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Abstract. In this work we are interested in the elliptic sector of autonomous

differential systems with a degenerate equilibrium point at the origin, and
in their Euler discretization. When the linear part of the vector field at the

origin has two zero eigenvalues, then the differential system has an elliptic

sector, under some conditions. We describe this elliptic sector and we show
that the associated Euler discretized system has an elliptic sector converging

to that of the continuous system when the step size of the discretization tends

to zero.

1. Introduction

In this work we consider the planar differential system
ẋ = P (x, y)

ẏ = Q(x, y)
(1.1)

where P and Q are analytic functions from R2 to R. Also we consider their Euler
discretization

xn+1 = xn + hP (xn, yn)

yn+1 = yn + hQ(xn, yn)
(1.2)

where h > 0 is the step size of the discretization. We assume that the origin is an
isolated equilibrium point of (1.1) and that system (1.1) has an elliptic sector S0.

The main aim of this work is to explore to what extent the discrete system (1.2)
presents also an elliptic sector Sh and whether Sh tends to S0 in the sense of the
Hausdorff distance, when h tends to zero.
In order to define an elliptic sector of (1.1), we consider a circle C with center
(0, 0) and radius r, containing no other equilibria than the origin. We will assume
that there exist two solutions γ1 and γ2 of system (1.1) tending to the origin; we
assume for example that γ1 tends to the origin when t tends to +∞ and γ2 tends
to the same point when t tends to −∞. We denote by γ∗1 and γ∗2 the respective
corresponding orbits to the solutions γ∗1 and γ∗2 . Let M1 and M2 be the respective
intersection points of γ∗1 and γ∗2 with the circle C such that, taking into account
the direction of the orbits, M1 is the last intersection point of γ∗1 with the circle
C and M2 is the first intersection point of γ∗2 with C. Let σ be the closed curve
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made up of the two segments OM1 and OM2 parts of the two orbits γ∗1 and γ∗2 ,
the origin and the oriented arc of C joining M1 to M2 in the forward direction.
The region Rσ delimited by σ is said to be a sector. An elliptic sector is a sector
containing only nested homoclinic or parts of nested homoclinic orbits (Figure 1)
[1]. We recall that a solution is said to be homoclinic if it is defined on R entirely
and tends to the origin when t tends to +∞ as well as when t tends to −∞.

Figure 1. A sector and an elliptic sector

To pose the problem raised above correctly, we must define the notion of homo-
clinic orbits of system (1.2), even when the map

Fh:(x, y) 7→ (x+ hP (x, y), y + hQ(x, y))

is not invertible. This leads us to define the S-invertibility notion. The map Fh
is said to be S-invertible if, for any m0 in R2, there exist two reals R > 0 and
h0 > 0 such that for any h in ]0, h0], there exists a unique m−1,h in R2 for which
‖m−1,h‖ ≤ R and Fh(m−1,h) = m0. In this case, we have necessarily

lim
h→0

m−1,h = m0.

In other words, Fh is S-invertible if any point of the plane has a unique “good pre-
decessor” by the application Fh. The notation S comes from nonstandard analysis
(NSA): in the context of NSA, a planar map is said to be S-invertible if any limited
point of the plane has a unique limited predecessor; for the standard functions, this
notion coincides with the usual invertibility.

Let U be an open set of the disc D(0; r0) and simply connected. We say that U
is an elliptic sector of the discrete system (1.2) if any solution emanating from U
is homoclinic.

The works of Beyn [2]. Fiedler and Scheurle [24] and that of Zou [40] deal with
the problem of the persistence of the non-degenerate homoclinic orbits of an au-
tonomous system after the discretization of the latter. They give an error estimate
of order O(hd), for the difference between the homoclinic solution of the differential
equation and that of the associated discrete equation, where h is the step size of
the method of discretization and d its order. They also give the length l(h) of the
parameter interval over which the homoclinic orbit persists. On the other hand,
given an autonomous differential system which has an equilibrium point at (0, 0)
not necessarily hyperbolic and an unstable center manifold Wu

c , it is shown in [3]
that, in a small neighborhood of the origin, the discrete system associated by a one
step method has, under some conditions, an invariant manifold close to Wu

c . In the
hyperbolic case, it is shown in [4] that, under some conditions, the phase portrait
of the differential system is correctly reproduced in the associated discretization by



EJDE-2018/183 ELLIPTIC SECTORS AND EULER DISCRETIZATION 3

a one step method, on an arbitrary time interval. In [19], the author examines the
conditions which make the solution of the differential system close to that of the
associated discretized one on an infinite time interval. A similar study has been
made in [29] for the structurally stable systems without periodic solutions. On the
other hand, it has been shown in [21] that in the hyperbolic case, the local stable
manifold of the discrete system tends to that of the corresponding differential sys-
tem when the step size tends to zero (see also [23, 28]). An extension of this result
to nonautonomous differential systems is given in [27]. A Taylor expansion approx-
imation of this manifold is given in [20]. In [22] it is shown that, in the hyperbolic
case, the maps defining the vector fields and the associated discretized system by
the one step method are uniformly topologically equivalent. Other results about
numerical calculus of homoclinic, heteroclinic and periodic orbits are established in
[5]-[11], [15]-[26], [39] and [40].

It is known that, when system (1.1) has an elliptic sector, then the associated
Jacobian matrix M of the function (x, y) 7→ (P (x, y), Q(x, y)) at point (0, 0), has
two zero eigenvalues (cf. [33, p. 241]); the origin is a non-hyperbolic equilibrium
point. Two situations are possible. The first one is that where the matrix M is
null. In this case, the behavior of the solutions near the origin is very complex;
If the smallest degree of the nonlinear terms of (1.1) is m, then the neighborhood
of the origin will be split into 2(m + 1) parabolic, hyperbolic or elliptic sectors.
The number of elliptic sectors existing in system (1.1) depends on the index of the
equilibrium point (cf. [36], p 151): let C be a Jordan curve containing (0, 0) and no
other critical point of (1.1) in its interior; then the index of the equilibrium point
(0, 0) with respect to (1.1) is given by

I(1.1)(0, 0) = I(1.1)(C) =
1

2π

∮
C

PdQ−QdP
P 2 +Q2

.

The second situation is that where the matrix M can be reduced by a linear trans-

formation to M ′ =
(

0 1
0 0

)
; it is in this situation that we are interested in this

work. In this case, system (1.1) is reduced by a sequence of analytic changes of
variables to the form (see [1])

ẋ = y

ẏ = axr
(
1 + k(x)

)
+ bxpy

(
1 + g(x)

)
+ y2f(x, y)

(1.3)

where f , g and k are analytic functions, such that k(0) = g(0) = f(0, 0) = 0, a
and b are real parameters, r and p are integer parameters, satisfying r = 2m + 1,
m ≥ 1, a < 0, b 6= 0, p ≥ 1, p odd and either

• p = m and ∆ = b2 + 4(m+ 1)a ≥ 0, or
• p < m.

Without loss of generality, by a linear change of variable, we assume in all the
following that b is strictly positive. In all this work, we place ourselves in the
situation p = m = 1 and ∆ = b2+8a > 0. These assumptions are relatively natural.
Indeed, the assumption p = m = 1 is generic in some sense. The assumption ∆ ≥ 0
is necessary to get an elliptic sector, and the assumption ∆ 6= 0 is generic. The
affine transformation (x, y) 7→ (x,

√
−ay) together with the time change τ =

√
−at

and the parameter change b 7→ b/
√
−a, allow us to assume that a = −1. Thus we
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will be interested in the elliptic sector of system
ẋ = y

ẏ = −x3(1 + k(x)) + bxy
(
1 + g(x)

)
+ y2f(x, y)

(1.4)

and in its persistence in the associated Euler discretized system
xn+1 = xn + hyn

yn+1 = yn + h
(
− x3

n

(
1 + k(xn)

)
+ bxnyn

(
1 + g(xn)

)
+ y2

nf(xn, yn)
) (1.5)

The main result of this work is the following.

Theorem 1.1. There exists h0 > 0 such that for any h in ]0, h0], there exists a
subregion Sh of the elliptic sector S0 of system (1.4) with the following properties:

• Any solution of system (1.5) starting from Sh is homoclinic.
• When h tends to zero, Sh tends to S0 in the sense of the Hausdorff distance.

We do not try to obtain a maximal region of homoclinic orbits of (1.5), whose
structure may be highly complicated. In particular we do not study the behavior of
orbits of (1.5) starting close to the boundary of S0. A more precise study of these
orbits remains to be done. The speed of convergence of Sh to S0 as h tends to 0 is
another interesting problem which is not discussed here.

The article is organized as follows. In section two, we give a local description of
the elliptic sector of system (1.4) whose existence is stated above. To do so, we will
use the results obtained during the study of the global behavior of the solutions of
the model example

ẋ = y

ẏ = −x3 + bxy
(1.6)

In section three, we give a complete proof of theorem 1.1. In the last section we deal
with the elliptic sector of the family of differential systems which are diffeomorphic
to system (1.4) and with its persistence in the corresponding discretized systems.

2. Description of the continuous system

We are first interested in the global behavior of the solutions of system (1.6)
(Figure 2). The following proposition describes the phase portrait of (1.6). The
symmetry with respect to the y-axis allows to consider only the solutions of (1.6)
starting at points with positive abscissas. Let us denote ∆ = b2 − 8 and α1 =
(b−
√

∆)/4 and α2 = (b+
√

∆)/4 the solutions of the equation −2α2 + bα− 1 = 0.

Proposition 2.1. Let (x0, y0) be a point of the plane such that x0 > 0 and let
γ(t, x0, y0) be the solution of system (1.6) emanating from this point.

(1) If y0 < α1x
2
0, then the solution γ(t, x0, y0) is homoclinic.

(2) If α1x
2
0 < y0 < α2x

2
0, then

lim
t→−∞

x(t) = lim
t→−∞

y(t) = 0,

lim
t→+∞

x(t) = lim
t→+∞

y(t) = +∞

Moreover,

lim
t→−∞

y(t)
x(t)2

= α1 and lim
t→+∞

y(t)
x(t)2

= α2.
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(3) If α1x
2
0 < y0, then the trajectory γ crosses the y-axis at a point whose

y-coordinate is positive. Also

lim
t→+∞

x(t) = lim
t→±∞

y(t) = − lim
t→−∞

x(t) = +∞.

Figure 2. The phase portrait of system (1.6).

Hereafter, we give only a sketch of the proof since it is similar to proof of the
proposition 2.2. Note however that it uses the traditional tools of trap trajectories,
taking into account the fact that the curves y = α1x

2 and y = α2x
2 are solutions

of system (1.6), the blow-up theory [35] and other tools of qualitative study of
differential equations. Indeed, the application for system (1.6) of the two quasi-
homogeneous blow-ups of degree (1, 2)

x = u, y = u2v with dτ = udt, (2.1)

and
x = wz, y = z2 with dη = zdt (2.2)

produce respectively the systems

u′ = uv

v′ = −1 + bv − 2v2
(2.3)

and
w′ = 1 +

1
2
w4 − b

2
w2

z′ = −1
2
w3z +

b

2
wz

(2.4)

The phase portraits of systems (2.3) and (2.4) are illustrated in Figure 3.
The interpretation of these phase portraits allows us to prove the stated result.
Now, we prove the following proposition giving a local description of the elliptic

sector of system (1.4).

Proposition 2.2. System (1.4) has an elliptic sector. Moreover, the behavior of
the solutions of (1.4) near the origin is similar to that of system (1.6). More
precisely, in a neighborhood of the origin, solutions of (1.4) starting below the
parabola y = α1x

2 are homoclinic and solutions starting above the parabola y = α2x
2

are not homoclinic.
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Figure 3. Phase portraits of systems (2.3) and (2.4) for b = 3.

Proof. The two previous blow-ups applied to (1.4) give respectively the two systems

u′ = uv

v′ = −1 + bv − 2v2 − k(u) + bvg(u) + uv2f(u, u2v)
(2.5)

and

w′ = 1 +
w4

2
(1 + k(wz))− bw2

2
(1 + g(wz))− wz

2
f(wz, z2)

z′ = −w
3z

2
(1 + k(wz)) +

bwz

2
(1 + g(wz)) +

z2

2
f(wz, z2)

(2.6)

The blow-up x = XY , y = −Y 2 together with dξ = Y dt applied to system (1.4)
give

X ′ = −1− X4

2
(1 + k(XY ))− bX2

2
(1 + g(XY )) +

XY

2
f(XY,−Y 2)

Y ′ =
X3Y

2
(1 + k(XY )) +

bXY

2
(1 + g(XY ))− Y 2

2
f(XY,−Y 2)

(2.7)

System (2.5) has an unstable node on A1 = (0, α1) and a saddle on A2 = (0, α2)
(Fig. 4). The v-axis is invariant under system (2.5). The continuity of the solutions
with respect to the initial conditions gives the existence of δ > 0 such that for any
u0 in the interval ]−δ, δ], the solution of (2.5) starting at (u0, 0) tends to A2 when τ
tends to −∞ and enters in the lower half-plane after some time τ0 > 0 (depending
on u0).

System (2.6) has as equilibria (Figure 4) two saddles on B1 = (−
√

2α1, 0) and
on B2 = (

√
2α1, 0) and two nodes, stable on B3 = (−

√
2α2, 0) and unstable on

B4 = (
√

2α2, 0). The solutions in the neighborhoods of B1, B2, B3 and B4 having
the tangents w =

√
2α1, w = −

√
2α1, w =

√
2α2 or w = −

√
2α2, correspond in the

(x, y) plane to the solutions of system (1.4) whose order two approximations near
(0, 0) are given by y = α1x

2 and y = α2x
2.

The w-axis is invariant under system (2.6). By continuity of the solutions of (2.6)
with respect to the initial conditions, those that lie near B1 and B2 sufficiently
close to the lines w = −

√
2α2 and w =

√
2α2, with the initial conditions (w0, z0)
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Figure 4. the phase portraits of system (2.5) near A1 and A2

and of system (2.6) near B1, B2, B3 and B4 for f(x, y) = g(x) =
k(x) = x and b = 3.

such that −
√

2α2 < w0 <
√

2α2, move close to the w-axis, then cross the z-axis on
points whose y-coordinates are close to zero.

In the plane (x, y), this means that the corresponding solutions lie in the neigh-
borhood of the origin close to the curves y = α1x

2 and y = α2x
2, then cross the

y-axis near the origin.
System (2.7) has no equilibrium point and the X-axis is invariant under this system.
When Y = 0, system (2.7) becomes

X ′ = −1− 1
2
X4 − b

2
X2

Y ′ = 0
(2.8)

By continuity of solutions of (2.7) with respect to the initial conditions, there exist
some solutions emanating from points close enough to the X-axis, that cross the
Y -axis on points whose y-coordinates are sufficiently close to zero.

We deduce that, in the lower half-plane, there is no solution of system (1.4)
which tends to (0, 0). A simultaneous interpretation of results of the three blow-
ups applied to system (1.4) allows us to conclude. �

3. Homoclinic orbits of the discrete system (1.5)

In this part we give the proof of theorem 1.1. This proof is based on the properties
of solutions of system (1.6).

For convenience, we have chosen to use the formalism of Nonstandard Analysis
(NSA for short) [37] in the IST version due to E. Nelson [34]; In particular, we
use the tools of stroboscopy [38] and of permanence principle [30]. In a classical
framework, several statements can play the role of the permanence principle of NSA,
e.g. the Kaplun’s extension theorem [31] (see also [32, page 27]) or [18, Theorem
2.2.2].
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From now on, the functions f, g, k of system (1.6) are assumed to be standard,
and h > 0 is fixed infinitesimal. By the Transfer Principle of NSA, it is sufficient
to prove that, for all limited (x0, y0) ∈ S0 in the S-interior of S0, the solution
(xn, yn)n∈Z of (1.5) starting from (x0, y0) is homoclinic. We recall that (x0, y0) is
in the S-interior of S0 if there exists a standard r > 0 such that the disk of center
(x0, y0) and of radius r is in S0. For n < 0, the points (xn, yn) are given recursively
by Lemma 3.2.

The proof of Theorem 1.1 essentially uses the idea that for α2 � a � α1, the
region {(x, y) ∈ R2; y < ax2} is positively invariant under system (1.6). By a � b
we mean that a is less than b and not infinitly close to b.

To prove Theorem 1.1, we need a second lemma which is inspired by the idea
above. The proof of this lemma requires to highlight an intermediate discrete
system. Put `(x, y) = −x3(1 + k(x)) + bxy(1 + g(x)) + y2f(x, y) and Fh(x, y) =
(x+ hy, y + h`(x)).

Also there exists a function ψ defined near x = 0, satisfying `(x, ψ(x)) = 0 and

ψ(x) =
1
b
x2 + o(x2).

Then, the component ẏ of the vector field (1.4) becomes zero on the curve y = ψ(x).
Now, let (x0, y0) be a limited point in the elliptic sector of system (1.4), not

infinitely close to its border. Several cases are possible, but only one is presented
here: x0 > 0 and 0 < y0 < ψ(x0). The other cases are similar.

The change of variables x = εX, y = ε2Y and the time change τ = εt where
ε ' 0, transform system (1.4) into

X ′ = Y

Y ′ = −X3(1 + k(εX)) + bXY (1 + g(εX)) + εY 2f(εX, ε2Y )
(3.1)

where (′) = d/dτ . By using the short shadow lemma [12], it appears that the
solutions of system (3.1) starting at limited points (X0, Y0) have for shadows in a
limited time interval, solutions of system (1.6). Let (x̄(t), ȳ(t)) denote the solution
of system (1.4) starting at point (x0, y0), and let (xn, yn)n∈N be the solution of
system (1.5) started from the same point.

For nh bounded, by using the stroboscopy lemma [38],

(xn, yn) ' (x̄(nh), ȳ(nh)) (3.2)

By permanence [12], there exists N in N such that Nh is infinitely large and for
any n < N , approximation (3.2) remains true. Then

(x̄(Nh), ȳ(Nh)) ' (0, 0)

Let ε = −x̄(Nh) and put xn = εXn, yn = ε2Yn and h̄ = hε. System (1.5) becomes

Xn+1 = Xn + h̄Yn

Yn+1 = Yn + h̄
(
−X3

n(1 + k(εXn)) + bXnYn(1 + g(εXn))

+ εY 2
n f(εXn, ε

2Yn)
) (3.3)

The following lemmas are used in the proof of theorem 1.1.

Lemma 3.1. Let α2 � a � α1. Any solution (Xn, Yn)n∈N of system (3.3) starting
at a limited point (X0, Y0) in the region {(x, y) ∈ R2/x < 0, y < ax2} remains in
it.
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Proof. We use induction on n:

Xn+1 = Y Xn + hn ≤ Xn + ha(Xn)2 = Xn(1 + haXn)

As Xn is assumed negative, then Xn+1 < 0. Otherwise,

Yn+1 − aX2
n+1 = (Yn − aX2

n)(1 + h̄(b− 2a+ bg(εXn))Xn)

+ h̄(−2a2 + ba− 1 + bag(εXn)− k(εXn))X3
n

+ h̄εY 2
n f(εXn, ε

2Yn)− ah̄2Y 2
n

On the other hand, −2a2 + ba− 1 � 0. Since g and k are standard, continuous and
satisfy g(0) = k(0) = 0, we deduce that

−2a2 + ba− 1 + bag(εXn)− k(εXn) � 0.

Hence(
− 2a2 + ba− 1 + bag(εXn)− k(εXn)

)
X3
n + εY 2

n f(εXn, ε
2Yn) < 0 (3.4)

Thus Yn+1 − aX2
n+1 < 0, when Yn − aX2

n < 0. �

Lemma 3.2. Any limited point in the plane has a unique limited predecessor by
system (1.5).

Proof. With the previous notation ` and Fh, we must show that for any limited
point (u, v) of the plane, there exists a unique limited point (x, y) such that

Fh(x, y) = (u, v). (3.5)

We mention that such a point, if it exists, is necessarily infinitely close to (x, y).
Moreover, x is given by x = u − hy. Then, it suffices to show that there exists a
unique y ∈]v − 1, v + 1[ satisfying

v = y + hl(u− hy, v). (3.6)

For a fixed (u, v), we denote

L(y) = v − y − hl(u− hy, v)

Since l(u− h(v + 1), v) is limited,

L(v + 1) = −1− hl(u− h(v + 1), v) < 0

In the same way,
L(v − 1) = 1− hl(u− h(v − 1), v) > 0

Also, for any limited y,

L′(y) = −1− h(−h ∂l
∂x

(u− hy, v) +
∂l

∂y
(u− hy, v)) < 0

Since L is continuous, the equation L(x) = 0 has a unique limited solution y in
]v − 1, v + 1[. �

We fix a limited point (x0, y0). Let (x−n, y−n)n∈N∗ be the predecessors sequence
of system (1.5) defined by lemma 3.2. Then, this sequence is uniquely defined, as
long as (x−n, y−n) is limited, by

x−n = x−n−1 + hy−n−1

y−n = y−n−1 + h`(x−n−1, y−n−1)

satisfying (x−1, y−1) ' (x0, y0) and (x−n−1, y−n−1) ' (x−n, y−n).



10 N. MOHDEB, A. FRUCHARD, N. MEHIDI EJDE-2018/183

Lemma 3.3. Let a ∈ R such that α2 � a � α1 and (X0, Y0) a limited point in
the plane such that 0 < Y0 < aX2

0 and X0 > 0. The solution (X−n, Y−n)n∈N∗ of
system (3.3) starting at (X0, Y0), does not leave the region of the plane

{(X,Y ) ∈ R2 : X > 0, 0 < Y < aX2}

Proof. We use induction. We will show that Y−1 < aX2
−1; The same reasoning

allows us to show that Y−n < aX2
−n for any n > 1. We denote δ = −2a2 + ba− 1 +

bag(εX−1)− k(εX−1) and β = εf(εX−1, ε
2Y−1)− ah̄. We have

Y0 − aX2
0 = (Y−1 − aX2

−1)
(

1 + h̄
(
b− 2a+ bg(εX−1)

)
X−1

)
+ h̄δX3

−1 + h̄β

We will distinguish two cases: If β ≥ 0, since δ > 0 we have

0 ≥ Y0 − aX2
0 ≥ (Y−1 − aX2

−1)(1 + h̄(b− 2a+ bg(εX−1))X−1).

This means that Y−1 − aX2
−1 < 0.

On the other hand,

δX3
−1 + βY 2

−1 = βY−1(Y−1 − aX2
−1) + aβX2

−1

(
Y−1 +

δ

aβ
X−1

)
.

Since δ 6' 0, δ/(aβ) is infinitely large, then if β < 0,

δ

aβ
X−1 + aX2

−1 =
( δ

aβ
+ aX−1

)
X−1 < 0.

Thus,
δX3
−1 + βY 2

−1 ≥ β(Y−1 − aX2
−1)(Y−1 + aX2

−1),

hence

Y0 − aX2
0

≥ (Y−1 − aX2
−1)
(

1 + h̄(b− 2a+ bg(εX−1))X−1 + β(Y−1 + aX2
−1)
)

It results in this case that Y−1 < aX2
−1. �

Proof of theorem 1.1. By applying the stroboscopy lemma, the solution (xn, yn)n∈N
reaches a point of the region

{(x, y) ∈ R2 : x < 0, 0 < y < ψ(x)}

and as long as yn < α2x
2
n then xn+1 < 0. Furthermore, this solution reaches a

point (xq, yq) infinitely close to the origin, in the region

{(x, y) ∈ R2 : x < 0, ψ(x) < y < ax2}.

On the other hand, by lemma 3.1,

∀n > q, xn < 0, ψ(xn) < yn < ax2
n

and the sequence (xn, yn)n∈N is convergent; its limit is the stationary point (0, 0)
of (1.5).

Likewise, by using lemmas 3.2 and 3.3, it results that the sequence (x−n, y−n)n∈N
converges to (0, 0) when n tends to +∞. �
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4. Discretization of the family of planar differential systems
diffeomorphic to (1.4)

In this section we consider a system of the form (1.1) which is diffeomorphic to
system (1.4) in the following sense: there exists a diffeomorphism ϕ:R2 → R2 given
by

ϕ = (ϕ1, ϕ2) : (x, y) 7→ (u, v) = (ϕ1(x, y), ϕ2(x, y))

such that a function from R to R2, t 7→ (x(t), y(t)) is a solution of (1.1) if and
only if the function t 7→ (u(t), v(t)) = ϕ(x(t), y(t)) is a solution of (1.4) (with the
variables denoted u and v instead of x and y).

It will also be possible to make a time change, but the question which interests
us concerns the elliptic sectors and these do not depend on the parametrization
of the integral curves. We then assume immediately that the two systems are
diffeomorphic without time change. We mention that it is not the same to discretize
a differential system before or after applying diffeomorphisms.

System (1.1) can be written as

ẋ = ax+ by + P1(x, y)

ẏ = cx+ dy +Q1(x, y)
(4.1)

where a, b, c and d are reals and P1 and Q1 are analytic functions whose Taylor
expansion near the origin begins with terms of total degree on x and y greater than
or equal to two.

We know that when system (4.1) has an elliptic sector, then the two eigenvalues
of the associated matrix of its linear part are zero [33, 36]. This means that

a = −d,
a2 + bc = 0

|a|+ |b|+ |c| 6= 0

The most generic case is when a 6= 0, b 6= 0 and c 6= 0. In this case, the change of
variables

χ:(u, v) 7→ (x, y) = χ(u, v)

defined by

x = v

y = cu− av + P̄ (v, cu− av)

transforms system (4.1) into system (1.4). The Jacobian of χ at point (0, 0) is
(−c)6= 0. This means that in some neighborhood of (0, 0), the map χ is bijective.
It suffices to put ϕ = χ−1. We write

ϕ1(x, y) = f̄(x, y)

ϕ2(x, y) = x

where f̄ is an analytic function such that f̄(0, 0) = 0. It follows that the diffeomor-
phism ϕ transforms system (1.2) into

un+1 = un + hvn

vn+1 = vn + hl(un, vn) + h2G(xn, yn),
(4.2)
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where

G(un, vn) =
1
dn

( (un+1 − un)2

2
∂2ϕ1

∂u2
(un, vn) +

(vn+1 − vn)2

2
∂2ϕ1

∂v2
(un, vn)

+ (un+1 − un)(vn+1 − vn)
∂2ϕ1

∂u∂v

)∂ϕ2

∂u
(un, vn)

+ o
(
‖(un+1, vn+1)− (un, vn)‖3

)
with

dn =
∂ϕ1

∂u
(un, vn)

∂ϕ2

∂v
(un, vn)− ∂ϕ2

∂u
(un, vn)

∂ϕ1

∂v
(un, vn)

We can check that G can be written for any (x, y) ∈ R2 as

G(x, y) = xyG1(x, y) + y2G2(x, y)

where G1 and G2 are analytic functions in R2.
In the same way as system (1.2), system (1.4) has an elliptic sector. Hence,

system (1.1) has also an elliptic sector. We will show by passing through system
(4.2) obtained by diffeomorphism from (1.4) and by adapting the same proof as for
theorem 1.1, that system (1.2) has an elliptic sector tending to that of system (1.1)
when h tends to zero.

We remark that the study of elliptic sectors in system (1.4) and in its discretized
one (1.5) is similarly generalized to system (1.3) and to its discretized one obtained
by Euler in the case where p = m and ∆ > 0. The case ∆ = 0 is treated separately.
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