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BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS

PIERO D’ANCONA, SERGE NICAISE, ROLAND SCHNAUBELT

Communicated by Jerome A. Goldstein

Abstract. We construct classical solutions to the nonlinear Maxwell system

with periodic boundary conditions which blow up in H(curl). A similar result

is shown on the full space. Our construction is based on an analysis of a shock
wave in one space dimension.

1. Introduction and statement of main results

The Maxwell system

∂tD(t) = curlH(t), ∂tH(t) = − curlE(t), (1.1)

divD(t) = 0, divB(t) = 0 (1.2)

is one of the fundamental equations of physics (which is still poorly understood
analytically in the nonlinear case). One has to complement (1.1) and (1.2) by
material laws that connect the electric fields E and D, as well as the magnetic
ones B and H. We focus on materials without magnetic response (as appearing in
optics) and look at the case H = B. Moreover, we only treat instantaneous material
relations where D is given as a pointwise function of E. This class of problems fits
to the theory of quasilinear hyperbolic systems, cf. [3, 6, 10, 14]. For the physical
background we refer to, e.g., [5, 11]. In our analysis we concentrate on conservative
systems such as (1.1) and (1.2) without conductivity and given currents or charges.

For rather general instantaneous nonlinear material laws, the Cauchy problem
for (1.1) and (1.2) on R3 is locally well posed due to standard results on quasilinear
hyperbolic systems if one works in H3(R3) (or Hs(R3) for s > 5/2), see [2, 3, 10].
Nothing seems to be known in lower regularity. The situation on domains is more
delicate since one typically has characteristic boundary conditions. Here the general
theory only yields result in even higher regularity, see e.g. [8]. For the Maxwell
equations itself partial results were established in [12]. Again on R3 one knows at
least for certain nonlinearities of Kerr type (1.5) that small initial data in Hk(R3)
(for large k ∈ N) lead to global smooth solutions, see [13].

On the other hand, shock solutions with a pointwise blow-up of the first deriva-
tive exist for a large class of nonlinearities, see [1, 4, 6, 9, 10] for the general theory.
We note that these solutions do not belong to L2(R3). To rule out global existence
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in natural spaces like H(curl) × H(curl), our main aim is to find solutions whose
curl blows up even in L2.

In this paper, we construct a classical solution (E0, B0) whose curl blows up in
L2 for the Maxwell system on a cube with periodic or certain mixed boundary con-
ditions. This solution is essentially given by a shock solution for a one-dimensional
subproblem constructed by the methods in [10]. However, the compactly supported
initial data have to be carefully chosen so that one can show the explosion of the
first derivative of the solution in L2(R) in finite time. To transfer this result to R3,
one has to localize (E0, B0) since these fields only depend on one space variable.
The analysis of the localized solution requires a local uniqueness result for (1.1)
and (1.2) which does not seem to be available in H(curl)×H(curl). As a result, we
obtain blow-up on R3 only within a smaller class of solutions, see Theorem 1.4. Our
results apply to a large class of nonlinearities described below, where we impose no,
respectively very mild, assumptions on their behavior at infinity.

To use subproblems in one space dimension, we look at scalar type material laws
D = Φ(E)E for a given function Φ : R3 → R and thus on the nonlinear Maxwell
system

∂t[Φ(E(t))E(t)] = curlB(t), ∂tB(t) = − curlE(t), (1.3)

div[Φ(E(t))E(t)] = 0, divB(t) = 0 (1.4)

An important special case is the Kerr model with

Φ(x) = 1 + a |x|2 (1.5)

for some a > 0, see [5] or [11]. In Examples 2.1 and 3.1 we treat more general
versions of (1.5). The one-dimensional version of (1.3) reads as

∂tb(u) = ∂xv, ∂tv = ∂xu, (u(0, x), v(0, x)) = (u0(x), v0(x)) (1.6)

In (1.6) the function b has to satisfy the following hypotheses.

Assumption 1.1. The map b belongs to C2(R,R), there are numbers w− < 0 <
w0 < w+ such that b′ > 0 on J := (w−, w+), the map q ∈ C(J,R) given by

q(s) :=
b′′(s)

2b′(s)3/2
, s ∈ J,

has a global maximum at s = w0, q is C1 near w0, and q(s) > 0 for 0 < s ≤ w0.

We point out that there are no assumptions on the behavior of b at infinity.
In particular, b could become constant or linear. We now state our basic blow-up
result about (1.6), which we prove in Section 2.

Theorem 1.2 (1D case). Let Assumption 1.1 be true. Then there exist compactly
supported initial data (u0, v0) ∈ C1(R,R2) and a C1 solution (u, v) to Problem (1.6)
on [0, t∗)×R for some t∗ ∈ (0,∞) which is compactly supported in x for each t and
satisfies ‖∂xu(t, ·)‖L2(R) → +∞ as t→ t−∗ .

In the proof one actually sees that this blow-up occurs for a large class of initial
functions. We mainly require that the slope of the ‘electric part’ attains its positive
maximum at x = 0, see (2.10) and (2.12). The blow-up solutions in the following
two results are modifications of those from Theorem 1.2.

In three space dimensions we first look at the cube QM = [−M,M ]3 for some
M > 0 with outer unit normal ν. Besides periodic boundary condition we treat the
mixed conditions (BC) given as
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(i) E · ν = 0 and B × ν = 0 for x3 = ±M ;
(ii) E × ν = 0 and B · ν = 0 on the rest of the boundary.

Here (ii) are the usual conditions for perfectly conducting boundaries, while (i)
corresponds to a perfect magnetic conductor. Though there is no real material
with the behavior in (i), it is used as a symmetry boundary condition in numerical
computations.

Theorem 1.3 (3D boundary value problem). Assume that b(s) := Φ(s, 0, 0)s for
s ∈ R fulfills Assumption 1.1. Consider the Cauchy problem for (1.3) and (1.4)
on the cube QM with the boundary conditions (BC) or with periodic boundary con-
ditions, where M > 0 is sufficiently large. Then there exist initial data (E0

0 , B
0
0)

in C1(QM ,R6) satisfying (1.4) and the respective boundary conditions and a cor-
responding C1 solution (E0, B0) on [0, t∗) × QM for some t∗ ∈ (0,∞) such that
‖ curlE0(t, ·)‖L2(QM ) → +∞ as t→ t−∗ .

This and the following theorem are shown in Section 3. For our result on R3, we
also assume that Φ(E) = β(|E|) for a function β ∈ C2([0,∞),R) and let b(s) :=
sβ(|s|) for s ∈ R. We define the symmetric matrix

A0(y) = β(|y|)I3×3 + β′(|y|)|y|−1yy> for y ∈ R3 \ {0} (1.7)

and A0(0) = β(0)I3×3. Our assumptions will imply that this matrix is positive
definite with a uniform lower bound. For C1 solutions the equation (1.3) can be
equivalently rewritten as the symmetric hyperbolic system

A0(E)∂tE = curlB, ∂tB = − curlE. (1.8)

The space of functions ϕ ∈ L2(R3,R3) such that curlϕ ∈ L2(R3,R3) is called
H(curl). It is a Hilbert space when endowed with the natural norm.

Theorem 1.4 (3D problem on R3). Let Φ(E) = β(|E|) for a function β in
C2([0,∞),R) such that b(s) := β(|s|)s for s ∈ R fulfills Assumption 1.1, b′(s) ≥ κ
and sβ′(s) ≤ cβ(s) for some c, κ > 0 and all s ≥ 0. Consider the Cauchy problem
for (1.3) and (1.4) on R3. There exist compactly supported initial data (Ec0, B

c
0) in

C1(R3,R6) satisfying (1.4) such that the corresponding local C1 solution (Ec, Bc)
can not be continued to a global solution of (1.8) in C([0,∞), H(curl) × H(curl))
such that curlB is bounded on [0, T ]× R3 for each T > 0.

As we will see in Example 2.1 and 3.1 the Kerr model (1.5) fulfills the assumptions
of the above theorem, even if we modify β(s) = 1 + as2 to a constant function for
large s > 0.

Straightforward modifications of our proofs yield the following generalizations.
First, if we assume in addition that b belongs to C∞(R,R), then one can replace
in the above theorems C1 by C∞. Second, Theorem 1.4 is also true for functions
Φ as in Theorem 1.3 such that the map Ψ : R3 → R3; Ψ(x) = Φ(x)x, is an diffeo-
morphism and its derivative DΨ(x) is symmetric and uniformly positive definite
for x ∈ R3. The extra conditions on b and β in Theorem 1.4 just ensure these
properties of Ψ.

Remark 1.5. Let Φ(E) = β(|E|)E with a function β ∈ C2(R,R) as in Theo-
rem 1.4. For Q = R3 or Q = [−M,M ]3 as in Theorem 1.3 we define h(s) =∫ s
0
β(
√
r) dr for s ≥ 0 and the ‘energy’

E(E,B) =

∫
Q

(
1
2 |B|

2 + β(|E|)|E|2 − 1
2 h(|E|2)

)
dx
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for functions on Q such that each summand is integrable. Take maps (E,B) in
C1([0, T ]×Q,R6) with sufficient decay at ∞ if Q = R3, say, which solve (1.3) and
satisfy (BC) or periodic boundary conditions if Q = [−M,M ]3. It is then easy
to check that E(E(t), B(t)) is constant for t ∈ [0, T ]. (See [14] for more general
material laws.) For the Kerr model one has

E(E,B) =

∫
Q

(
1
2 |E|

2 + 3
4a |E|

2 + 1
2 |B|

2
)

dx.

But, these conserved quantities are not strong enough to prevent the blow-up in
H(curl) stated in the theorems.

2. The one dimensional case, proof of Theorem 1.2

Let b satisfy Assumption 1.1. For C1 solutions taking values in J × R, we can
rewrite system (1.6) as

∂t

(
u

v

)
+A(u, v)∂x

(
u

v

)
= 0 with A(u, v) =

(
0 −b′(u)−1

−1 0

)
(2.1)

on R. For (u, v) ∈ J × R, the matrix A(u, v) has the eigenvalues and -vectors

λ1,2(u, v) = ±b′(u)−1/2, η1,2(u, v) =

(
∓1

b′(u)1/2

)
.

These observations are a special case of the analysis in Section 3 of [1]. In the
following we take λ = λ1 and η = η1 and drop the index 1. Using the construction
in [10, Section 1.4], we first construct a bounded C1 solution of (2.1) whose first
derivative has a finite time blow-up in the sup-norm. The main step is to show that
it even blows up in L2 if one chooses the initial functions in the right way.

Fix (α, β) ∈ (w0, w+)× R such that

q(s) > 0 for 0 < s ≤ α.

Observe that the interval α−J = (α−w+, α−w−) contains [0, α]. The C2 function
φ : α− J → J × R

φ1(s) = α− s, φ2(s) = β +

∫ s

0

b′(α− τ)1/2 dτ,

solves the ordinary differential equation

φ′(s) = η(φ(s)), s ∈ α− J, φ(0) = (α, β). (2.2)

For later use, we note the identities

∇λ(φ(s)) · φ′(s) = ∇λ(φ(s)) · η(φ(s)) = q(α− s), s ∈ α− J. (2.3)

Let σ0 : R → [0, α] be C1 and equal to α outside a compact set. There is a
unique C1 solution σ of the scalar partial differential equation

∂tσ(t, x) + λ(φ(σ(t, x)))∂xσ(t, x) = 0, t ≥ 0, x ∈ R,
σ(0, x) = σ0(x), x ∈ R,

(2.4)

on a sufficiently small (bounded) time interval [0, t̄), where σ takes values in α−J .
See e.g. [10, Theorems 2.1 and 2.2]. We now define(

u(t, x)

v(t, x)

)
= φ(σ(t, x)).
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It is easy to check that (u, v) is a C1 solution of (2.1) on [0, t̄)× R. We observe

∂xu = φ′1(σ)∂xσ = −∂xσ. (2.5)

The methods of characteristics yields the implicit formula

σ(t, x) = σ0(x− tλ(φ(σ(t, x)))) = σ0(y(t, x)), (2.6)

where
y(t, x) := x− tλ(φ(σ(t, x)) = x− t · b′(α− σ(t, x))−1/2, (2.7)

as long as

1 + t∇λ(φ(σ(t, x))) · η(φ(σ(t, x)))σ′0(x− tλ(φ(σ(t, x))))

= 1 + tσ′0(x− tλ(φ(σ(t, x))))q(α− σ(t, x)) > 0,
(2.8)

see e.g. [7, p.114], as well as (2.3). We now set

γ(t) := inf
x∈R

σ′0(y(t, x))q(α− σ(t, x)) for t ∈ [0, t̄).

Let t0 ∈ R+ be the supremum of t ∈ [0, t̄) such that τγ(τ) > −1 for all τ ∈ [0, t]. In
the following, we take t ∈ [0, t0) so that the inequality (2.8) is valid for all x ∈ R.
Equations (2.6) and (2.3) then imply

∂xσ(t, x) = σ′0(x− tλ(φ(σ(t, x))))
(

1− tq(α− σ(t, x))∂xσ(t, x)
)
,

∂xσ(t, x) =
σ′0(x− tλ(φ(σ(t, x))))

1 + tq(α− σ(t, x))σ′0(x− tλ(φ(σ(t, x))))

=
σ′0(y(t, x))

1 + tq(α− σ(t, x))σ′0(y(t, x))
.

In particular, σ and ∂xσ are bounded on [0, t0 − δ] × R for each δ ∈ (0, t0]. The
blow-up condition in [10, Theorem 2.2 Annex] thus yields t̄ = t0. From formula
(2.6) we further deduce ∂xσ(t, x) = σ′0(y(t, x))∂xy(t, x) and hence

∂xy(t, x) =
1

1 + tq(α− σ(t, x))σ′0(y(t, x))
> 0. (2.9)

(In the case σ′0(y(t, x)) = 0, we have ∂xσ(t, x) = 0 and the identity ∂xy(t, x) = 1 > 0
follows from (2.7).) Using also (2.7), we see that the map x 7→ y(t, x) is a bijection
from R to R; let y−1t : R→ R be its inverse. This fact and (2.6) lead to the equation

γ(t) = inf
z∈R

σ′0(z)q(α− σ0(z)) =: γ0

for all t < t0. We now fix a C1 function σ0 : R→ [0, α] which is equal to α outside
some compact set and satisfies

σ0(0) = α− w0, σ′0(0) = min
z∈R

σ′0(z) < 0. (2.10)

In view of Assumption 1.1, we can determine

γ0 = σ′0(0)q(w0) and t0 = − 1

γ0
. (2.11)

Substituting z = y(t, x) and employing (2.9), we deduce from formula (2.6)

‖∂xσ(t, ·)‖22 =

∫
R
|∂xσ(t, x)|2 dx =

∫
R
|σ′0(y(t, x))∂xy(t, x)|2 dx

=

∫
R

|σ′0(z)|2

1 + tq(α− σ0(z))σ′0(z)
dz.
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We shall employ the expansions

σ0(z) = α− w0 +O(z), σ′0(z) = σ′0(0) + o+(z), q(w) = q(w0)− o+(w − w0)

where o+(z) denotes any nonnegative function with the property o+(z)/z → 0 as
z → 0. Here we used the assumptions that q has a global maximum at w0 while σ′0
has a global minimum at 0. Hence, (2.11) yields

1 + tq(α− σ0(z))σ′0(z) = 1 + tγ0 + t[q(w0)o+(z) + o+(z) |σ′0(0)| − o+(z2)]

= 1 + tγ0 + to+(z).

By means of this equality, we arrive at

‖∂xσ(t, ·)‖22 =

∫
R

|σ′0(z)|2

1 + tγ0 + to+(z)
dz.

Fix a number δ0 > 0 such that

|σ′0(z)|2 ≥ |σ
′
0(0)|2

2
=: c0 for all |z| ≤ δ0.

For all ε > 0 there exists a radius δ ∈ (0, δ0) such that

0 ≤ o+(z) ≤ εδ for all |z| < δ.

We can then estimate

‖∂xσ(t, ·)‖22 ≥
∫ δ

−δ

c0
1 + tγ0 + tεδ

dz =
2c0δ

1 + tγ0 + tεδ
.

Because of t0 = −1/γ0 in (2.11), it follows that

lim inf
t→t−0

‖∂xσ(t, ·)‖22 ≥
2c0
t0ε

.

Since ε > 0 is arbitrary, equation (2.5) finally implies that

lim inf
t→t−0

‖∂xu(t, ·)‖22 = lim inf
t→t−0

‖∂xσ(t, ·)‖22 = +∞.

Note that
u0(x) := u(0, x) = α− σ0(x) (2.12)

is compactly supported by construction. On the other hand, we have

v0(x) := v(0, x) = β +

∫ α

0

b′(τ)1/2 dτ

for all sufficiently large |x|. Thus, v0 has compact support if we choose

β = −
∫ α

0

b′(τ)1/2 dτ.

This concludes the proof of Theorem 1.2.

Example 2.1. Let γ > 2 and a > 0. Set

w0 =
( 2(γ − 2)

aγ(γ + 1)

) 1
γ−1

> 0 and w− = −
( 1

aγ

) 1
γ−1

< 0.

Then each function b ∈ C2(R) which is equal to

b0(s) = s+ a |s|γ for all s ∈ (w−, w+)

and some w+ > w0 satisfies Assumption 1.1. If we take γ = m ∈ N, we can also
replace b0 by b1(s) = s+ asm.



EJDE-2018/73 BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS 7

3. The three dimensional case, proofs of Theorems 1.3 and 1.4

We begin with the proof of Theorem 1.3. We use the solution (u, v) of the one
dimensional problem (1.6) constructed in the previous section. Equations (2.6)
and (2.8) imply that the supports of u(t, ·) and v(t, ·) are contained in an interval
(−M,M) for all times 0 ≤ t < t0 with t0 from (2.11), provided M > 0 is chosen
large enough. We then define

(E0(t, x), B0(t, x)) = (u(t, x2), 0, 0, 0, 0, v(t, x2)). (3.1)

It is easy to check that these functions solve (1.3) and (1.4) on QM = [−M,M ]3 and
that they satisfy the boundary conditions (BC) as well as the periodic ones. We set
(E0

0(x), B0
0(x)) = (u0(x2), 0, 0, 0, 0, v0(x2)). Since we have ‖ curlE0(t, ·)‖L2(QM ) =

2M‖∂x2
u(t, ·)‖L2(−M,M), the conclusion of Theorem 1.3 follows from Theorem 1.2.

We pass now to the proof of Theorem 1.4. The functions (E0, B0) defined in
(3.1) solve (1.3) and (1.4) on the whole strip [0, t0)×R3; and the initial data have
compact support in the variable x2, but not in x1 and x3. We now modify the initial
functions outside a compact set so that they become compactly supported and still
satisfy the divergence conditions (1.4). To this end, let χ be a test functions which
is equal to 1 on an interval [−r, r], vanishes outside the interval [−r1, r1] for some
r1 > r > 0 with r1 > M , and has the additional property that

∫∞
−∞ χ(s) ds = 0.

The support of

X(s) :=

∫ s

−r1
χ(σ) dσ, s ∈ R,

is thus contained in [−r1, r1]. We next define the new field

D(t, x) = Φ(E(t, x))E(t, x) = β(|E(t, x)|)E(t, x) (3.2)

for any given E so that (1.4) reduces to

divD = 0, divB = 0.

Since b(0) = 0 and b′(s) ≥ κ > 0 for s ≥ 0, we have b(s) = sβ(s) ≥ κs and so
β(s) ≥ κ for all s ≥ 0. The formula (3.2) then yields |E(t, x)| = b−1(|D(t, x)|) for
all (t, x) ∈ [0, t0)× R. Hence, the transformation in (3.2) has the inverse

E(t, x) =
1

β(b−1(|D(t, x)|))
D(t, x) =: ψ(|D(t, x)|)D(t, x),

where ψ : [0, b(w+)]→ [0, w+] is C2.
Let D0

0(x) = Φ(E0
0(x))E0

0(x) = β(|u0(x2)|)(u0(x2), 0, 0). We now introduce the
functions Dc

0, B
c
0 : R3 → R3 by

Dc
0(x) =

 β(|u0(x2)|)u0(x2)χ(x1)χ(x3)
0

−β(|u0(x2)|)u0(x2)χ′(x1)X(x3)

 , Bc0(x) =

−v0(x2)X(x1)χ′(x3)
0

v0(x2)χ(x1)χ(x3)

 .
Note that Dc

0(x) and Bc0(x) vanish if x 6∈ [−r1, r1]3. Moreover, for x ∈ [−r, r]3 the
identities Dc

0(x) = D0
0(x) and Bc0(x) = B0

0(x) follow from χ = 1 and χ′ = 0 on
[−a, a]. In addition, on R3 we can easily compute

divDc
0 = divBc0 = 0.

We then define the initial field Ec0 : R3 → R3

Ec0(x) = ψ(|Dc
0(x)|)Dc

0(x).

also supported in [−r1, r1]3, which coincides with E0
0 on [−r, r]3.
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[10, Theorem 2.1] yields a local in time C1 solution (Ec, Bc) of (1.8) having the
initial values (Ec0, B

c
0). It satisfies the divergence conditions (1.4) for all t because

of (1.3) and divDc
0 = divBc0 = 0. We suppose that Theorem 1.4 was wrong.

Then (Ec, Bc) can actually be extended to a global solution of (1.8) such that the
functions Ec(t, ·) and Bc(t, ·) belong to H(curl) and curlBc(t, ·) to L∞(R3) for
each t ≥ 0, and they are locally bounded in the respective spaces. We introduce
the maps

E′ = E0 − Ec and B′ = B0 −Bc on [0, t0)× R3. (3.3)

Our assumptions yield that b′(s) = β(s) + sβ′(s) ≥ κ > 0 and β(s) ≥ κ > 0 for
all s ≥ 0. Therefore the matrix A0(y) from (1.7) has the inverse

A0(y)−1 =
1

β(|y|)
I3×3 −

β′(|y|)
|y|β(|y|)2 + |y|2 β(|y|)β′(|y|)

yy> (3.4)

for each y ∈ R3 \ {0}, and A0(0)−1 = β(0)−1I3×3. These inverses are uniformly
bounded since β(s) ≥ κ and sβ′(s) ≤ cβ(s) for all s ≥ 0. As a result, the positive
definite symmetric matrices a0(t, x) := A0(E0(t, x)) and ac(t, x) := A0(Ec(t, x))
have a uniform lower bound η ∈ (0, 1] for (t, x) ∈ [0, t0) × R3. Using further that
∂tE

c = a−1c curlBc by (1.8) and that Ec(0, ·) belongs to L∞(R3), we deduce the
boundedness of the functions ∂tE

c and Ec on [0, t0]×R3. It follows that ac and a0
are bounded on [0, t0)× R3, and ∂ta0(t, x) on [0, t0 − δ]× R3 for each δ ∈ (0, t0).

In view of (1.8), the function (E′, B′) satisfies the equation

a0∂tE
′ = curlB′ + (ac − a0)a−1c curlBc = curlB′ + ZE′,

∂tB
′ = − curlE′,

(3.5)

for the zero order term

ZE′ :=

∫ 1

0

DA0(E0 + s(Ec − E0))[E′, a−1c curlBc] ds.

Formula (1.7) implies that the derivative DA0(y), y 6= 0, is bounded on bounded
subsets. This fact and the above observations show that M is a uniformly bounded
matrix function on [0, t0)× R3.

Recall that E′(0, ·) = B′(0, ·) = 0 on [−r, r]3. Take now r ≥
√

3M +
√

6t0/η.
By the properties of a0 and Z, we can apply local uniqueness results for the linear
system (3.5), cf. [2, Theorem 4.11] and its proof, deducing that E′ = B′ = 0 and

hence Ec = E0 on the truncated cone C = {(t, x) : 0 ≤ t < t0, |x| ≤ r −
√

6t/η}.
Since the cuboid [0, t0)× [−M,M ]3 is contained in C, we see that curlEc(t, ·) blows
up in L2(R3) as t→ t0. This contradicts the assumption made before (3.3), so that
Theorem 1.4 is true.

Example 3.1. As in Example 2.1, let γ > 2 and a > 0. Set β1(s) = 1 + asγ−1

for s ≥ 0. Alternatively, we modify β1 to a function β2 ∈ C2([0,∞),R) with
β′2 ≥ 0 which is constant on [w2,∞) for some w2 > w0, where w0 > 0 is given
by Example 2.1. Define bj(s) = sβj(s) for s ≥ 0. These functions satisfy the
assumptions of Theorem 1.4.
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