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Abstract. A theorem of Gearhart concerning strongly continuous semigroups
in Hilbert spaces is extremely useful for stability analysis of concrete equations;

see e.g. [20]), and for control theory [27] or [13, page 475]. Phóng Vũ introduced

an equivalent condition in [23]. The aim of this article is to extend these results
from the autonomous case to time dependent 1-periodic evolution equations in

Hilbert spaces. Both cases (continuous and discrete) are analyzed and global
and local versions of the Phóng Vũ theorem are provided.

1. Introduction

The following result is well known.

Theorem 1.1. For any strongly continuous semigroup T = {T (t)}t≥0 that acts on
a complex Hilbert space H the following three statements are equivalent:

(1) T is uniformly exponentially stable i.e. its growth bound

ω0(T) := inf
t≥0

ln ‖T (t)‖
t

< 0. (1.1)

(2) For every vector b in H the solutions of the following Cauchy problems
associated to the generator A of T

u′(t) = Au(t) + eiµtb, t ≥ 0, µ ∈ R
u(0) = 0

(1.2)

are bounded on R+ (uniformly with respect to the parameter µ), or equiva-
lently

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)xds‖ := M(x) <∞ ∀x ∈ H. (1.3)

(3) The resolvent operator R(z,A) exists for z ∈ C+ := {<(z) > 0} and

sup
z∈C+

‖R(z,A‖ <∞. (1.4)
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The proof of (2) ⇒ (3) was given by Phóng Vũ in [23] and the implication
(3) ⇒ (1) is known as the Gearhart-Prüss Theorem, [15, 24]. Different proofs
of this result were given in the literature by many authors. For example, the
proof in [27] relies on the strong connection of this theorem and the half plane
version of an old theorem of Paley and Wiener. The Gearhart-Prüss Theorem is
not valid for semigroups acting on arbitrary Banach spaces, see for example [17] for
a counterexample.

In [23] the equivalence between (1.3) and the negativeness of ω0(T) was settled.
We mention that the proof depends of the implication (3) ⇒ (1). For information
concerning strongly continuous semigroups we refer the reader to the monographs
[13, 16, 18, 22] and the references therein.

Let X be a complex Banach space and denote by L(X) the Banach algebra
of all bounded linear operators acting on X. The norms in X and in L(X) will
be denoted by ‖ · ‖. Recall that a family U = {U(t, s) : (t, s) ∈ R2, t ≥ s} of
bounded linear operators acting on X is called a one periodic strongly continuous
evolution family if U(t, t) = I- the identity operator on X, U(t, s)U(s, r) = U(t, r)
for all reals t ≥ s ≥ r, the map (t, s) 7→ U(t, s) is strongly continuous on the set
∆ := {(t, s) ∈ R2 : t ≥ s} and U(t, s) = U(t+1, s+1) for every pair (t, s) ∈ ∆. The
evolution family U is called exponentially bounded if there exists a real number
ω such that the map (t, s) 7→ e−ω(t−s)U(t, s) is bounded in L(X) and uniformly
exponentially stable if there exists a negative ω with that property. Throughout the
paper we assume that the evolution families are exponentially bounded. Clearly, if
U verifies the convolution condition U(t, s) = U(t − s, 0) for every (t, s) ∈ ∆ then
the family T = {U(t, 0) : t ≥ 0} is a strongly continuous semigroup that acts on X.
Thus it is natural to ask if the family U is uniformly exponentially stable provided
(1.3) holds when U(t, s) replaces T (t− s). The proof of such a result cannot follow
the ideas of Vũ because in the non-autonomous case an analogue for the implication
(3) ⇒ (1) does not exist. As expected, additional assumptions are required. The
following result was obtained in [4].

Theorem 1.2. A strongly continuous one periodic evolution family U of bounded
linear operators acting on a Hilbert space H is uniformly exponentially stable pro-
vided that for every x ∈ X the map t 7→ U(t, 0)x satisfies a Lipschitz condition on
(0, 1) and (1.3) holds when U(t, s) replaces T (t− s).

Let X be a complex Banach space and α ∈ (0, 1]. Recall that a X-valued
function f defined on a real closed interval [a, b] is called α-Hölder continuous with
the constant Lf if

‖f(t)− f(s)‖ ≤ Lf |t− s|α ∀t, s ∈ [a, b]. (1.5)

The next Lemma collects some facts concerning α-Hölder continuity. Its proof
is obvious so we omit the details. As usual by ‖f‖∞ we denote the uniform norm
of f in the space C([a, b], X).

Lemma 1.3. Let h:[a, b]→ C and H:[a, b]→ X be α-Hölder continuous functions
on the closed interval [a, b] with the constants Lh and LH , respectively. Then one
has:

(i) The map hH is α-Hölder continuous on [a, b] with the constant H∞Lh +
h∞LH .

(ii) H is β-Hölder continuous for every β ∈ (0, α] (with the same constant).
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(iii) The function t 7→ sin(πt) : [0, 1]→ C is Lipschitz continuous (i.e. 1-Hölder
continuous) with the constant π.

(iv) If, in addition, H(a) = H(b) then its extension by periodicity to R is α-
Hölder continuous with the constant LH .

Lemma 1.4. Let U = {U(t, s), t ≥ s ≥ 0} be a strongly continuous 1-periodic
evolution family of bounded linear operators acting on a complex Banach space X
and let h(t) := sin(πt), t ∈ [0, 1]. For each x ∈ X set

Hxh(t) := h(t)U(t, 0)x, t ∈ [0, 1] (1.6)

and denote by H̃xh the extension by periodicity of Hxh to the entire real axis. Then
(clearly) I(h, µ) :=

∫ 1

0
eiµth(t)dt 6= 0 for every µ ∈ R. Let T := U(1, 0). Then for

any positive integer n, one has
n∑
j=1

e−iµjT jx =
e−µjn

I(h, µ)

∫ n

0

eiµsU(n, s)H̃xh(s)ds. (1.7)

Note that for every integer k one has

I(h, 0) =
2
π
, I(h, (2k + 1)π) = ±1

2
i and I(h, µ) =

π

π2 − µ2
(1 + eiµ), (1.8)

elsewhere. To obtain (1.7) it is sufficient to write the integral in the right-hand side
of (1.7) as

n−1∑
k=0

∫ k+1

k

eiµsU(n, s)H̃xh(s)ds. (1.9)

and then to change the variable in the last integral.

Remark 1.5. With the notation from Lemma 1.4 assume that the map U(·, 0)x
is 1-Hölder continuous on [0, 1] with the constant L(x). Then H̃xh is 1-Hölder
continuous on R with the constant

L(H̃xh) := π‖1[0,1](·)U(·, 0)x‖∞ + L(x), (1.10)

where 1[0,1](·) denotes the characteristic function of the interval [0, 1]. In the par-
ticular case when the family {U(t, 0) : t ≥ 0} is a strongly continuous semigroup
generated by A and x ∈ D(A), we can take L(x) := supt∈[0,1] ||U(t, 0)|| · ||Ax|| and
then there exists a positive c (independent of x) such that

L(H̃xh) ≤ c(||x||2 + ||Ax||2)
1
2 . (1.11)

Denote by CP1(R, X) the set of all X-valued continuous functions f defined on
R which are periodic of period 1, i.e. f(t + 1) = f(t) for every t ∈ R. The vectors
in X

cn(f) :=
∫ 1

0

e2intπf(t)dt, n ∈ Z (1.12)

are called the Fourier-Bohr coefficients associated to f .
With CP 1

1 (R, X) we will denote the subset of CP1(R, X) consisting by all func-
tions f for which

‖f‖1 :=
∑
n∈Z
‖cn(f)‖ <∞. (1.13)

Further details concerning the space of all continuous functions satisfying (1.13)
(not necessarily periodic) can be found in the monograph [11] by Corduneanu.
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For each f ∈ CP 1
1 (R, X) consider its Fourier sum (in respect with the uniform

norm) given by
sf (t) =

∑
n∈Z

e−2intπcn(f), t ∈ R. (1.14)

Clearly sf ∈ CP1(R, X) and thus f = sf . The next lemma highlights an important
subset of CP 1

1 (R, X) when X is a complex Hilbert space.

Lemma 1.6. Let H be a complex Hilbert space and let f ∈ C1(R,H). If f is
α-Hölder continuous on [0, 1] for some α > 1

2 with a constant L = L(f) > 0, i.e.

‖f(t)− f(s)‖ ≤ L|t− s|α, ∀t, s ∈ [0, 1] . (1.15)

Then f ∈ CP 1
1 (R, X), i.e.

f(t) =
∑
n∈Z

e−2intπcn(f), t ∈ R. (1.16)

In addition, there exists a positive constant K depending only of α such that.

‖f‖1 ≤ 3‖f‖∞ + LK(α). (1.17)

Proof. Let ρ > 0 and set g(t) := f(t + ρ) − f(t − ρ). A simple calculation shows
that

cn(g) = −2i sin(2nπρ)cn(f), (1.18)

4αρ2αL2 ≥
∫ 1

0

‖g(t)‖2dt =
∑
n∈Z
‖cn(g)‖2. (1.19)

Let p be any positive integer and Ap := {n ∈ Z : 2p−1 < |n| ≤ 2p}. For ρ := 1
2p+2

and n ∈ Ap one has π
4 < 2|n|πρ ≤ π

2 and then

2 < 4 sin2(2nπρ). (1.20)

Thus, since card(Ap) = 2p−1, the usual Hölder inequality yields( ∑
n∈Ap

‖cn(f)‖
)2

≤ 2p−1
∑
n∈Ap

‖cn(f)‖2. (1.21)

Now (1.18), (1.19), (1.20) and (1.21) yield

2
( ∑
n∈Ap

‖cn(f)‖
)2

≤ 2p−1
∑
n∈Ap

‖cn(g)‖2 ≤ 2p−1ρ2α22αL2. (1.22)

Thus
∞∑
p=1

∑
n∈Ap

‖cn(f)‖ ≤ 2−1L

∞∑
p=1

2( 1
2−α)p = LK(α). (1.23)

Finally we obtain the estimate ‖f‖1 ≤ 3‖f‖∞ + LK(α). �

Lemma 1.7 ([7]). Let T be a bounded linear operator acting on a complex Banach
space X. If for every real number µ one has

sup
n∈Z+

‖
n∑
j=1

e−iµjT j‖ := M(µ) <∞, (1.24)

then the spectral radius of T is less than 1.



EJDE-2018/188 GLOBAL AND LOCAL VERSIONS FOR A PHÓNG VŨ THEOREM 5

2. Main results

The following result was stated in [8, [Theorem 2.1].

Theorem 2.1. Let U = {U(t, s) : t ≥ s} be a strongly continuous and 1- periodic
evolution family of bounded linear operators acting on a complex Hilbert space H.
Assume that:

(1) For every x ∈ H the trajectory U(·, 0)x is Lipschitz continuous on (0, 1),
and

(2)

sup
µ∈R

sup
t≥s≥0

‖
∫ t

τ

eiµsU(t, τ)xdτ‖ := M(x) <∞. (2.1)

Then the family U is uniformly exponentially stable.

In our first result (using a different approach) we show that both assumptions
in Theorem 2.1 can be relaxed.

Theorem 2.2. Let U = {U(t, s) : t ≥ s} be a strongly continuous and 1-periodic
evolution family of bounded linear operators acting on a complex Hilbert space H.
Assume that for some α > 1

2 and every x ∈ H the trajectory U(·, 0)x is α-Hölder
continuous on (0, 1) with the constant L(x) and

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsU(t, s)xds‖ := M(x) <∞. (2.2)

Then the family U is uniformly exponentially stable.

Proof. From the Uniform Boundedness Principle there exists a positive constant
M such that M(x) ≤M‖x‖ <∞. We use again the notations in Lemma 1.4. The
map H̃xh, given in (1.6), can be represented as in (1.16) and in view of Lemma 1.3
and then of Lemma 1.6 it belongs to CP 1

1 (R, X). Now for any positive integer n,
using (1.7), (1.16), (1.23), (1.10) and (2.1), we obtain

‖
n∑
j=1

e−iµjT jx‖ ≤ 1
|I(h, µ)|

‖
∫ n

0

eiµsU(n, s)H̃xh(s)ds‖

≤ 1
|I(h, µ)|

∑
k∈Z
‖
∫ n

0

ei(µ−2kπ)sU(n, s)ck(H̃xh)ds‖

≤ M

|I(h, µ)|
‖H̃xh‖1

≤ M

|I(h, µ)|
(3‖1[0,1](·)U(·, 0)x‖∞ +K(α)L(H̃xh)),

where L(H̃xh)) = π‖1[0,1](·)U(·, 0)x‖∞ +L(x). The assertion follows using Lemma
1.7. �

The following particular case of Theorem 2.2 is an extension of [3, Theorem 3.2]]
where only Cn-valued functions was considered.

Corollary 2.3. Let U = {U(t, s) : t ≥ s} be a strongly continuous and 1-periodic
evolution family of bounded linear operators acting on a complex Hilbert space H.
Assume that for every x ∈ H the map U(·, 0)x is differentiable on (0, 1) and there
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exist a family of bounded linear operators {A(t) : t ∈ [0, 1]} that acts on H such
that the map A(·)U(·, 0)x is bounded on (0, 1) and

d

dt
[U(t, 0)x] = A(t)U(t, 0)x, ∀t ∈ (0, 1), ∀x ∈ H. (2.3)

Then (2.1) holds true if and only if the evolution family U is uniformly exponentially
stable.

Proof. From (2.3) follows that the map A(·)U(·, 0)x is measurable. Thus for t, s ∈
(0, 1) one has

‖U(t, 0)x− U(s, 0)x‖ = ‖
∫ t

s

A(τ)U(τ, 0)xdτ‖

≤ |t− s|‖1[0,1](·)A(·)U(·, 0)x‖∞,

which shows that U(·, 0)x is 1-Hölder continuous on [0, 1]. Now we can apply
Theorem 2.2 to complete the proof. �

Remark 2.4. Assume that the map t 7→ A(t) is continuous in the uniform operator
topology of L(H) and that A(0) = A(1) and let Ã(·) be the extension by periodicity
of A(·) to the entire real axis. We can associate with the operator family {Ã(t) :
t ∈ R} an evolution family U which satisfies all the assumptions in Corollary 2.3.

We also refer the reader to [22, Theorem 5.1]]. The next example considers
the well-posedness in Corollary 2.3. A nice text concerning well-posedness which
addresses in particular the framework of this paper provided by Schnaubelt is [13,
pages 477-496], see also [12].

Example 2.5. Let (H, 〈, 〉) be a separable complex Hilbert space and let B =
{bn, n = 1, 2, . . . } be an orthonormal basis of it, i.e. 〈bn, bm〉 = 0 when m 6= n,
‖bn‖2 := 〈bn, bn〉 = 1 and the linear span of B is dense in H. Thus any x ∈ H
can be represented uniquely as x =

∑∞
n=1〈x, bn〉bn. Let (λn) be a sequence of real

numbers with λn ≤ −1 for every positive integer n. For every t ≥ 0 and every
x ∈ H let

T (t)x :=
∞∑
n=1

eλnt〈x, bn〉bn. (2.4)

It is well-known, [28], and easy to prove that:
(1) The family T := {T (t) : t ≥ 0} is a strongly continuous semigroup that

acts on H.
(2) ω0(T) = supn≥1 λn ≤ −1.
(3) D(A) = {x ∈ H :

∑∞
n=1 |λn|2|〈x, bn〉|2 <∞}

(4) Ax :=
∑∞
n=1 λn〈x, bn〉bn for all x ∈ D(A).

(5) The resolvent set of A, i. e. ρ(A) consist by all complex numbers z for
which infn≥1 |z − λn| > 0. In particular, {λ ∈ C : <(λ) ≥ 0} ⊂ ρ(A).

(6) R(λ,A) =
∑∞
n=1

1
λ−λn

〈x, bn〉bn, for all λ ∈ ρ(A). Clearly,

‖R(λ,A)‖ ≤ 2
|λ|+ 1

∀λ ∈ C, with <(λ) ≥ 0. (2.5)

Let a : R→ [1,∞) be a 1-periodic function having the property that there exists
two constants c > 0 and α ∈ (0, 1] such that

|a(t)− a(s)| ≤ c|t− s|α, ∀t, s ∈ [0, 1]. (2.6)
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Set A(t) := a(t)A for all t ∈ [0, 1]. Clearly D(A(t)) = D(A) for all t ∈ [0, 1] and

‖R(λ,A(t))‖ ≤ 2
|λ|+ 1

∀λ ∈ C, with <(λ) ≥ 0. (2.7)

Further, in view of (2.6) one has

‖(A(t)−A(s))A−1(τ)‖ =
1

a(τ)
|a(t)− a(s)| ≤ c|t− s|α, ∀t, s ∈ [0, 1]. (2.8)

Thus, the family

U(t, s)x := T
(∫ t

s

a(τ)dτ
)
x, 0 ≤ s ≤ t ≤ 1, x ∈ H (2.9)

solves the non-autonomous Abstract Cauchy Problem

u′(t) = A(t)u, 0 ≤ s < t ≤ 1, u(s) = x ∈ H. (2.10)

Clearly, the map t 7→ A(t)U(t, 0)x is bounded on (0, 1) for every x ∈ D(A). Further,
if
∑∞
n=1

−1
λn

<∞ then arguing exactly as in [4, Example 4.1] we can show that (2.1)
holds for the 1-periodic evolution family {U(t, s) : t ≥ s ≥ 0} obtained from (2.9)
with extension by periodicity.

Let A be a bounded linear operator acting on a complex Banach space X. The
following two statements are equivalent:

(i) There are the positive constants N and ν such that ‖etA‖ ≤ e−νt for all
t ≥ 0.

(ii) The solution of the Cauchy Problem u̇(t) = Au(t) + eiµt, t ≥ 0, u(0) = 0
is bounded on [0,∞) for each real number µ.

For a history of this result and its comparison with those in the non-autonomous
case we refer the reader to [25], when further references can be found. The next
Theorem shows that the result remains true for evolution semigroups acting on
CP1(R, X).

Evolution semigroups, was introduced in 1974 by Howland [19] and studied by
Evans [14]. The modern theory of evolution semigroups was initiated in 1995 with
the seminal paper of Latushkin and Montgomery-Smith [21]. For comprehensive
information concerning evolution semigroups we refer the reader to [10, 26] and the
references therein. Applications of the evolution semigroup theory to inequalities
concerning the growth bound of evolution families of operators acting in Banach
spaces are offered in [9].

Let X be a complex Banach space and U be a 1-periodic strongly continuous
semigroup acting on X. Then the operator T (t) given by

(T (t)f)(s) = U(s, s− t)f(s− t), s ∈ R, t ≥ 0, f ∈ CP1(R, X) (2.11)

is well defined and acts on CP1(R, X).

Theorem 2.6. A 1-periodic strongly continuous evolution family U = {U(t, s) :
t ≥ s ∈ R} is uniformly exponentially stable if and only if for each µ ∈ R and each
f ∈ CP1(R, X) one has

sup
t≥0

∥∥∫ t

0

eiµsT (t− s)fds
∥∥
CP1(R,X)

:= N(µ, f) <∞ . (2.12)
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Proof. Obviously if the family U is uniformly exponentially stable then the evolution
semigroup T associated to U on CP1(R, X) is uniformly exponentially stable which
yields (2.12). The proof of the converse statement is a little bit more difficult. Let
N = N(µ) > 0 be such that N(µ, f) ≤ N‖f‖∞. For any t ≥ 0, (2.12) yields∥∥(∫ t

0

eiµsT (t− s)fds
)

(t)
∥∥ =

∥∥∫ t

0

eiµsU(t, s)f(s)ds
∥∥ ≤ N‖f‖∞. (2.13)

Now, writing the latter inequality for t = n ∈ Z+ and with f replaced by H̃xh (the
extension by periodicity to the entire axis of the map Hxh defined in Lemma 1.4)
and taking into account (1.7) we obtain

‖
n∑
j=1

e−iµjT jx‖ ≤ 1
|I(h, µ)|

‖
∫ n

0

eiµsU(n, s)H̃xh(s)ds‖

≤ N

|I(h, µ)|
‖1[0,1](·)U(·, 0)x‖∞.

Since the above estimates hold for all x ∈ X we can apply Lemma 1.7 to finish the
proof. �

3. Discrete case

Let q ≥ 2 be a integer number, X be a complex Banach space and let U =
{U(n,m) : n ≥ m ≥ 0} ⊂ L(X) be a q-periodic discrete evolution family on X,
that is U(n, n)x = x, U(m,n)U(n, r) = U(m, r) and U(n + q,m + q) = U(n,m)
hold for all nonnegative integers m,n, r with m ≥ n ≥ r and all x ∈ X. We denote
by Tq := U(q, 0) the monodromy operator associated to the evolution family U . As
is well known the family U is uniformly exponentially stable, that is, there exists
the positive constants N and ν such that

‖U(n,m)‖L(X) ≤ Ne−ν(n−m) for all n ≥ m
if and only if the spectral radius of Tq

r(Tq) := lim
k→∞

‖T kq x‖
1
k ,

is less than 1.

Theorem 3.1. Let T be a bounded linear operator acting on a Banach space X.
If for a given x ∈ X one has

sup
µ∈R

sup
n∈Z+

‖
n∑
k=0

eiµkTn−kx‖ =: K(x) <∞, (3.1)

then
Tnx→ 0 as n→∞. (3.2)

Proof. Consider the sequence of holomorphic functions

hxn(z) :=
n∑
j=1

T jx

zj+1
, |z| > 1

2
.

From the classical Abel-Dirichlet Theorem in Banach spaces, the sequence (hxn(z))
converges for each z ∈ C with |z| > 1. Moreover, when |z| > ‖A‖+ 1 we have that
hxn(z) → (zI − T )−1x as n → ∞ and ‖hxn(z)‖ ≤ ‖T‖‖x‖ for every n ∈ Z+. Then
from the Phragmen-Lindelöf Theorem the sequence (hxn(z)) is uniformly bounded
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on {|z| ≥ 1} with the bound max{K(x), ‖A‖‖x‖}. The Vitali theorem ([1, Theorem
3.1], [18, Theorem 3.14.1]) assures us that (hxn(z))n converges for each z with |z| ≥ 1.
Thus T jx→ 0 as j →∞ as well. �

Remark 3.2. (1) If in addition T is power bounded, i.e., supn∈Z+
‖Tn‖ <∞, and

(3.1) is satisfied for x in a dense linear subspace D of X then T is strongly stable,
i.e. (3.2) holds for all x in X.

(2) Let b ∈ X be a given vector and let T (b) be the trajectory of T generated of
b, i.e. the set {Tnb : n ∈ Z+}. With Xb we denote the smallest closed subspace of
X which contains T (b). If for each b̃ ∈ Xb one has

sup
n∈Z+

‖
n∑
k=0

eiµkTn−k b̃‖ := K(b̃) <∞, (3.3)

then every trajectory of T starting from Xb is exponentially stable, i.e. for every
x ∈ Xb there exist ν > 0 and N > 0 such that

‖Tnx‖ ≤ Ne−νn‖x‖.

Indeed Xb is an invariant subspace of T (i.e. T (Xb) ⊆ Xb) and the assertion follows
by applying Lemma 1.7 to the restriction of the operator T to Xb.

Theorem 3.3. Let q ≥ 2 be an integer, H be a complex Hilbert space and let
U = {U(n,m) : n ≥ m ≥ 0} be a q-periodic evolution family of bounded linear
operators acting on H. For a given nonzero vector b ∈ H, let

Hb := span{b, U(1, 0)b, U(2, 0)b, . . . , U(q, 0)b}. (3.4)

If Hb is an invariant subspace for all operators U(1, 0), U(2, 0), . . . , U(q, 0) and if
there exists an absolute positive constant K such that

sup
µ∈R

sup
n∈Z+

‖
n∑
k=0

eiµkU(n, k)v‖ ≤ K‖v‖ ∀v ∈ Hb, (3.5)

then for every b̃ ∈ Hb, the trajectory U(·, 0)b̃ is uniformly exponentially stable, that
is there exist the positive constants N and ν such that ‖U(n, 0)b̃‖ ≤ N−νn‖b̃‖ for
all integers n.

Proof. Step 1. We prove that for every (Hb)-valued, q-periodic sequence w = (wj),
with w0 = 0, one has

sup
µ∈R

sup
n∈Z+

‖
n∑
k=0

eiµkU(n, k)wk‖ := M(w) <∞. (3.6)

Let f be the continuous function verifying f(j) = wj for every j = 0, 1, . . . , q− 1, q
and such that f is linear on each of the intervals [0, 1], [1, 2], . . . , [q − 1, q]. The
function is (Hb)-valued since it is piecewise linear and satisfies a Lipschitz condition
on [0, q]. We denote by f̃ its extension by periodicity to the entire real axis which
satisfies a Lipschtiz condition on R, as well. Taking into account that Hb is a
complex Hilbert space and arguing as in Lemma 1.6, we obtain

wj =
∑
n∈Z

e2πin j
q cn(f), (3.7)
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where the Fourier coefficients associated to f , given by

cn(f) :=
1
q

∫ q

0

e−2iπn t
q f(t)dt, (3.8)

belong to Hb. In addition, one has∑
n∈Z
‖cn(f)‖ := c(w) <∞.

Now, (3.5) and (3.7) yield

sup
µ∈R

sup
n∈Z+

‖
n∑
k=0

eiµkU(n, k)wk‖

= sup
µ∈R

sup
n∈Z+

‖
n∑
k=0

eiµkU(n, k)
∑
j∈Z

e2πij k
q cj(f)‖ ≤ Kc(w).

Hence (3.6) is satisfied with M(w) := Kc(w).
Step 2. We show that all the hypothesis in Lemma 1.7 are fulfilled when Hb
replaces X. Indeed, let v ∈ Hb be randomly chosen and let w be the q-periodic
sequence defined by

wk := k(q − k)U(k, 0)v, k = 0, 1, . . . , q − 1.

By assumption (wk) is an (Hb)-valued sequence. As in [6, Theorem 2] we can
show that (1.24) holds with (Hb) instead of X and Tq instead of T (The fact that
(Hb) is an invariant subspace of Tq was used as well). Thus from Lemma 1.7, the
spectral radius of the restriction of Tq to (Hb) is less than 1 and we obtain the
conclusion. �

The following example shows that the uniformity of boundedness in respect to
the parameter µ in (3.5) cannot be removed.

Example 3.4. Let U be a 2-periodic evolution family on X = C2 (endowed with
the usual inner product) given by

U(1, 0) =
(

1/2 0
0 −1

)
, U(2, 0) =

(
1/2 0
0 1

)
, U(2, 1) =

(
1 0
0 −1

)
. (3.9)

Set b = (0, 1)T . Thus U(1, 0)b = −b and U(2, 0)b = b and Hb = {λb, λ ∈ C} is
an invariant subspace for the operators U(1, 0) and T2 := U(2, 0). Moreover, for
each real number µ one has

sup
n∈Z+

‖
2n∑
k=0

eiµkU(2n, k)b‖ = sup
n∈Z+

‖
n∑
k=0

e2iµkTn−kq (U(2, 1) + eiµb)‖ <∞. (3.10)

See [2, Example 1] for further details. On the other hand
2n+1∑
k=0

eiµkU(2n+ 1, k)b = eiµ(2n+1) + U(1, 0)
2n∑
k=0

eiµkU(2n, k) · b. (3.11)

Hence, in view of (3.10) the sequence( 2n+1∑
k=0

eiµkU(2n+ 1, k)b
)
n

(3.12)
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is bounded as well. Finally for a certain 0 < M(µ) <∞ we have

sup
n∈Z+

‖
n∑
k=0

eiµkU(n, k)b‖ ≤M(µ)‖b‖ <∞. (3.13)

and Tn2 b = ±b for all n ∈ Z+, that is the trajectory U(n, 0)b is not asymptotically
stable.
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[4] D. Barbu, J. Blot, C. Buşe, O. Saierli; Stability for trajectories of periodic evolution families

in Hilbert spaces Electron. J. Differential Equ. (2014), no. 1, 13 pp.
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