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EXISTENCE AND GLOBAL ATTRACTIVITY OF POSITIVE
PERIODIC SOLUTIONS FOR A PREDATOR-PREY MODEL

WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE

XIAOWAN LI, XIAOJIE LIN, JIANG LIU

Abstract. In this article, we consider a predator-prey system with mutual

interference and Crowley-Martin functional response. We obtain positive so-
lutions for the system by using the comparison principle. The existence of

periodic solutions is established by applying coincidence degree theory. In ad-

dition, we obtain that the system has only one positive periodic solution which
is a global attractor by constructing a proper Lyapunov function.

1. Introduction

Predator-prey model is one of the dominant themes in both ecology and mathe-
matical ecology because of its universal existence and importance with many con-
cerned biological studies [1]. In recent years, classical predator-prey models have
been extensively studied; see [2, 3, 4, 5] and the references cited therein. Hassell [6]
discussed the following model with the mutual interference between predator and
prey,

ẋ = xg(x)− ψ(x)ym,

ẏ = y(−d+ kψ(x)ym−1 − q(y)),
(1.1)

where the mutual interference constant m ∈ (0, 1] is a real number. During his
research of the capturing behavior between hosts and parasites, he found that the
hosts or parasites had the tendency to leave from each other when they met, which
interfered with the hosts capturing effects. It is obvious that the mutual interference
will be stronger while the size of the parasite becomes larger.

Mathematicians and ecologists have explored the dynamical behavior of predator-
prey models with the Holling type II [7, 8] and Holling type III functional responses.
Lv [9, 10] investigated the existence and globally attractivity of the positive periodic
solutions of the predator-prey model with mutual interference and Holling type III,

ẋ(t) = x(t)(r1(t)− b1(t)x(t))− c1(t)x2(t)
k2 + x2(t)

ym,

ẏ(t) = y(t)(−r2(t)− b2(t)y(t)) +
c2(t)x2(t)
k2 + x2(t)

ym.

(1.2)
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Later, the permanence and existence of a unique globally attractive positive almost
periodic solution of model (1.2) were considered by Zhang et al. [11]. There are
many other types of functional response such as Beddington-DeAngelis which has
been discussed [12, 13, 14, 15, 16, 17]. For example, Lin and Chen [16] studied an
almost periodic Volterra model with mutual interference and Beddington-DeAngelis
functional response as follows

ẋ(t) = x(t)(r1(t)− b1(t)x(t))− k1(t)x(t)
a(t) + d(t)x(t) + c(t)y(t)

ym,

ẏ(t) = y(t)(−r2(t)− b2(t)y(t)) +
k2(t)x(t)

a(t) + d(t)x(t) + c(t)y(t)
ym.

(1.3)

Guo and Chen [17] investigated a special case of system (1.3) and proved the ex-
istence and global attractivity of positive periodic solutions for the model. System
(1.3) with Beddington-DeAngelis functional response adopts that handing and in-
terference are exclusive activities.

Crowley-Martin [18] assumed that predator’s predation will decrease due to high
predator density (interference among the predator individuals) even when prey
density is high (presence of handing or searching of prey by predator individual)
[19]. There are very few literature available on predator-prey model with Crowley-
Martin functional response [20, 21, 22]. The Crowley-Martin functional response is
predator dependent. The per capita fedding rate for predator y in this formulation
is

η(x, y) =
bx

(1 + a1x)(1 + b1y)
,

where b, a1, b1 are positive parameters that are used for effects of capture rate,
handling time and magnitude of interference among predators, respectively, on the
fedding rate. If we consider a1x� 1+b1y along with absence of mutual interference
among predators at high prey density (i.e. when a1b1xy becomes too small) then
the food supply (prey population) will be superabundant i.e. the increase in prey
density (x) will not increase the feeding rate per predator η(x, y). In this case, the
predation rate per unit of predator η(x, y) becomes constant and η(x, y) = b

a1
. As

y → 0, the limiting value of η(x, y) becomes a function of x only and when y →∞,
η(x, y)→ 0. One can easily observe that η(x, y) varies inversely with respect to y.
Crowley-Martin response function represents classical response function for a1 = 0,
b1 = 0 while Michaelis-Menten (Holling type II) functional response for a1 > 0,
b1 = 0 [1, 23].

Tripathi et al. [24] investigated the globally stability of the predator-prey model
with Crowley-Martin response function with time delay of the form

dX

dT
= X(A−BX − CY

A1 +B1X + C1Y +B1C1XY
),

dY

dT
= Y (−D − EY +

FX

A1 +B1X + C1Y +B1C1XY
).

(1.4)

Egami and Hirano [25] considered the almost periodic solution and global attrac-
tivity on the basis of system (1.4).
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Motivated by the above results, in this article we consider a predator-prey model
with Crowley-Martin functional response

ẋ(t) = x(t)[r1(t)− a1(t)x(t)− a2(t)x(t− τ)]

− C(t)x(t)ym(t)
A1(t) +B1(t)x(t) + C1(t)y(t) +B1(t)C1(t)x(t)y(t)

,

ẏ(t) = y(t)[−r2(t)− b1(t)y(t)− b2(t)y(t− τ)]

+
D(t)x(t)ym(t)

A1(t) +B1(t)x(t) + C1(t)y(t) +B1(t)C1(t)x(t)y(t)
,

(1.5)

where 0 < m ≤ 1, x(t) and y(t) represent prey and predator densities at time t,
respectively, r1 is intrinsic growth rate of the prey in the absence of the predator
and r2 is the death rate of the predator, a1 and b1 are decay rates of the prey
and the predator in competition among their own populations, a2 and b2 are decay
rates of the prey and the predator effected by harmful environmental for a period
of past time. ri(t), ai(t), bi(t) (i = 1, 2), A1(t), B1(t), C1(t), C(t), D(t) are positive
ω-periodic function, t ∈ [0,∞), delay τ > 0, n ≥ 2.

This article is organized as follow. In section 2, by using the comparison princi-
ple in ordinary differential equation and some analytical techniques, we study the
permanence of positive solutions of delayed predator-prey model (1.5). In section
3, we prove the existence of positive periodic solutions to systems (1.5) by applying
the coincidence degree theory. Section 4 is devoted to the global attractivity by
constructing a suitable Lyapunov function.

2. Permanence

For the sake of convenience and simplicity, we introduce some notation as follows:

fL = min
t∈[0,ω]

f(t), fM = max
t∈[0,ω]

f(t), |f |0 = max
t∈[0,ω]

{|f(t)|},

f̂ =
1
ω

∫ ω

0

|f(t)|dt, f̄ =
1
ω

∫ ω

0

f(t)dt,

where f is a continuous ω-periodic function. To obtain the permanence of positive
solutions of system (1.5), we state some lemmas.

Lemma 2.1 ([26]). If a > 0, b > 0, ż ≥ (≤)z(b− az) and z(0) > 0, then, for any
small constant ε > 0, there exists a positive constant T , such that

z(t) ≥ b

a
− ε, (≤ b

a
+ ε), for t ≥ T. (2.1)

Lemma 2.2 ([26]). If a > 0, b > 0, ż ≥ (≤)zm(b− az1−m) and z(0) > 0, then, for
any small constant ε > 0, there exists a positive constant T , such that

z(t) ≥ (
b

a
)

1
1−m − ε, (≤ (

b

a
)

1
1−m + ε), for t ≥ T. (2.2)

Theorem 2.3. System (1.5) is permanent; which means that for any positive solu-
tion (x(t), y(t))T of (1.5), there exist positive constants Ki, i = 1, 2, 3, 4, and T > 0
such that

K3 ≤ x(t) ≤ K1, K4 ≤ y(t) ≤ K2, for t ≥ T.
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Proof. Assume (x(t), y(t))T is an arbitrary positive solution of system (1.5), then
the first equation in (1.5) yields

ẋ(t) ≤ x(t)(rM1 − aL1 x(t)).

From Lemma 2.1, for any small constant ε0 > 0, there exists a positive constant
T1, such that

x(t) ≤
(rM1
aL1

)
+ ε0 := K1, for t ≥ T1. (2.3)

Similarly, from the second equation in (1.5), we obtain

ẏ(t) ≤ ym(t)
(DMK1

AL1
− rL2 y1−m(t)

)
.

By Lemma 2.2, for the ε0 chosen above, there exists a positive constant T2, such
that

y(t) ≤
(DMK1

AL1 r
L
2

) 1
1−m

+ ε0 := K2, for t ≥ T2. (2.4)

From (2.3) and (2.4), for any small enough positive constant ε, there exists a positive
number T3 such that x(t) ≤ K1 + ε and y(t) ≤ K2 + ε for all t ≥ T3. From the first
equation in (1.5), one has

ẋ(t)
x(t)

≥ rL1 −
CM (K2 + ε)m

AL1
− (a1 + a2)M (K1 + ε).

Denoting

δ(ε) = rL1 −
CM (K2 + ε)m

AL1
− (a1 + a2)M (K1 + ε),

and integrating above inequality from t− τ to t, we obtain x(t− τ) ≤ e−δ(ε)τx(t).
From the first equation in (1.5), we obtain that

ẋ(t) ≥ x(t)(rL1 −
CM (K2 + ε)m

AL1
− (aM1 + aM2 e−δ(ε)τ )x(t)). (2.5)

According to Lemma 2.1, for any positive constant

ε1 � (rL1 −
CM (K2 + ε)m

AL1
)/(aM1 + aM2 e−δ(ε)τ ),

when ε→ 0, there exists a positive constant T4, such that

x(t) ≥ (rL1 −
CMKm

2

AL1
)/(aM1 + aM2 e−δτ )− ε1 := K3, for t ≥ T4. (2.6)

From the second equation in (1.5), we obtain

ẏ(t) ≥ ym(t)
( DLK3

AM1 +BM1 (K1 + ε) + CM1 (K2 + ε) + CM1 (K2 + ε)BM1 (K1 + ε)

− (bM1 + bM2 )(K2 + ε)2−m − rM2 y1−m(t)
)
.

Then by Lemma 2.2, letting ε→ 0 and for any positive constant ε2, we have

ε2 � (
DLK3

AM1 +BM1 K1 + CM1 K2 + CM1 K2BM1 K1
− (bM1 + bM2 )K2−m

2 )/rM2 ,
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and there exists a positive constant T5, such that

y(t) ≥
[( DLK3

AM1 +BM1 K1 + CM1 K2 + CM1 K2BM1 K1

− (bM1 + bM2 )K2−m
2

)
/rM2

] 1
1−m − ε2 := K4, for t ≥ T5.

(2.7)

Let T = max{T1, T2, T3, T4, T5}, and chose ε0 � min{ε1, ε2}, then we have

K3 ≤ x(t) ≤ K1, K4 ≤ y(t) ≤ K2.

�

3. Existence of positive periodic solutions

To understand the sufficient conditions for guaranteeing the existence of positive
periodic solutions, we will introduce the coincidence degree briefly as follows.

Definition 3.1 ([27]). Let X and Y be two Banach spaces, L : DomL ⊂ X → Y
be a linear map. If the following conditions are satisfied

(a) ImL is a closed subspace of Y ;
(b) dim kerL = codim ImL < ∞, then we call the operator L is a Fredholm

operator of index zero.

If L is a Fredholm operator with index zero and there exists continuous projec-
tions

P : X → X and Q : Y → Y

such that X = kerL⊕ kerP , Y = ImL⊕ ImQ, ImP = kerL and ImL = kerQ =
Im(I −Q), then L|DomL∩kerP : (I − P )X → ImL has an inverse function, and we
set it as Kp, then Kp : ImL→ DomL ∩ kerP .

Definition 3.2 ([27]). Let N : X → Y be a continuous map and Ω × [0, 1] ⊂ X
is an open set. If QN(Ω × [0, 1]) is bounded and Kp(I − Q)N(Ω × [0, 1]) ⊂ X is
relatively compact, then we say that N(Ω× [0, 1]) is L-compact.

Lemma 3.3 ([27]). Let both X and Y be Banach spaces, L : DomL ⊂ X → Y be a
Fredholm operator with index zero, Ω ⊂ X be an open bounded set, and N : Ω→ Y
be L-compact on Ω. If all the following conditions hold:

(1) Lx 6= λN(x), for x ∈ ∂Ω ∩DomL, λ ∈ [0, 1];
(2) Nx /∈ ImL, x ∈ ∂Ω ∩ kerL;
(3) deg{JQN,Ω ∩ kerL, 0} 6= 0, where J : ImQ → kerL is an isomorphism,

then the equation Lx = N(x) has at least one solution on Ω ∩DomL.

Suppose (x(t), y(t))T is an arbitrary positive solution of (1.5), let u(t) = lnx(t)
and v(t) = ln y(t), then system (1.5) can be changed into

u̇(t) = r1(t)− a1(t)eu(t) − a2(t)eu(t−τ)

− C(t)emv(t)

A1(t) +B1(t)eu(t) + C1(t)ev(t) +B1(t)eu(t)C1(t)ev(t)
,

v̇(t) = −r2(t)− b1(t)ev(t) − b2(t)ev(t−τ)

+
D(t)eu(t)e(m−1)v(t)

A1(t) +B1(t)eu(t) + C1(t)ev(t) +B1(t)eu(t)C1(t)ev(t)
.

(3.1)
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Denoting the right terms of first equation and second equation in (3.1) by F1(t, u(t),
v(t)) and F2(t, u(t), v(t)) respectively and considering system

u̇(t) = λF1(t, u(t), v(t)),

v̇(t) = λF2(t, u(t), v(t)),
(3.2)

where λ ∈ (0, 1].

Lemma 3.4. Suppose (u(t), v(t))T is a ω-periodic solution of (3.2), then there
exists a positive number R1, such that |u(t)|+|v(t)| ≤ R1, where R1 will be calculated
as in the proof.

Proof. Since (u(t), v(t))T is periodic, the following discussion will be restricted
to t ∈ [0, ω]. Integrating the first equation of (3.2) from 0 to ω and in view of∫ ω

0
u̇(t)dt = 0, we obtain∫ ω

0

r1(t)dt =
∫ ω

0

(a1(t)eu(t) + a2(t)eu(t−τ)

+
C(t)emv(t)

A1(t) +B1(t)eu(t) + C1(t)ev(t) +B1(t)eu(t)C1(t)ev(t)
)dt.

(3.3)

Thus, ∫ ω

0

|u̇(t)|dt = λ

∫ ω

0

|F1(t)|dt ≤
∫ ω

0

2r1(t)dt = 2r̄1ω. (3.4)

Note that z = (u, v)T ∈ X, there exist ξ, η, ξ, η, such that

u(ξ) = min
t∈[0,ω]

u(t), u(ξ) = max
t∈[0,ω]

u(t),

v(η) = min
t∈[0,ω]

v(t), v(η) = max
t∈[0,ω]

v(t).
(3.5)

So u̇(ξ) = u̇(ξ) = v̇(η) = v̇(η) = 0. From (3.3) and (3.5), we obtain∫ ω

0

r1(t)dt ≥
∫ ω

0

(a1(t)eu(t) + a2(t)eu(t−τ))dt

≥
∫ ω

0

(a1(t) + a2(t))eu(ξ)dt = ω(ā1 + ā2)eu(ξ).

Hence we have

eu(ξ) ≤ 1
ω(ā1 + ā2)

∫ ω

0

r1(t)dt =
r̄1

ā1 + ā2
, (3.6)

i.e.,

u(ξ) ≤ ln
r̄1

ā1 + ā2
. (3.7)

From (3.4) and (3.7), we have

u(t) ≤ u(ξ) +
∫ ω

0

|u̇(t)|dt ≤ ln
r̄1

ā1 + ā2
+ 2r̄1ω := U1. (3.8)

Letting t = η in the second equation of (3.2), one has

r2(η) ≤ D(η)eu(η)e(m−1)v(η)

A1(η) +B1(η)eu(η) + C1(η)ev(η) +B1(η)eu(η)C1(η)ev(η)

≤ D(η)e(m−1)v(η)

B1(η)
.
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So, we obtain

v(η) ≤ 1
m− 1

ln[
r2B1

D
]L := H1. (3.9)

Meanwhile, we know that

b1(η)ev(η) ≤ D(η)eu(η)e(m−1)v(η)

A1(η) +B1(η)eu(η) + C1(η)ev(η) +B1(η)eu(η)C1(η)ev(η)

≤ D(η)e(m−1)v(η)

B1(η)
,

and

v(η) ≤ 1
m− 2

ln
[b1B1

D

]L := H2. (3.10)

Combining inequalities (3.9) with (3.10), we obtain

v(t) ≤ max{H1, H2} := H3. (3.11)

On the other hand, in view of (3.2), one has

r1(ξ) = a1(ξ)eu(ξ) + a2(ξ)eu(ξ−τ)

+
C(ξ)emv(ξ)

A1(ξ) +B1(ξ)eu(ξ) + C1(ξ)ev(ξ) +B1(ξ)eu(ξ)C1(ξ)ev(ξ)
,

(3.12)

r2(η) = −b1(η)ev(η) − b2(η)ev(η−τ)

+
D(η)eu(η)e(m−1)v(η)

A1(η) +B1(η)eu(η) + C1(η)ev(η) +B1(η)eu((η)C1(η)ev(η)
.

(3.13)

By (3.12), we have

r1(ξ) ≤ (a1(ξ) + a2(ξ))eu(ξ) +
C(ξ)emv(ξ)

A1(ξ)
.

So

eu(ξ) ≥ [
A1(ξ)r1(ξ)− C(ξ)emH3

(a1(ξ) + a2(ξ))A1(ξ)
] := S0,

i.e. u(ξ) ≥ lnS0 := S1. Then

u(t) ≥ u(ξ)−
∫ ω

0

|u̇(t)|dt ≥ S1 − 2r̄1ω := U2. (3.14)

�

Next we estimate the lower bound of v(t). If v(η) ≥ 0, then the lower bound of
v(t) is 0.

If v(η) < 0, then e(1−m)v(η) ≥ e(2−m)v(η) and env(η) < 1. Combined with (3.13),
we obtain

(r2(η) + b1(η) + b2(η))e(1−m)v(η)

≥
D(η)eu(η)

A1(η) +B1(η)eu(η) + C1(η)ev(η) +B1(η)eu((η)C1(η)ev(η)

≥
D(η)eU2

A1(η) +B1(η)eU1 + C1(η)eH3 +B1(η)eU1C1(η)eH3
.
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So

v(η) ≥ 1
1−m

ln
(
D(η)eU2/

(
(r2(η) + b1(η) + b2(η))A1(η)

+B1(η)eU1 + C1(η)eH3 +B1(η)eU1C1(η)eH3

))
:= S2.

(3.15)

Donating S3 = min{0, S2}, we obtain U2 ≤ u(t) ≤ U1 and S3 ≤ v(t) ≤ H3. Thus

|u|0 = max{|U1|, |U2|} := U∗, |v|0 = max{|S3|, |H3|} := H∗.

So |u(t)|+ |v(t)| ≤ U∗ +H∗ := R1.
Suppose (u, v)T is a constant solution of system (3.1), then

r1(t)− a1(t)eu − a2(t)eu

− C(t)emv

A1(t) +B1(t)eu + C1(t)eu +B1(t)euC1(t)ev
= 0,

− r2(t)− b1(t)ev − b2(t)ev

+
D(t)eue(m−1)v

A1(t) +B1(t)eu + C1(t)ev +B1(t)euC1(t)ev
= 0.

(3.16)

Integrating two side of above equations on [0, ω] and applying integral mean theo-
rem, we obtain

r̄1 − ā1e
u − ā2e

u

− C(t1)emv

A1(t1) +B1(t1)eu + C1(t1)eu +B1(t1)euC1(t1)ev
= 0,

− r̄2 − b̄1ev − b̄2ev

+
D(t2)eue(m−1)v

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev
= 0,

(3.17)

where t1, t2 ∈ [0, ω]. Next we consider the equations

r̄1 − ā1e
u − ā2e

u

− µ C(t1)emv

A1(t1) +B1(t1)eu + C1(t1)eu +B1(t1)euC1(t1)ev
= 0,

− µr̄2 − b̄1ev − b̄2ev

+
D(t2)eue(m−1)v

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev
= 0,

(3.18)

where µ is a parameter.

Lemma 3.5. Suppose (u, v)T is a solution of (3.18), then there exists a positive
number R2, such that |u|+ |v| ≤ R2 , where R2 will be calculated as in the following
proof.

Proof. From the first equation in (3.18) we obtain r̄1 ≥ (ā1 + ā2)eu. Then

u ≤ ln
r̄1

ā1 + ā2
:= W1. (3.19)

From the second equation in (3.18), one has

(b̄1 + b̄2)ev ≤ D(t2)eue(m−1)v

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev
.
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Then

v ≤ 1
2−m

ln
D(t2)

B1(b̄1(t2) + b̄2(t2))
:= V1. (3.20)

If u ≥ 0, then 0 is the low bound of u. If u < 0, from the first equation of (3.18),
we obtain

r̄1 ≤ (ā1 + ā2)eu +
C(t1)emv

A1(t1)
.

Thus

u ≥ ln{(r̄1 −
C(t1)emV1

A1(t1)
)/(ā1 + ā2)} := W2.

Letting W3 = min{0,W2}, we obtain

u ≥W3. (3.21)

If v ≥ 0, then 0 is a lower bound of v. If v < 0, from the second equation of (3.18),
one has

r̄2 + (b̄1 + b̄2)ev ≥ D(t2)eue(m−1)v

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev
.

Then, in view of (1−m)v ≥ (2−m)v, and emv < 1, we obtain

(r̄2 + b̄1 + b̄2)e(1−m)v

≥ D(t2)eu

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev

≥ D(t2)eW3

A1(t2) +B1(t2)eW1 + C1(t2)eV1 +B1(t2)eW1C1(t2)eV1
,

and

v ≥ 1
1−m

ln
(
D(t2)eW3/

(
(A1(t2) +B1(t2)eW1

+ C1(t2)eV1 +B1(t2)eW1C1(t2)eV1)(r̄2 + b̄1 + b̄2)
))

:= V2.

Letting V3 = min{0, V2}, we have

v ≥ V3. (3.22)

From (3.19), (3.20), (3.21) and (3.22), we know that

W3 ≤ u ≤W1, V3 ≤ v ≤ V1. (3.23)

Denoting

|u|0 = max{|W1|, |W3|} = O1, |v|0 = max{|V1|, |V3|} = O2.

We have |u|+ |v| ≤ O1 +O2 := R2. �

Theorem 3.6. System (1.5) has at least one positive ω-periodic solution.

Proof. Suppose that (x(t), y(t))T is an arbitrary positive solution of (1.5) and let
u(t) = lnx(t), v(t) = ln y(t), then (1.5) is changed into (3.1). Let

X = Y = {z(t)|z(t) = (u(t), v(t))T ∈ C(R,R2) : z(t+ ω) = z(t)},

be equipped with the norm
‖z‖ = max

t∈[0,ω]
{|z|}.
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Then X and Y are both Banach spaces with the norm ‖ · ‖. Take z ∈ X and define
operators L, P and Q as follows

L : DomL ∩X → Y, Lz =
dz

dt
, P (z) =

1
ω

∫ ω

0

z(t)dt, Q(z) =
1
ω

∫ ω

0

z(t)dt,

where DomL = {z ∈ X : z(t) ∈ C1(R,R2)}.
Define N :X → Y by

N(z) =

(
r1(t)− a1(t)eu(t) − a2(t)eu(t−τ) − C̃
−r2(t)− b1(t)ev − b2(t)ev(t−τ) + D̃

)
where

C̃ =
C(t)emv

A1(t) +B1(t)eu + C1(t)eu +B1(t)euC1(t)ev

D̃ =
D(t)eue(m−1)v

A1(t) +B1(t)eu + C1(t)ev +B1(t)euC1(t)ev

Then kerL = R2, dim kerL = codim ImL = 2, and

ImL =
{
z ∈ Y :

∫ ω

0

z(t)dt = 0
}
,

is closed in Y , and P , Q are both continuous projections satisfying

ImP = kerL, ImL = kerQ = Im(I −Q).

So L is a Fredholm operation of index zero, which implies that L has a unique
inverse. We denote by Kp : ImL→ kerP ∩DomL the inverse of L. By a straight-
forward calculation, we obtain

Kp(z) =
∫ t

0

z(s)ds− 1
ω

∫ ω

0

∫ t

0

z(s) ds dt.

For any z(t) ∈ X, we obtain

QN(z) = Q(F1(t, u(t), v(t)), F2(t, u(t), v(t)))T

=
( 1
ω

∫ ω

0

F1(t, u(t), v(t))dt,
1
ω

∫ ω

0

F2(t, u(t), v(t))dt)
)T

= (F̄1, F̄2)T ,

and
Kp(I −Q)Nz = (W1,W2)T ,

where

Wi(t) =
∫ ω

0

Fi(s, u(s), v(s))ds− 1
ω

∫ ω

0

∫ t

0

Fi(s, u(s), v(s))dsdt− F̄it+
ω

2
F̄ .

Obviously, it is undemanding to check by the Lebesgue convergence theorem that
both QN and Kp(I − Q)N are continuous. Moreover, by using the Arzela-Ascoli
Theorem, the operator Kp(I −Q)N(Ω) is compact and QN(Ω) is bounded for any
open set Ω ⊂ X. So N is L-compact on Ω respect to any bounded open set Ω ⊂ X.

Particularly, we take Ω = {z(t)|z(t) = (u(t), v(t))T ∈ X, ‖z‖ ≤ R}, where
R = R1 + R2 + ε (ε > 0), R1 and R2 are defined in Lemma 3.4 and Lemma 3.5.
Now, we check the three conditions in Lemma 3.3.
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(i) For each λ ∈ (0, 1), z(t) ∈ ∂Ω ∩ DomL, we have Lx 6= λN(x). Otherwise,
z(t) is a ω-periodic solution of (3.2) and then ‖z‖ ≤ R1, will be derived by Lemma
3.4. It is impossible because ‖z‖ = R > R1 for z(t) ∈ ∂Ω ∩DomL.

(ii) When z(t) ∈ ∂Ω ∩ kerL, dz(t)
dt = 0, i.e., z(t) is a constant vector (u, v)T

with ‖(u, v)T ‖ = R1 + R2 + ε. If QN(u, v)T = 0, then (u, v)T is a solution of
(3.18) for µ = 1. By Lemma 3.5, we have ‖(u, v)T ‖ ≤ R2 which contradicts to
‖(u, v)T ‖ = R1 +R2 + ε. Thus, for each z ∈ ImQ. When z ∈ ∂Ω∩kerL, QNz 6= 0.

(iii) Choose J : ImQ → kerL such that J(z) = z for each z ∈ ImQ. When
z ∈ Ω ∩ kerL, z(t) = (u, v)T is a constant vector and satisfies

JQN(u, v)T

= JQ(F1(t, u(t), v(t)), F2(t, u(t), v(t)))T

= (
1
ω

∫ ω

0

F1(t, u(t), v(t))dt,
1
ω

∫ ω

0

F2(t, u(t), v(t))dt))T

=

(
r̄1 − (ā1 + ā2)eu − C(t1)emv

A1(t1)+B1(t1)eu+C1(t1)eu+B1(t1)euC1(t1)ev

−r̄2 − (b̄1 + b̄2)ev + D(t2)eue(m−1)v

A1(t2)+B1(t2)eu+C1(t2)ev+B1(t2)euC1(t2)ev

)
,

where t1, t2 were defined as in (3.17). We define ϕ : z ∈ Ω ∩ kerL × [0, 1] → X as
follows

ϕ(u, v, µ) =

(
r̄1 − (ā1 + ā2)eu

−(b̄1 + b̄2)ev + D(t2)eue(m−1)v

A1(t2)+B1(t2)eu+C1(t2)ev+B1(t2)euC1(t2)ev

)

+ µ

(
− C(t1)emv

A1(t1)+B1(t1)eu+C1(t1)eu+B1(t1)euC1(t1)ev

−r2

)
.

Then JQN(u, v)T = ϕ(u, v, 1). By Lemma 3.4, we see ϕ(u, v, 1) 6= (0, 0)T . Hence,
using the homotopy invariance theorem of topological degree, we obtain

deg{JQN(u, v)T ,Ω ∩ kerL, (0, 0)T }
= deg{ϕ(u, v, 1),Ω ∩ kerL, (0, 0)T }
= deg{ϕ(u, v, 0),Ω ∩ kerL, (0, 0)T }

= deg
{

(r̄1 − (ā1 + ā2)eu,−(b̄1 + b̄2)ev

+
D(t2)eue(m−1)v

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev
)T ,Ω ∩ kerL, (0, 0)T

}
.

Denote

ψ1(u, v) := r̄1 − (ā1 + ā2)eu,

ψ2(u, v) := −(b̄1 + b̄2)ev +
D(t2)eue(m−1)v

A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev
,

and consider the algebraic equations

ψ1(u, v) = 0,

ψ2(u, v) = 0.
(3.24)
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From the first equation of (3.24) we obtain its unique u∗ = ln r̄1
ā1+ā2

. Substituting
it into second equation of (3.24), we obtain

−(b̄1 + b̄2)ev +
D(t2)eu

∗
e(m−1)v

A1(t2) +B1(t2)eu∗ + C1(t2)ev +B1(t2)eu∗C1(t2)ev
= 0,

which is easy checked to have a unique solution v∗ on R. So equations (3.24) has
unique solution (u∗, v∗)T on Ω ∩ kerL. For convenience, we denote

p(u, v) = A1(t2) +B1(t2)eu + C1(t2)ev +B1(t2)euC1(t2)ev.

Then
∂ψ1

∂u
= −(ā1 + ā2)eu,

∂ψ1

∂v
= 0,

∂ψ2

∂u
=
D(t2)eue(m−1)vp(u, v)−D(t2)eue(m−1)v[B1(t2)eu +B1(t2)euC1(t2)ev]

p2(u, v)
,

∂ψ2

∂v
= M(u, v)− (b̄1 + b̄2)ev,

where

M(u, v) =
(

(m− 1)D(t2)eue(m−1)vp(u, v)−D(t2)eue(m−1)v[C1(t2)ev

+B1(t2)euC1(t2)ev]
)
/p2(u, v).

Hence, we have

deg{JQN(u, v)T ,Ω ∩ kerL, (0, 0)T }

= sgn
∣∣∣∣∂ψ1
∂u

∂ψ1
∂v

∂ψ2
∂u

∂ψ2
∂v

∣∣∣∣
(u∗,v∗)

= sgn[−(ā1 + ā2)eu(M(u, v)− (b̄1 + b̄2)ev)] = 1 6= 0.

All the conditions in Lemma 3.3 have been checked. This implies that (3.1) has
at least one ω-periodic solution. Further system (1.5) has at least one ω-periodic
solution. �

4. Global attractivity

Definition 4.1. Suppose (x̃(t), ỹ(t))T is a positive ω-periodic solution of (1.5),
(x(t), y(t))T is arbitrary positive solution of (1.5), with

lim
t→∞

|x(t)− x̃(t)| = 0 and lim
t→∞

|y(t)− ỹ(t)| = 0,

then (x̃(t), ỹ(t))T is called a global attractor.

Lemma 4.2 ([28]). If function f is nonnegative, integrable and uniformly contin-
uous on [0,∞), then limt→∞ f(t) = 0.

From Theorem 2.3, we know that for any positive ε enough small, there exists T ,
such that, when t ≥ T , an arbitrary positive solution (x(t), y(t))T of system (1.5)
satisfies

K3 − ε ≤ x(t) ≤ K1 + ε, K4 − ε ≤ y(t) ≤ K2 + ε. (4.1)
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For convenience, we denote

γ = min{K3,K4, e
U2 , eS3}, Γ = max{K1,K2, e

U1 , eH3}, (4.2)

g(t) = g(t, γ, γ), G(t) = g(t,Γ,Γ), (4.3)

where

g(t, x, y) = A1(t) +B1(t)x(t) + C1(t)y(t) +B1(t)C1(t)x(t)y(t).

Theorem 4.3. Suppose system (1.5) satisfies

σ1 = min
t∈[0,ω]

{−a1(t)− C(t)B1(t)
g2(t)

γm − C(t)B1(t)C1(t)
g2(t)

γm+1 +A2

+
(m− 2)D(t)C1(t)

G2(t)
Γm} > 0,

(4.4)

σ2

= min
t∈[0,ω]

{
− (

mC(t)A1(t)
g2(t)

γm−1 +
mC(t)B1(t)

g2(t)
γm +

(m− 1)C(t)C1(t)
g2(t)

γm

+
C(t)B1(t)C1(t)

g2(t)
γm+1 +

mC(t)B1(t)C1(t)
g2(t)

γm+1)

− b(t) +
mD(t)A1(t)

G2(t)
Γm−1 +

(m− 1)D(t)B1(t)
G2(t)

Γm

+
(m− 2)D(t)C1(t)

G2(t)
Γm +

(m− 2)D(t)C1(t)B1(t)
G2(t)

Γm+1 +B2

}
> 0,

(4.5)

then system (1.5) has only one positive ω-periodic solution which is a global attrac-
tor.

Proof. Suppose that (x(t), y(t))T is an arbitrary periodic solution of (1.5). Theorem
3.6 indicates that (1.5) has at least one positive ω-periodic solution (x̃(t), ỹ(t))T

satisfying
eU2 ≤ x̃(t) ≤ eU1 , eS3 ≤ ỹ(t) ≤ eH3 .

We choose the Lyapunov function V (t) = V1(t) + V2(t), where

V1(t) = | lnx(t)− ln x̃(t)|+A2

∫ t

t−τ
|x(s)− x̃(s)|ds,

V2(t) = | ln y(t)− ln ỹ(t)|+B2

∫ t

t−τ
|y(s)− ỹ(s)|ds.

Then
D+V1(t)|(1.5)

= sgn(x(t)− x̃(t))(
ẋ(t)
x(t)

−
˙̃x(t)
x̃(t)

) +A2|x(t)− x̃(t)| −A2|x(t− τ)− x̃(t)|

= sgn(x(t)− x̃(t))[−a1(t)(x(t)− x̃(t))− a2(t)(x(t− τ)− x̃(t− τ))

− (
C(t)ym(t)
g(t, x, y)

− C(t)ỹm(t)
g(t, x̃, ỹ)

)] +A2|x(t)− x̃(t)| −A2|x(t− τ)− x̃(t− τ)|.

(4.6)

Since
C(t)ym(t)
g(t, x, y)

− C(t)ỹm(t)
g(t, x̃, ỹ)
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=
C(t)

g(t, x, y)g(t, x̃, ỹ)

{
A1(t)[ym(t)− ỹm(t)] +B1(t)[x̃(t)ym(t)

− x(t)ym(t) + x(t)ym(t)− x(t)ỹm(t)] + C1(t)y(t)ỹ(t)[ym−1(t)− ỹm−1(t)]

+B1(t)C1(t)[x̃(t)ỹ(t)ym(t)− x̃(t)y(t)ym(t) + x̃(t)y(t)ym(t)

− x̃(t)y(t)ỹm(t) + x̃(t)y(t)ỹm(t)− x(t)y(t)ỹm(t)]
}

=
C(t)

g(t, x, y)g(t, x̃, ỹ)

{
A1(t)(ym(t)− ỹm(t)) +B1(t)(x̃(t)− x(t))ym(t)

+B1(t)x(t)(ym(t)− ỹm(t)) + C1(t)y(t)ỹ(t)(ym−1(t)− ỹm−1(t))

+B1(t)C1(t)[x̃(t)ym(t)(ỹ(t)− y(t)) + x̃(t)y(t)(ym(t)− ỹm(t))

+ y(t)ỹm(t)(x̃(t)− x(t))]
}
.

Substituting this inequality in (4.6), we obtain

D+V1(t)|(1.5)

≤ −a1(t)|x(t)− x̃(t)|+ C(t)
g(t, x, y)g(t, x̃, ỹ)

{
−A1(t)|ym(t)− ỹm(t)|

−B1(t)[ym(t)|x̃(t)− x(t)|+ x(t)|ym(t)− ỹm(t)|]
− C1(t)y(t)ỹ(t)|ym−1(t) − ỹm−1(t)| −B1(t)C1(t)[x̃(t)ym(t)|ỹ(t)− y(t)|

+ x̃(t)y(t)|ym(t)− ỹm(t)|+ y(t)ỹm(t)|x̃(t)− x(t)|]
}

+A2|x(t)− x̃(t)|.

(4.7)

Meanwhile,

D+V2(t)|(1.5)

= sgn(y(t)− ỹ(t))(
ẏ(t)
y(t)

−
˙̃y(t)
ỹ(t)

) +B2|y(t)− ỹ(t)| −B2|y(t− τ)− ỹ(t− τ)|

= sgn(y(t)− ỹ(t))[−b1(t)(y(t)− ỹ(t))− b2(t)(y(t− τ)− ỹ(t− τ))

+
D(t)x(t)ym−1(t)

g(t, x, y)
− D(t)x̃(t)ỹm−1(t)

g(t, x̃, ỹ)
] +B2|y(t)− ỹ(t)|

−B2|y(t− τ)− ỹ(t− τ)|.

(4.8)

Since

D(t)x(t)ym−1(t)
g(t, x, y)

− D(t)x̃(t)ỹm−1(t)
g(t, x̃, ỹ)

=
D(t)

g(t, x, y)g(t, x̃, ỹ)

{
A1(t)[x(t)(ym(t)− ỹm(t)) + ỹm−1(t)(x(t)− x̃(t))]

+B1(t)x̃(t)x(t)ym−1(t)− ỹm−1(t) + C1(t)y(t)ỹ(t)[ym−2(t)(x(t)− x̃(t))

+ x̃(ym−2(t)− ỹm−2(t))]
}

+B1(t)C1(t)x(t)x̃(t)y(t)ỹ(t)(ym−2(t)− ỹm−2(t)).

(4.9)
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Substituting the above equality in (4.8), we obtain

D+V2(t)|(1.5)

≤ −b1(t)|y(t)− ỹ(t)|+ D(t)
g(t, x, y)g(t, x̃, ỹ)

(A1(t)[x(t)|ym(t)− ỹm(t)|

+ ỹm−1(t)|x(t)− x̃(t)|] +B1(t)x̃(t)x(t)|ym−1(t)− ỹm−1(t)|
+ C1(t)y(t)ỹ(t)[ym−2(t)|x(t)− x̃(t)|+ x̃|ym−2(t)− ỹm−2(t)|]
+B1(t)C1(t)x(t)x̃(t)y(t)ỹ(t)|ym−2(t)− ỹm−2(t)|+B2|y(t)− ỹ(t)|.

(4.10)

For any x1, x2 ∈ [a, b] ⊂ (0,+∞), we have

|α|bα−1|x1 − x2| ≤ |xα1 − xα2 | ≤ |α|aα−1|x1 − x2|, for α < 1,

αaα−1|x1 − x2| ≤ |xα1 − xα2 | ≤ |α|bα−1|x1 − x2|, for α > 1.

Then, from (4.7) and (4.10), in view of (4.1), (4.2) and (4.3), letting ε → 0, we
obtain

D+V1(t)|(1.5)

≤ [−a1(t)− C(t)B1(t)
g2(t)

γm − C(t)B1(t)C1(t)
g2(t)

γm+1 +A2]|x(t)− x̃(t)|

− [
mC(t)A1(t)

g2(t)
γm−1 +

mC(t)B1(t)
g2(t)

γm +
(m− 1)C(t)C1(t)

g2(t)
γm

+
C(t)B1(t)C1(t)

g2(t)
γm+1 +

mC(t)B1(t)C1(t)
g2(t)

γm+1]|y(t)− ỹ(t)|,

(4.11)

and

D+V2(t)|(1.5) ≤ [−b1(t) +
mD(t)A1(t)

G2(t)
Γm +

(m− 1)D(t)B1(t)
G2(t)

Γm

+
(m− 2)D(t)C1(t)

G2(t)
Γm +

(m− 2)D(t)C1(t)B1(t)
G2(t)

Γm+1

+B2]|y(t)− ỹ(t)|+ [
(m− 2)D(t)C1(t)

G2(t)
Γm

+A1(t)Γm−1]|x(t)− x̃(t)|.

(4.12)

Summing (4.11), (4.12), (4.4) and (4.5), we obtain, for t > T > 0, that

D+V (t)|(1.5) = D+V1(t)|(1.5) +D+V2(t)|(1.5) ≤ −σ1|x(t)− x̃(t)| − σ2|y(t)− ỹ(t)|.
Integrating the two sides of above inequality, we have

V (t) + σ1

∫ T

t

|x(s)− x̃(s)|ds+ σ2

∫ T

t

|y(s)− ỹ(s)|ds ≤ V (T ) <∞.

From Lemma 4.2, we obtain

lim
t→∞

|x(t)− x̃(t)| = 0, lim
t→∞

|y(t)− ỹ(t)| = 0.

This proves that any positive ω-periodic solution of (1.5) is a global attractor. Next
we prove the uniqueness of the positive ω-periodic solution (x̃(s), ỹ(t)). Suppose
there is another positive ω-periodic solution (x̃∗(s), ỹ∗(t)). Otherwise, there exists
a ξ ∈ [0, ω] such that x̃(ξ) 6= x̃∗(ξ) or ỹ(ξ) 6= ỹ∗(ξ), then ε0 > 0. However

ε0 = lim
t→∞

|x̃(ξ + nω)− x̃∗(ξ + nω)| = lim
t→∞

|x̃(t)− x̃∗(t)| = 0.
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This is a contradiction. Hence, the positive ω-periodic solution (x̃(s), ỹ(t)) is unique.
�
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