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Abstract. In this article we study spectral properties of non-local boundary-

value problem for an equation of parabolic-hyperbolic type. The non-local

condition binds the solution values at points on boundaries of the parabolic
and hyperbolic parts of the domain with each other. Nonlocal boundary con-

ditions of such type are called Frankl-type conditions. This problem was first

formulated by Kal’menov and Sadybekov who proved the unique strong solv-
ability. In this article we investigate one particular case of this problem, for

which we show that the problem does not have eigenvalues.

1. Introduction

The theory of equations of the mixed type is one of the well-developed sections
of the modern theory of partial differential equations. This happens because of
the appearance of many applied problems such mathematical modeling lead to the
studying various types of equations in domains of changing independent variables.
Therefore scientists are interested in problems of mixed type.

In 1902 Chaplygin was the first to point out the importance of studying equa-
tions of the mixed type in his paper “On gas jet“. Researching boundary value
problems for equations of the mixed type began from works of Tricomi, Gellerst-
edt in 20th-30th of the last century. A new stage of developing this theory was
founded by papers of Lavrent’ev, Bitsadze, Frankl, Babenko, where the practical
significance of some essential issues of this theory was indicated alongside with the-
oretical researches of these issues. For the most part, these works were devoted
to the theoretical and applied aspects of equations of the mixed elliptic-hyperbolic
type.

Researching equations of a parabolic-hyperbolic type has gained a rapid devel-
opment quite recently. These problems are of particular interest due to their appli-
cation to various problems of mechanics and physics. For example, such problems
arise in studying the movement of weak compressible fluid in a channel surrounded
by a porous medium: in the channel the pressure of the fluid satisfies the wave
equation, but in the porous medium this pressure is described by a diffusion equa-
tion.
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Essential contribution to the development of the theory of boundary value prob-
lems for parabolic-hyperbolic equations was done by Salakhitdinov, Dzhuraev,
Nakhushev. They justified the well-posedness of formulated problems by the method
of reduction to integral equations. Issues of well-posed solvability of problems were
researched on the basis of solution representation in the form of bilinear series in
papers of Moiseev, Kapustin, Sabitov.

Unlike the theory of local boundary value problems, nonlocal boundary value
problems are much less researched. In gas dynamics Frankl (in 1945) for the first
time set a boundary value problem for the Chaplygin equation

k(y)uxx − uyy = 0,

where k(0) = 0, k′(y) > 0. In this problem as a carrier of nonlocal boundary
condition (”jump of sealing”)

u(0, y)− u(0,−y) = f(y)

is a part −a < y < a of the boundary x = 0 of the domain consisting of parts of
the boundary of subdomains of ellipticity and hyperbolicity of the equation [5, 6].
Therefore the nonlocal boundary conditions of such type, that is, binding values
of functions on the boundary of domains of equations of various type, are called
conditions of the Frankl type.

Pulkin and Lerner (1966) for the general Lavrent’ev-Bitsadze equation formu-
lated and investigated problems in which the Franklle condition is replaced by the
Tricomi condition, and different conditions are given on the remaining sections of
the boundary [18].

Publications on this subject are quite extensive. From the recent publications
related to the theme we can note the papers [13, 14, 19, 20, 21, 22, 24]. However in
these papers the nonlocal problems were considered in rectangular domains. But in
our formulation of the problem the hyperbolic part coincides with a characteristic
triangle. Throughout this note we mainly use techniques from our works [3, 9, 10,
23, 26, 27, 28] .

2. Formulation of the problem and main result on its solvability

Let Ω ⊂ R2 be a finite domain bounded for y > 0 by the segments AA0, A0B0,
B0B, A = (0, 0), A0 = (0, 1), B0 = (1, 1), B = (1, 0) and for y < 0 by the
characteristics AC : x + y = 0 and BC : x − y = 1 of an equation of the mixed
parabolic-hyperbolic type

Lu =
{
ux − uyy, y > 0
uxx − uyy, y < 0

}
= f(x, y). (2.1)

This is an equation of the mixed type. The equation refers to the first kind because
the line of change of type y = 0 is not a characteristic of the equation.

By W l
2(Ω) = H l(Ω) we denote the Sobolev space with the norm ‖ · ‖l, W 0

2 (Ω) =
L2(Ω); Ω1 = Ω ∩ {y > 0}, Ω2 = Ω ∩ {y < 0}.

Consider the following nonlocal boundary value problem being the generalization
of an analogue of the Frankl problem for the parabolic-hyperbolic equation (2.1).
This problem was first formulated by Kal’menov and Sadybekov [9, 10] .
Problem F . Find a solution to (2.1) satisfying classical boundary conditions

u
∣∣
AA0

= 0, uy
∣∣
A0B0

= 0, (2.2)
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and the non-local boundary condition

αu(θ0(t)) + βu(θ1(t)) = γu(θ(t)), 0 ≤ t ≤ 1, (2.3)

where θ(t) = (t, 1), θ0(t) = (t/2,−t/2), θ1(t) = ( t+1
2 , t−1

2 ); α, β and γ are given
numbers.

It is easy to see that θ(t) ∈ A0B0, θ0(t) ∈ AC, θ1(t) ∈ BC. Therefore the
non-local boundary condition (2.3) binds with each other values of the sought-for
solution on the parabolic part of the boundary A0B0 and on the hyperbolic parts
of the boundary of the domain (at the characteristics AC and BC).

Note that for γ = 0 the boundary conditions in the hyperbolic part of the domain
of the form

αu(θ0(t)) + βu(θ1(t)) = 0
are well-known and called boundary conditions with displacement. They were first
introduced by Nakhushev for a wave equation (see [15]). The particular case of
Problem F for α + β = 2γ was considered in [3] and there the unique strong
solvability of the problem is proved.

Definition 2.1. A function u(x, y) from the class

u ∈W = C1(Ω) ∩ C1,2
x,y(Ω

1
) ∩ C2(Ω2),

satisfying the boundary conditions (2.2)–(2.3) of the problem and turning (2.1) into
an identity we will call a classical solution to Problem F .

Definition 2.2. A function u ∈ L2(Ω) we will call a strong solution to Problem
F if there exists a sequence of functions {un}, un ∈ W satisfying the boundary
conditions (2.2)–(2.3) of the problem such that sequences un and Lun reduce in
L2(Ω) to the functions u and f , respectively.

Kal’menov and Sadybekov [9, 10] proved the unique strong solvability of the
problem.

Theorem 2.3 ([9, 10]). Let α+ β 6= 0. Then
(a) For any function f ∈ L2(Ω) there exists a unique strong solution u(x, y)

to Problem F . This solution belongs to the class H1(Ω) ∩H1,2
x,y(Ω

1
) ∩ C(Ω), and

satisfies the inequality
‖u‖1 ≤ C‖f‖0. (2.4)

(b) For any function f ∈ C1(Ω), f(A) = 0, there exists a unique classical solution
u(x, y) to Problem F . This solution is stable in the norm

‖u‖C(Ω) ≤ C‖f‖C(Ω). (2.5)

By L denote a closure in L2(Ω) of the differential operator given on functions
{un}, un ∈ W satisfying the boundary conditions (2.2)–(2.3). From item (a) of
Theorem 2.3 follows that the operator L is invertible and L−1 is a compact op-
erator. Therefore the spectrum of the operator L can consist of only eigenvalues.
Naturally there arises a question on existence of eigenvalues of the operator L and,
consequently, of Problem F .

Unlike the theory of solvability, spectral issues of problems for equations of the
mixed type are less studied. The papers by Kal’menov [7, 8], Moiseev [11], Pono-
marev [17] have made a sifnificant contribution to this direction. The main bibli-
ography on these issues is given in the monograph of Moiseev [12].
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Note that for β = γ = 0 Problem F coincides with the Tricomi problem, and
for α = γ = 0 it coincides with the Tricomi problem with data on an opposite
characteristics. The strong solvability of particular cases of the problem for α =
γ = 0 and for β = γ = 0 has been researched in paper by Sadybekov, Toizhanova
(Dildabek) [25]. It is shown that for β = γ = 0 the problem is Volterra, and
for α = γ = 0 the problem has an eigenvalue. This method was used in [2] for
proving the Volterra property of some problems with the Bitsadze-Samarskii-type
conditions for a mixed parabolic-hyperbolic equation.

In the next section we present another particular case of Problem F for γ 6= 0
which does not have eigenvalues. In virtue of compactness of the operator L−1 it
will mean that L−1 is a Volterra operator. Thus Problem F in this case is Volterra.

3. Absence of eigenvalues

Consider a particular case of Problem F , when β = 0. In virtue of the condition
α+ β 6= 0 from Theorem 2.3 one can consider that α = 1.
Problem F0. Find a solution to (2.1) satisfying the boundary conditions

u
∣∣
AA0

= 0, uy
∣∣
A0B0

= 0, (3.1)

u(θ0(t)) = γu(θ(t)), 0 ≤ t ≤ 1, (3.2)

where θ(t) = (t, 1), θ0(t) = (t/2,−t/2), γ are given numbers.
For proving the Volterra property of Problem F0 we need to obtain a representa-

tion of the inverse operator L−1. A part of the following theorem can be obtained,
as a particular case, from [9, 10]. But we prove this result anew because it is
important to obtain a form of solution in the integral form.

Theorem 3.1. For any function f ∈ L2(Ω) there exists a unique strong solution
u(x, y) to Problem F0. This solution belongs to the class H1(Ω) ∩H1,2

x,y (Ω
1
)∩C(Ω),

satisfies inequality (2.4) and can be represented in the form

u(x, y) =
∫

Ω

K(x, y;x1, y1)f(x1, y1)dx1dy1, (3.3)

where K ∈ L2(Ω× Ω).

Proof. The proof will be given in several stages.

3.1. Reducing to an integral equation. At first let f ∈ C1(Ω), f(A) = 0. By
the unique solvability of the Cauchy problem for a wave equation, the solution to
(2.1) for y < 0 is represented according to the d’Alembert formula

u(x, y) = −
∫ η

ξ

dξ1

∫ η

ξ1

f1(ξ1, η1)dη1 +
1
2

[τ(ξ) + τ(η)]− 1
2

∫ η

ξ

ν(s)ds, (3.4)

where

τ(x) = u(x, 0), τ(0) = 0, ξ = x+ y, η = x− y,

ν(x) =
∂u

∂y
(x, 0), f1(ξ, η) =

1
4
f(
ξ + η

2
,
ξ − η

2
).

Hence, taking into account τ(0) = 0, by direct calculation, we obtain

u(θ0(t)) =
1
2
τ(t)− 1

2

∫ t

0

ν(s)ds−
∫ t

0

dξ1

∫ t

ξ1

f1(ξ1, η1)dη1. (3.5)
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This is the basic relation for τ(t) and ν(t) obtained from the hyperbolic part of the
domain.

In the parabolic part of the domain we consider a problem with mixed boundary
condition:

Find in Ω1 a solution to the heat equation

ux − uyy = f(x, y), (3.6)

satisfying the homogeneous initial-boundary conditions (2.2) and
non-homogeneous boundary condition

u(x, 0) = τ(x), 0 ≤ x ≤ 1. (3.7)

It is evident that the natural condition of the sequence τ(0) = 0 is a necessary
condition of the solution existence. Further we will assume that this condition
holds.

Considering that the function τ(x) is well-known, we calculate ν(x) = ∂u
∂y (x, 0).

This is a mixed initial-boundary value problem for the heat equation. Its Green’s
function has the form [1, p. 198]:

G(x, y, y1) ==
+∞∑

n=−∞

(−1)n

2
√
πx

[
exp

{
− (y − y1 + 2n)2

4x
}

− exp
{
− (y + y1 + 2n)2

4x
}]
.

(3.8)

Therefore for the solution to problem (3.6), (2.2), (3.7) we have the representa-
tion

u(x, y) =
∫ x

0

dx1

∫ 1

0

G(x− x1, y, y1)f(x1, y1)dy1

+
∫ x

0

Gy1(x− s, y, 0)τ(s)ds.
(3.9)

Hence for y → 1 we find

u(θ(t)) =
∫ t

0

dx1

∫ 1

0

G(t− x1, 1, y1)f(x1, y1)dy1

+
∫ t

0

Gy1(t− s, 1, 0)τ(s)ds,
(3.10)

and differentiating with respect to y and letting y → 0, we obtain

ν(x) =
∂

∂y

∫ x

0

Gy1(x− s, y, 0)τ(s)ds
∣∣
y=0

+ Φ1(x), (3.11)

where

Φ1(x) =
∂

∂y

∫ x

0

dx1

∫ 1

0

G(x− x1, y, y1)f(x1, y1)dy1

∣∣
y=0

.

Formulas (3.10) and (3.11) give the basic relation for τ(t) and ν(t) obtained from
the parabolic part of the domain.

Substituting (3.5) and (3.10) into the boundary condition (2.3), after differenti-
ating, taking into account τ(0) = 0, we obtain

τ ′(t)− ν(t)− 2γ
∫ t

0

Gy1(t− s, 1, 0)τ ′(s)ds = 2F (t), (3.12)
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where F (t) = F1(t) + F2(t), with

F1(t) = γ
d

dt

∫ t

0

dx1

∫ 1

0

G(t− x1, 1, y1)f(x1, y1)dy1,

F2(t) =
∫ t

0

f1(ξ1, t)dξ1.

We transform the first summand in the right-hand part of (3.11). For this purpose,
taking into account τ(0) = 0 and the explicit form of the Green’s function (3.8), by
integrating by parts, we transform∫ t

0

Gy1(t− s, y, 0)τ(s)ds =
∫ t

0

G1(t− s, y)τ ′(s)ds,

where

G1(t− s, y) = − 2√
π

−1∑
n=−∞

(−1)n
∫ y+n

2
√

(t−s)

−∞
e−z

2
dz +

2√
π

+∞∑
n=0

(−1)n
∫ +∞

y+n

2
√

(t−s)

e−z
2
dz.

Hence it is easy to obtain that

∂

∂y

∫ t

0

Gy1(t− s, y, 0)τ(s)ds
∣∣
y=0 = −

∫ t

0

k(t− s)τ ′(s)ds,

where

k(t− s) =
1√

π(t− s)

+∞∑
n=−∞

(−1)nexp
{
− n2

4(t− s)

}
,

and formula (3.11) takes the form

ν(t) = −
∫ t

0

k(t− s)τ ′(s)ds+ Φ1(t). (3.13)

Substituting the obtained result from (3.13) into (3.12), we obtain the integral
equation

τ ′(t) +
∫ t

0

k(t− s)τ ′(s)ds− 2γ
∫ t

0

Gy1(t− s, 1, 0)τ ′(s)ds = 2Φ(t), (3.14)

where
Φ(t) = F (t) +

1
2

Φ1(t). (3.15)

3.2. Constructing a solution to the problem. It is easy to see that k(t− s) is
a kernel with a weak polar peculiarity, and the function Gy1(t− s, 1, 0) is infinitely
continuously differentiable for all s ≤ t ≤ 1. Therefore (3.14) is an integral Volterra
equation of the second kind

τ ′(t)−
∫ t

0

k1(t− s)τ ′(s)ds = 2Φ(t), (3.16)

where
k1(t− s) = −k(t− s) + 2γGy1(t− s, 1, 0), (3.17)

Φ(t) = γ
d

dt

∫ t

0

dx1

∫ 1

0

G(t− x1, 1, y1)f(x1, y1)dy1 +
∫ t

0

f1(ξ1, t)dξ1

+
( ∂
∂y

∫ t

0

dx1

∫ 1

0

G(t− x1, y, y1)f(x1, y1)dy1

)∣∣∣
y=0

,
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which always has a unique solution. It is easy to see that the kernel K(x− t) is a
kernel with weak peculiarity. Therefore there exists the unique strong solution to
(3.16) and has the form

τ ′(t) = 2Φ(t) + 2
∫ t

0

Γ(t− s)Φ(s)ds, (3.18)

where Γ(t) is a resolvent of (3.16):

Γ(t) =
∞∑
j=1

kj(t), kj+1(t) =
∫ t

0

k1(t− s)kj(s)ds, j ∈ N.

And the smoothness of this solution depends on the class to which Φ(t) belongs.

Lemma 3.2 ([9, 10]). Let f ∈ C1(Ω), f(A) = 0, then Φ(t) ∈ C1[0, 1] and satisfies
estimates

‖Φ(t)‖C[0,1] ≤ C‖f‖C(Ω), (3.19)

‖Φ(t)‖L2(0,1) ≤ C‖f‖0. (3.20)

A proof of the above lemma is obtained by direct calculations, estimating each
of summands (3.15) [9] and [10].

On the basis of this lemma there always exists a unique solution τ ′(t) to (3.14).
This solution (depending on the smoothness of Φ(t)) belongs to the class τ ′(t) ∈
C1[0, 1] or τ ′(t) ∈ L2(0, 1) and by (3.19) and (3.20), it satisfies

‖τ ′(t)‖C[0,1] ≤ C‖f‖C(Ω), (3.21)

or
‖τ ′(t)‖L2(0,1) ≤ C‖f‖0. (3.22)

Taking into account τ(0) = 0, we find a unique τ(t).
Now the solution to Problem F is reestablished in Ω1 as a solution to the first

initial-boundary value problem by formula (3.9). We find the value of ν(x) from
(3.13). Therefore in the domain Ω2 the solution to Problem F is uniquely reestab-
lished as the solution to the Cauchy problem by the d’Alembert formula (3.4).

From the solution properties of the first initial-boundary value problem for the
heat equation it follows that the solution to Problem F belongs to the classes
of smoothness indicated in the Theorem and (by inequalities (3.21) and (3.22))
satisfies estimates (2.4) and (2.5).

Let us show that for f ∈ L2(Ω) the found solution is strong. Since C1
0 (Ω) is

dense in L2(Ω), then for any function f ∈ L2(Ω) there exists a sequence of functions
fn ∈ C1

0(Ω) such that ‖fn−f‖ → 0, n→∞. By un we denote the classical solution
to Problem F when the right-hand part is fn. Such solution exists by virtue of the
above-mentioned proof of the theorem and un ∈W for all fn ∈ C1

0(Ω).
By inequality (2.4) we have

‖un − u‖1 ≤ c‖fn − f‖0 → 0, n→∞.

Consequently, {un} is the sequence corresponding to the definition of strong solu-
tion. Therefore Problem F is strongly solvable for any right-hand part f , and the
strong solution belongs to the class H1(Ω) ∩H1,2

x,y (Ω
1
) ∩ C(Ω). The existence and

uniqueness of the strong solution of Problem F is proved.
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Let us obtain now a solution in the form (3.3). From (3.18), taking into account
τ(0) = 0, after simple transformations, we obtain

τ(x) =
∫ x

0

Γ1(x− t)Φ(t)dt, (3.23)

where

Γ1(x) = 2 + 2
∫ x

0

Γ(t)dt.

Substituting the value Φ(t) into (3.23), after evident transformations, we come
to the form

τ(x) =
∫ x

0

dξ1

∫ x

ξ1

Γ1(x− ξ1)f1(ξ1, η1)dη1

+ 2γ
∫ x

0

dx1

∫ 1

0

G(x− x1, 1, y1)f(x1, y1)dy1

+ γ

∫ x

0

dx1

∫ 1

0

(∫ x

x1

Γ1(x− t)G(t− x1, 1, y1)dt
)
f(x1, y1)dy1

+
1
2

∫ x

0

dx1

∫ 1

0

(∫ x

x1

Γ1(x− t)
( ∂
∂y
G(t− x1, y, y1)

)∣∣
y=0

dt
)
f(x1, y1)dy1.

Substituting this quantity into (3.7) and into (3.13), we obtain formula (3.3), where
the detailed form of the kernel K(x, y;x1, y1) can be written in the explicit form.
We will not show this form here due to its bulkiness.

From the analysis of the kernel representation it is easy to see that

K(x, y;x1, y1) ∈ L2(Ω× Ω).

Herewith it is easy to see that the kernel K(x, y;x1, y1) can be represented in the
form

K(x, y;x1, y1) = θ(y)
{
θ(y1)θ(x− x1)G11(x− x1, y, y1)

+ θ(−y1)θ(x− η1)G12(x− x1, y, y1)
}

+ θ(−y)
{
θ(y1)θ(ξ − x1)G21(x− x1, y, y1)

+ θ(−y1)θ(η − η1)G22(x− x1, y, y1)
}
,

(3.24)

where Gkn(x−x1, y, y1) ∈ L2(Ωk×Ωn), k, n = 1, 2; θ(·) is a Heaviside step function.
The proof is complete. �

3.3. Theorem on absence of eigenvalues.

Theorem 3.3. The inverse operator L−1 of Problem F0 defined by (3.3) is Volterra
(that is, compact and quasinilpotent).

Proof. Since K(x, y;x1, y1) ∈ L2(Ω × Ω), the operator L−1 is a Gilbert-Schmidt
operator. Consequently, it is compact. For proving the theorem it is sufficient
to show that the operator L−1 does not have eigenvalues. We need the following
definitions and theorem from [16].

Definition 3.4. Let S ⊂ Ω × Ω. The kernel K(P1, P2) is called S-kernel, if
K(P1, P2) ∈ L2(Ω× Ω) and K(P1, P2) = 0 for (P1, P2) ∈ S.
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Definition 3.5. The open set S ⊂ Ω×Ω is called a set of type V , if any S-kernel
does not have eigenvalues.

As in [16], we introduce the notation: P1
S→ P2, if (P1, P2) ∈ S, and P1

S← P2, if
(P1, P2) /∈ S.

Theorem 3.6 ([16]). For the set S to be a set of type V it is necessary and sufficient
that for any k ≥ 1 from conditions

P1
S→ P2

S→ P3
S→ . . .

S→ Pk (3.25)

it follows that Pk
S← P1.

We use this theorem for our operator L−1. Consider the sequence of points
Pi = (xi, yi), i = 1, k. Let the condition (3.25) hold for any k ≥ 1. Then for i < j
the relation

xi > xj , i < j. (3.26)

follows from the condition (Pi, Pj) ∈ S.
Let us prove that the condition (Pk, P1) /∈ S follows from (3.25). Using the

explicit form (3.24) of the kernel K(xk, yk;x1, y1), by direct calculation we make
sure that the fulfillment of the condition (3.26) is sufficient for

K(xk, yk;x1, y1) = 0, if (Pk, P1) /∈ S.

Consequently, (3.24) defines S-kernel not having eigenvalues, and the operator L−1

is Volterra. The proof is complete. �
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