, V given in (5.5) and that, by (1.7),

δ <
s

n
(λ? − λ)n/(2s)|Ω| < s

n
Sn/(2s)A .

Thus, since dim W = k+m−1 and codimV = k−1, by Theorem 2.1 the functional
JA,λ has m pairs {−uλ,i, uλ,i} of critical points whose critical values JA,λ(±uλ,i)
are such that

0 < δ ≤ JA,λ(±uλ,i) ≤
s

n
(λ? − λ)n/(2s)|Ω| (5.10)

for any i = 1, . . . ,m.
Since JA,λ(0) = 0 and by (5.10), it is immediate to see that these critical points

are non-trivial. Hence, problem (1.1) admits m pairs of non-trivial weak solutions.
Now, fix i ∈ {1, . . . ,m}. By (5.10) we obtain

s

n
(λ∗ − λ)n/(2s)|Ω| ≥ JA,λ(uλ,i) = JA,λ(uλ,i)−

1
2
〈J ′A,λ(uλ,i), uλ,i〉

=
s

n
‖uλ,i‖

2∗s
L2∗s (Ω)

,
(5.11)

so that, passing to the limit as λ→ λ∗ in (5.11), it follows that

‖uλ,i‖L2∗s (Ω) → 0 as λ→ λ∗. (5.12)



EJDE-2018/153 CRITICAL MAGNETIC FRACTIONAL PROBLEMS 17

Also, by (5.12) and [15, Lemma 2.2], we also get

‖uλ,i‖L2(Ω) → 0 as λ→ λ∗. (5.13)

Thus, arguing as in (5.11), we have

s

n
(λ? − λ)n/(2s)|Ω| ≥ JA,λ(uλ,i) =

1
2
‖uλ,i‖2X0,A

− λ

2
‖uλ,i‖2L2(Ω) −

1
2∗s
‖uλ,i‖

2∗s
L2∗s (Ω)

,

which combined with (5.12) and (5.13) gives

‖uλ,i‖X0,A
→ 0 as λ→ λ∗.

This completes the proof. �
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of the Istituto Nazionale di Alta Matematica (INdAM).

A. Fiscella realized this manuscript with the auspices of the FAPESP Project ti-
tled Fractional problems with lack of compactness (2017/19752–3) and of the CNPq
Project Variational methods for singular fractional problems (3787749185990982).

References

[1] Ambrosio, V.; Existence and concentration results for some fractional Schrödinger equations
in RN with magnetic fields. Preprint, https://arxiv.org/abs/1801.00199

[2] Ambrosio, V.; d’Avenia, P.; Nonlinear fractional magnetic Schrödinger equation: existence
and multiplicity. J. Differential Equations, 264 (2018), 3336–3368.

[3] Barrios, B.; Colorado, E.; de Pablo, A.; Sánchez, U.; On some critical problems for the

fractional Laplacian operator. J. Differential Equations, 252 (2012), 6133–6162.
[4] Bartolo, P.; Benci, V.; Fortunato, D.; Abstract critical point theorems and applications to

some nonlinear problems with strong resonance at infinity. Nonlinear Anal., 7 (1983), 981–

1012.
[5] Binlin, Z.; Squassina, M.; Xia, Z.; Fractional NLS equations with magnetic field, critical

frequency and critical growth. Manuscripta Math. 155 (1-2) (2018), 115–140.
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