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INVERSE PROBLEM FOR A TWO-DIMENSIONAL STRONGLY
DEGENERATE HEAT EQUATION

MYKOLA IVANCHOV, VITALIY VLASOV

Communicated by Ludmila S. Pulkina

ABSTRACT. This article concerns the existence and uniqueness of solutions in
the problem of identifying the leading coefficient in a two-dimensional heat
equation. We suppose that unknown coefficient depends on the time vari-
able and the equation is strongly degenerate. Applying Schauder fixed-point
theorem, we find conditions for existence of a classical solution.

1. INTRODUCTION

We consider an inverse problem for a two-dimensional degenerate heat equation
in a rectangular domain. Direct problems of this type are mathematical models
of various processes such as seawater desalination, movement of liquid in porous
medium, financial market behavior, etc. [IL 2, 4]. Such problems are comparatively
well studied (see, for instance, [3]).

Inverse problems arise when certain parameters of these processes are unknown.
Various types of inverse problems for non-degenerate equations are well investigated
and some results may be found in monographs and references therein [7,[13,[15]. The
beginning of the research of inverse problems for one-dimensional degenerate para-
bolic equations was made in [8 @], 10, 12} [I6]. There the conditions of existence and
uniqueness of solution for these problems were established in the cases of week and
strong power degeneration. Later some results were obtained for parabolic equa-
tions with arbitrary types of degeneration [I7), [I8] and for free-boundary domains
[5, 6]. Inverse problem for a two-dimensional weakly degenerate heat equation in a
rectangular domain was considered in [I1].

In this paper we establish conditions for existence and uniqueness of solution to
an inverse problem for a two-dimensional strongly degenerate heat equation.

2. STATEMENT OF THE PROBLEM AND MAIN RESULT

In the domain Qr = {(z,y,t) : 0 <z < h,0 <y < 1,0 <t < T} we consider a
two-dimensional heat equation with unknown leading coefficient depending on the
time variable. We suppose that the equation degenerates at the initial moment
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as a power with a given exponent 3 > 1. We choose the case of mixed Dirichlet-
Neumann boundary conditions. The additional condition (so-called overdetermina-
tion condition) is taken accordingly to the physical sense and it presents the value
of the heat flux on the part of the boundary of domain. So, the problem consists
of finding a pair of functions (a(t), u(z,y,t)),a(t) > 0,t € [0,T] that satisfy the
degenerate heat equation

uy = tPa(t)Au + f(z,y,t), (z,9,t) € Qr, (2.1)
the initial condition
u(z,y,0) = ¢(z,v,0), (z,y) €D :=10,h] x[0,1], (2.2)
the boundary conditions

U(O, Y, t) =M (ya t)’ u<hv Y, t) = M2 (y, t), (ya t) € [Ov l] X [0’ T]’ (2.3)
uy(x,0,t) = v1(z,t), uy(z, 1, t) = vo(z,t), (x,t) €[0,h] x[0,T] (2.4)

and the overdetermination condition

a(t)uz(0,90,t) = £(t), te(0,T], (2.5)

where yo € (0,1) is some arbitrary fixed point. Our goal is to determine conditions
of the existence and uniqueness of solution to problem 7 in the spaces of
continuously differentiable functions. The corresponding result is presented in a
theorem, for which we use the following assumptions:

(A1) B > 1, ¢ € C2(D), u; € C*1([0,1] x (0,7]) N CH1([0,1] x [0,T]), v; €
0170([0,h] x (0,T]) N C([O,h] x [0,T]) for i = 1,2, f € CQvaO(QT), K(t) =
Ko(t)t 2"

(A2) %(x y) > 0 for (z,y) € D /~Ll (y;t) — f(0,y,t) <0, pa,(y,t) — f(h,y,t) >
0, p,,(y,t) > 0 uzyy(y,t) < 0 for (y,t) € [0,]] x (0,T}; v1,(z,t) <O,
va, (x,t) > 0 for (z,t) € [0,h] x [0,T); fo(z,y,t) > 0 for (z,y,t) € Qp;
()>0f e[O,T];
(A3) Ml(

¥,0) = ©(0,y), p2(y,0) = <;]7(h y) for v € [0 l; vi(z,0) = wy(z,0),
2 (h, )yfor t €0, T]

Theorem 2 1. Under assumptions (A1)—(A3), there exists unique solution (a,u)

3),
to ~([2.5), which belongs to the space C[0,T]x (C**1(Qr)NC*VH(Qr)), where
a(t ) > 0 andt € [0,7].

Here we have the usual notation [14] for the Banach spaces C*™"(Qr) consisting
of functions that are continuous in )7, with their derivatives of k-th order with
respect to x, m-th order with respect to y, and n-th order with respect to t. The
spaces C*™ ([0, h] x (0,T]) and others are defined similarly.

3. EXISTENCE OF SOLUTIONS

There are many approaches to study existence of solutions to inverse problems.
Among them, we choose the method of reducing the problem (2.1] . to an
equation with respect to the coefficient a(t) and applying the Schauder fixed-point
theorem.
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Assume temporarily that a = a(t) > 0 from class C[0,T] is known and find the
solution to the direct problem (2.1)—(2.4) [7]

w(z, y, 1) —// G,y 1, €., 0) (€, )y

+/O /0 GlZg(x7y7t7077777—)7—60’(7-)”1(7777—)6177617—
t l

_/ / G12g($ay7t7h,ﬁ’T)Tﬁa(T>N2(7777')d77dT
0 0
t h

- / / Gra(, 1, 1,€,0, )77 a(7)0n (€, 7)dédr
0 0

t h
+ / Gra(w,y, 1, 6,1, )7 a(F)a (€, 7)dédr
0 0

t l h
+/0 /0 /0 GlQ(Ian;taEanaT)f(g,n’T) dfdndT

Here we denote by G;;(z,y,t,§,m,7), ¢ € {1,2} the Green functions for the heat
equation (2.1)) with boundary conditions of i-th kind with respect to z and j-th
kind with respect to y. They are defined the equality [7]

Gij (‘Ta Y, ta 57 7, T)

R SR — S SN A Gl )
= 0 =00 2 ( dl 4<9<t>—0<7>>)

m,n=—o0

+ (=1)"exp ( - W)) (exp ( - W) (3.2)
l

)

j (y +n+ 2ml)*
F e (- Y
H(t):/o Pa(r)dr, i,j e {1,2).

Note that G;; may be expressed as a product of two Green functions for one-
dimensional heat equations: G;;(z,y,t,§,n,7) = Gi(x,t,£,7)G;(y, t,n, 7).

Using Green function’s properties and integrating by parts, find the derivative
Uz (l‘, Y, t)

Uy ('T; Y, t)

l h
_ / G, 1, 1,€, 1, 0)pe (€, m)dedn
//G22 2,9,4,0,7,7) (ua, (0,7) — 7Pa(m)pn,,, (0,7) — £(0,m, 7)) dy
" / / Goa(,yt, 1y, 7) (a2, (1, 7) — 72a(r) i, (1,7) — £ (o, 7)) di

t h
- / G22($7y7tv§707T)Tﬁa’(’r>u15 (§7T)d£d7—
0 Jo
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t h
+ / / GQQ(Ivyatvfal7T)Tﬁa(T)V2§ (faT)dng
0 JO

t l h
+/0/0/0 GQQ(x’y’t’f’an)fE(faﬁ,T)dﬁdndT,

Substituting expression in (2.5)) we obtain the equation
1 rh
at) =) ( [ [ Gaal0,0.t.6m0)e(€m)dcan
0o Jo
t gl
- [ [ 600,000 0.1) - rPatrip,, (1.7)
o Jo
— f(0,m, 7)) dndr

t l
+ / / Ga(0, you £, b1, 7) (p, (0, 7) — TPa(r)piz, . (1, 7)
0 0
— f(hn,7)) dndr

t h

7/ / GQQ(O,yo,t75,07T)Tﬁa(7)1/15(£,7')d5d7_
0 0
t h

+/0/0 G22(0,y0,t,&, 1, 7) 70 a(T)vo, (€, 7)dEdr

t Al rh B
+/0/0/0 G22(0,yoyt,fan,T)fﬁ(faﬂ,T)dﬁdndT) . te(0,T].

It is easy to see this equation and problem (2.1)—(2.5)) are equivalent. Indeed, if

(a(t),u(z,y,t)) is a solution to (2.1)—(2.5)), then the function a(t) satisfies (3.3
as it is shown above. On the other hand, if a(t) is a solution to (3.3), then we

substitute it into (2.1) and find the solution to problem ({2.1)—(2.4)) under the form
(3.1). Condition ({2.5)) follows from ([3.3)).

To establish estimates for solutions of (3.3)),we denote amax := max 7y a(t) and
consider the following integral from ([3.3)),

t l
/ / G22(07y07t7Oaan)(f(Ovan) - NlT(naT))dn dr
0 JO

t pl
> min (f(07y7t) - M1, (y7t>) / / G22(07y07t7077777—) d77 dr
0o Jo

~ [0,1]x[0,T)
' dr (3.4)
> ¢ / __ar
0 e(t) — 0(7‘)
02 /t d7‘ CS
> > . '
T Vmax Jo VBT — BT T t%m
Here we used the equality
l
/ Ga(y,t,m, 7)dn =1, (3.5)
0

that can be verified by direct computation. The constants C;, i € {1,2,3} depend
on given data. It follows from (A2) that all other summands in denominator of
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(3.3) are non-negative, therefore

a(t) <
Taking into account the assumptions x(t) = ko(t)t 2 , ko(t) > 0, t € [0,T], we
obtain
t max
oft) < KoWVmax 1y
Cs
Hence, we get the estimate
a(t) < Ay < oo, te][0,T], (3.6)

where A; is a known constant depending on the problem data.
Now we estimate a(t) from below. Denote integrals in the denominator of (3.3)
as I;, i = 1,6. Taking into account (3.5)), we find

I <maxp,(x,y) := Cy.
D

Denote amin := miny 7y a(t). Next we have the estimate

t pl
f2= / / G22(0ay0atvOaan)(f(OvnaT) - /1‘17'(77;7-) +7ﬁa(7—)p’1nn (n’T))dn dr
0 Jo

< max (f(07y7t) - M1, (yat)) / / G22(07Z/07t»077777) d77 dr
[0,1]x[0,T] o Jo

t el
t? t G22(0,40,t,0,m, dn dr.
—&-[OJr]nXa[é(,T] w1, (Y, )/0 /0 22(0, Yo n,7)a(T) dndr

Using (3.5)), (3.6) and the known estimates of the Green function [7],

G2(07t7 OaT) S L + 067 (37)

0(t) —0(r)

Cr

Is < 55——+Cs.

t 2 v/ Qmin

we obtain

Taking into account estimates [7]
G2(Oa t7 h7 T) S 0’7
and (3.5]), we have Iy < Cy.
To estimate I, we use equality (3.5) and estimates (3.6)), (3.7)):
t
I < Clo/ Gg(yo,t,O,T)TBa(T)dT

010

= U ety
yo+77+2ml
i o=t )

) s
S (el e
< )

+ exp Tﬁ a

(
010/
+exp< y0+n+2ml ) dz
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< Ci11V/0(t) < Cha.

The integral I5 is estimated similarly. From (3.5)) we obtain Ig < Cjs.
The above estimates lead us to the inequality

a@)z#.
S 1—+Cis
2 \famm

Taking into account assumptions on (), we transform it to

t min
aft) > Uo7
Cia + Ci5t 72 \/amin

or
N Cie
amin Z -~ . N  —
Ci4 + Ci7+y/Cmin

Solving this inequality we obtain an estimate for a(¢) from below:
a(t) > Ao >0, te]0,T], (3.8)
where Ay is determined by given data. Therefore, the a priori estimates of solutions

to the equation (3.3]) are established.
Now we put equation (3.3)) in the form

a(t) = Pa(t), t€]0,T). (3.9)

It follows from (3.6)), that the operator P maps the set N := {a € C[0,T] :
Ag < a(t) < Ay} into itself. By the Arzela-Ascoli theorem and the above estimates,
it is clear that the compactness of P on N will be established if we prove that Ve > 0
exists such a § > 0, that inequality |Pa(t2) — Pa(t1)] < e holds if |t; — ta] < § for
all t1,to € [0,T] and for any a € N.

Firstly, let show that there exists lim;_ a(t). It follows from the above estimates
and assumptions (A2) that the limit of denominator in is equal to limy_g I (¢).
Taking into account the equalities

l
hn’}f G2 (yOa t? 7, T) (f(oa 7, T) — M1, (77? T))dn = f(oa Yo, t) - M1, (y07 t)7
=t Jq
(3.10)

¢ dr B tl%ﬂ ! dz
0 VPt — BT 0 V1 — 2P+

and using the mean-value theorem, from (3.3 we have

. o [ k0(0)+/lim; 0 a(t*) 7
tg%a( ) 54'1(f(O,yO,O)—ul,,(yo,()))fol\/%

where t* € [0,t]. From this we obtain

s

lim a(t) = o 2'
P (t) 5_;’_1((f(07y070)—/~51t(y0a0)> fol\/liliﬁ>

Consider the difference

_ Iio(tl) . _ Iio(tg) }

|Pa(t) — Pal(ty)| = |

t12 um(05y07t1) t22 um(05y07t2)
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B 1 —1
|’$0(t1)t uz(0,y0,t2) — /io(tz)t uz(0,%0,11)]
51 51 :
t? uz (0,90, t1)ty > uz(0,y0,t2)

It follows from (3.4)) that

[

B—1

B—=1 B-1
t1? uz(0,90,t1)ty° ue(0,y0,t2) > Cig > 0.

1 B—1

=1 =1
Thus, it is sufficient to estimate the difference u,(0,y0,%1)t52 — ux(0, Yo, t2)t; 2
Consider for example the expression

to
_’tQ / /G220907t2>07]a ) (777 )d’l]dT

- t1T / / G22(an05t1707n77—):u’(7777—)
0 0

where p(y,t) is some continuous on [0,1] x [0,T] function. To find the limit

hmt 2 //GQQOyo,tOny T)u(n, 7) dndr,

t—0
we decompose the Green function into two summands
1 exp ( _ (yo —n)?
m(6(t) — (7)) 4(9(t) —0(7))

It follows from the Green function estimates ) that

G22<07y07t7 077777—) = ) + Gg2(ovy07t>07nv7_)'

hmt z //G22 ay0>t0777 ) (77’ )dﬁdT*O

t—0

On the other hand, using we find

(yo —n)?
fim = // o (7 (= o)
+exp(_4(;(f)+g)(7)) )u(nm)dndT
_ ﬁ+1uyo, /
o m

It means that Ve > 0 there exists such ¢y € (0, 7] that

t pl
B—1 ﬂ 1:“ yOa /
t 2 G22(0 t,0 dndr —
| A A 22( » Yo, U,y 37777—)#(773 T) nat T \/1 — Zﬁ+1 | < &

when 0 < t < ty. Therefore, if t; < tg,7 € {1,2}, then A < 2e.
Consider the case when t; > t9,7 € {1,2} and suppose for the definiteness that
t1 < ta. Present A as follows:

tl —_
/ / G22 0 y05t270 nT ) 2 G22(an0,t17077777-))/1’(7’77_) dndT|
(3.11)
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Using (3.7, we obtain
R
’t22 / / G22(07y07t270a7777—)/‘1’<7777) d’l]dT‘
t1 0

o1t ! 019
<ty? ———=+C )d
2 /t /0 ( 9 — (T) 20) T

< Coplta — ta] + 022752 /

ﬁ+1 — B+1

Gl t|+C’/ dz
= Co1|ta — 11 22 e
1oyl — 2Pt

1

dz

§021|t2*t1|+022[ —

by —

T
< Coilty — th| + Cazv/ta — ty.
Consider the second summand from ({3.11]):

t1 l B-1 B—1
y/ /(t22 G22(0, 40, t2,0,1,7) — 1% G22(0,90,t1,0,1,7)) pu(n, 7) dn d7|
0 0
p-1 g1 trpl
<7 4 H/ /Ggg(o,yo,tz,o,wm(w)dndﬂ

+t1 / / |G22 0 y07t270 n,T ) G22(0’y07t170777a7')||U(7Ia7')|dﬁdT
= Al + Ag.

Substituting the product of two one-dimensional Green functions instead of the
Green function Ga22(0, yo,t2,0,7,7) and taking into account (3.5)), (3.7]), we find

s-1  p-1, [topl
Ay < COyulty™ — 7 ]/ /Gz(o,t27077')G2(yO7t277]aT)dndT
B-1
< Cullt™ — |/ Ga(0,12,0,7)d7

51 ~
< Coslty? *t12 |t12 —025|( ) *1|<6’

when |to — t;| < d;. By the same reasoning we obtain
ty
AQ < 024t1 / / |G2 0 tQ,O T) GQ(O t1,0 T)|G2(y07t27n, )dndT
t
+ / / GQ(Oath 0) T)|G2(y07t2777) T) - G2(y07t1a77?7—)| d77 dT)

o Jo

g1, [N

§ C’24t12 </ |G2(Oat23077—) 7G2(07t17037)|d7
0

t1 l
+/ / G2(0,t1,0,7)|G2(yo, t2,m, T) —G2(y07t177777)|d77d7>
o Jo
=001+ Ago.
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Now we put the Green function G5(0,t,0, 7') in the form
1 n?h?
G2(0,t,0,7) = .
Y o T V=T Zexp (- —-m)
Then
B 1 1
Ao g < Oyt ? —/ — dr
=t (72 |, (Mm —6(r)  \/B(t2) - o(ﬂ)
2 2 n2h?
+ ex - 3.12
/0 |nz::1 ( m(0(t1) — 0(7)) p( 0(t1) — 9(T)> (3.12)
2 n2h?
exp| — ———) ) |d7).
T0) —00r) 7 ( 0(t2) — 0(7) )> | T>
Now we transform and estimate the first summand:
51 B 1 1
Copt; 2 / - dr
R (wa(m —0(r)  o(tz) - e<r>)
a1 & (9(752) — 9(t1) dr
= Cgﬁtl
V(O(t1) = 0(7)) (8(t2) — 0(7))(\/O(t1) = O(7) + /O(t2) — O(7)

B t/3+1 _ Bty
< Carty / G+1 ﬁ—H( : : )ﬁj-l a1
O (I gt JR ) ) (15— o)
S 1 1
= 027t1 2 / ( — )dT
0 \/t/f-‘rl _ B+ \/tg-l-l _ B

After the change of variable z = 7/t; we obtain

s-1 (M 1 1
catt™ [ e~ =)

<o /1<1
< Cor7 ; T A1

1 t
- )d2’<6, when |2 — 1| < 45,
(L2)B+1 — pB+1 31
1

as the function
_ / z
0o Vo — Zﬁ'i‘l
is continuous for o > 1.
Now we estimate the second summand from (3.12):

n2h2
026751 / | Z ( —6(1)) P ( a W—he(ﬂ)

2 n2h?
00) >>exp(_0< my o))"

20 1 1 6(t1)—0(1) g
\;6 51 /0 | ( Zexp(

0(t2)—0(7)

)dz|d7

(3.13)
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< Cog(0(t2) — O(t1)) < Cag(t5T — 71 <6, when |ty — t1] < 8s.

To estimate A2, we extract the main term from the Green function,
s=1 [
AQQ S Cg4t1 2 </ G2 (0, tl, O, T)dT

0
: 1 oxp [ — (n —y0)”
. /0 | VO(ts) — (1) P ( 4(0(t2) — 9(7))) (3.14)
1 (n—yo)? .
- e@n—evf“pbdwan—ev»>“”

l
+ G2(07t17077—)d7_/ |G8(y0,t2777,7-) —Gg(y07t177777)|d77>~
0 0

Taking into account that GY(yo,t,n,7) has no singularity, we find
l l to
/ |G(2)(y07t277777) _G(z)(y07t1777a7)|d77 < / | th(y07t77777—)dt‘dn
o Ji

0

1

< Coltr — tal.
We consider the expression

/l’ 1 eXp(_ (n = yo)* )

0 ' \/0(t2) — 0(7) 4(0(t2) — 0(7))

1 (n = y0)?
- ean—awywp(‘4weofev» dn
: 1 (n = yo)?

< /0 /0(ts) — 0(7) (eXp ( ©4(0(ts) — 0(7))) (3.15)

— Y0 2
~e (= e Sy

: (n = y0)? 1 1
- /0 exp (- 4(9(21) EOG(T)Q <\/9(t1) =000 /ol) = 9(7))‘”7‘

After the change of variable z = —=1=%__ in the first summand we have

24/6(t2)—0(7)

eXP ( - 4(9((22; %(ﬂ))

! 1
/0 ‘ VO(t2) —0(7)
1 (n —yo)?
“6@07963“p(‘4wan—0v»)w”

=9 T (exp(—zz) — exXp ( B ZQM))CZZ

u 0(t1) — 0(r)
2/8(12)—0()

< 2/_0; (exp(—zQ) — exp ( —ZQM))dZ

0(ir) —0(7)
(s NI =)
=2 (1= a0
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The change of variable z = —==%0_ in the second summand gives

NGOG
! (77 y0)2
/o exp (- 1 4(0(tr)

1 1
T >(¢0 METCRVI ol

—0(7)
=2(1- M) T
. o) 00 )
0(t1) — 0(7)
<2f(1fm)

Now we return to the estimate of the first summand in (3.14), using (3.7) and

ED).

s t l 1 (T]—yo)2

Coty” [ Gz(o,thoaﬂdf/ !Twexp(‘m)
1 77 yo

~ =i P a1

s-1 (M 1 1
<cun™ | (T =am ~ v o)™

g1 (h 0(t1) — 0
+ ngtfz / (1 - M)d’r < €,
0

VO(t2) —0(7)

when % — 1| < d4.

So, we obtained the estimate of A. Other expressions from Pa(t) are estimated
by a similar way. Therefore, the conditions of Schauder fixed-point theorem are
satisfied for , and the existence of the solution to the problem 7 is

proved.

4. UNIQUENESS OF THE SOLUTION

Consider the function

H(t) = f K(t) ,
where l
= /0 Ga(yo, t,n, 7)(f(0,m,7) — p1_(n, 7))dn. (4.1)
It is easy to see that there exists the limit

lim H(t) = ﬁmo(?) > 0.
t—+0 /5 + 1MO(O) fo
It means that H(t) is continuous function on [0, 7.

Using the function H(¢), we will establish the estimates of solutions for the
equation ([3.3]). Taking into account assumption (A2), from (3.3]) we have

)< (1)
fO fO G22(073/0,t707U»T)(f(oﬂ% ) M1, ( ))dndT

\/1—oB+1
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B K(t) < () \/ Tlmax ()
Jo Ga(0.,0,T)po(r)dr ~ VEFT [ DA

< a'max(t)I—Imax(t)7

where amax(t) := maxqg y a(7), Hmax(t) := max[ 4 H (7). From this follows that

a(t) < H?

max(t), t€[0,T]. (4.2)
To estimate a(t) from below, we put the denominator from (3.3) as a sum
T)dT . . ~ .
f fo \/% + S(t). Using the notation amin(t) := ming ya(7), Hmin(t) :=
minp 4 H (1) we obtain
1" po(r)dr < VBT [t po(r)dr K(t)
0 VOt) = 0(1) = \/Tamin(t) Jo VP =7 H(t)\/amin(t)
Repeating the reasons of the estimation of the denominator of (3.3) from above,
we establish that S(t) < Cs3. Then

K(t) _ H®)Vamm ()

a(t) > = .
s 4 Cis3 H(t)\/@min (t)
Ty | P 1+ =0y
It follows from the assumptions (A2) and the estimate (4.2]) that
C33H (t)\/ Gmin(t) < C’34t%
r(t)
Therefore,
Hmin t ~min t
at) > TV ainl®) -y 1o 7y
1+ Cat ™=z
or
H2
a(t) > L(), te€0,T]. (4.3)

N (1+Cg4t 2 )2

Having the estimates (4.2) and (4.3) of solutions of equation (3.3), we can pass
to the proof of the uniqueness of solution. Put the equation (3.3)) in the form

t

alt) = ~(t) ., telo,T). (4.4)
U o faes + S(talt))

Suppose that this equation has two solutions a;(¢) and as(t). Denote b(t) := a1 (t) —

a2 (t). The function b(t) satisfies the equation

)=l (= [ (o ~ g o+ S(e.0a0)
— S(t,a1(t)) 1 L m(mdr +St¢zl))_1
%f4447

x(l t¢£()ﬁz+5t@U04.



EJDE-2018/77 INVERSE PROBLEM FOR A DEGENERATE HEAT EQUATION 13

It is clear from above that S(¢,a;(t)) > 0,7 € {1,2}. Then it follows from (4.5]) that
[b(2)]

I 1 1
) 7/ !m N KL o) +I0a) o
S(t,aq(t to(7) t ( Jdr )71.
0 01(¢) —91 \/eg(t)—eg(T)
Transform the expression
1 1
Vo) = 0>(1)  \/01(D) — 61 (7)
_ ba(t) = 0a(7) — (0.(t) — 6:(7)) 1
V(0:(t) = 01(7) (02(t) — 02(7)) VOL() — 01(7) + /02(2) — O(7
Using estimate , we find
| 1 1 | _ VBFI + Cagt’z )3 b8
NOE G ERNAC 2173, ()1 — o )
where bmax(t) := maxpg 4 [b(7)]. Therefore7 we obtain
k(1) 1 1
P AN R e (@7)

K2()(1 + Cayt™ 7 )3
= 2H™ (1)

min

brnax (t)-

Now we estimate the difference S(t,a2(t)) — S(t,a1(t)). Consider

h l 0 n 2

— ml)? ml)?
(o (= ) o (- )

S ( nh)? (yo — ml)?
- ell(t) m);m P ( N £4+912(t;l )(eXp ( N W)

+ exp ( - W)))wg(&n)dndfl

<o [ [1[77 2 > (-

(B

After differentiating and using (3.5) we obtain

swscaf [V [ [ /(5 5 (20

" (eXp ( ~ (yo— n; 2ml)2) 4 exp ( _ (yo+ 7742 2ml)2))
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—|—i Z (§+2nh)2exp(—%>

m,n=—o0

— 0+ 2ml)?
X ((yo—n+2ml)26Xp(—%

xexp<——@0*”;%”2>>>dndfi

0(t) q 01(t) — Oo(t
< Cyi| z’ |.1() 2(6)]
02 (t) mln{91 (t),02()}

Applying (4.3]), we arrive at the estimate

) + (yo + n + 2ml)?

(1+ Cg4t%)2
tﬁilenin(t)

Now we estimate the expression

n2h? 1
/ —92()Xp(_m)_m
X exp(— M))MO(T)CH‘
0(t)—02(r) oo n2h2
<C'40/ dT/e . i(i;exp<—:)’dz‘

< Cy1]01(t) — 02(t )| < Cyzbmax(t)-

Other summands from S(¢,a2(t)) — S(t,a1(t)) are estimated in a similar way.
Hence,

AIR S C&S( + 1)t6_1bmax(t) S CSQbmax(t)'

|S(t, al(t)) — S(t, az(t))‘ S C42bmax(t). (48)
To estimate the denominator in , note that
’%(t) < "<“<t) a’max<t) H2 ( ) (49)

f Mo 7')<7l7' - mft po(r)dr max
f 0 \/0i(t)—0:(r) 0 \/to+1_rp+1
for i € {1, 2}.
By applying estimates (4.7)~-(4.9) to (4.6), we obtain

o < (L 0 ;fi"‘t(; !

min

+ C*432‘:13; )H:;ax( )bmax<t)
(4.10)

(1+O4t 7 )Hélax()
< (5 @

+C42t z Hmdx( ))bmaX(t)-
As limy_g Hpin (t) = limy_g Hmax(t), there exists such a number ¢y, € (0,7] that

the following inequality holds:

((1+C34t 7 )3H§1ax()
2677 (1)

min

Opt T HL (t )) <1, telo,t). (4.11)

Then we conclude from (4.10) that bnax(t) < 0, t € [0,%0], that is impossible.
Therefore, b(t) = 0,t € [0, to]. It follows from the uniqueness of solution to problem
(2.1)-(2.5) that the function u(z,y,t) is uniquely defined in Q, .
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Now let us show that the solution to (2.1)—(2.5) is unique in the whole domain
Q. Suppose that there exist two solutions (a;(t),u;(z,y,t)), i € {1,2} to the
problem. For their difference a := ay — as, u := u; — us we obtain the problem

Uy = tﬁal (t)A’LL + tﬁa(t)AUQ (5177 Y, t)v ((E, Y, t) € QT7 ( )
u(z,y,0) =0, (z,y)€ D, (4.13)

u(0,y,t) = u(h,y,t) =0, (y,t) €[0,1] x [0,T], (4.14)
uy(x,0,t) = uy(z,l,t) =0, (x,t) €[0,h] x[0,T], (4.15)
a1 (t)uz(0,y0,t) = —a(t)u2z(0,90,t), t€[0,T]. ( )

Using the Green function Gia(x,y,t,&,1,7) of the problem ([@.12)-(.15), we find
that

u(z,y,t) / / G12 (z,y,t,&,m,T ) a(T)Aug(&,n, 7) dE dn dT. (4.17)

Substituting it into the overdetermination condition (4.16):
at) = L [ [ G0 t6mm1ea) e ) dena

(4.18)
for t € [0,T]. Thus, we obtain a homogeneous Volterra integral equation of the
second kind for a(t). Put it as

u2:c O yOa

t
t) :/ K(t,m)a(r)dr, te€][0,T). (4.19)
0
To study the behavior of the kernel K (¢, 7), we find
uz(z, y,t —/ / Gha(@,y,t,€,m,0)(&, m)dédn
/ / G125 x yatvo n,T ) (T):ul(an) dﬁdT
7/ / Gng(xvyat,hvnaT)Tﬁa(T)ﬂ“Q(nv’r)dndT
0o Jo
0 (4.20)
_/ / GlQ(xuyvtvSvovT)Tﬁa(T)V1(£7T)d£dT
0o Jo
t pho
+/ / GIQ(xay7t7§»l7T)Tﬁa’(T>V2(§7T)d£dT
0o Jo
t plopho
[ [ ] Gt énnisennddnar
0o Jo Jo

where Glg(x, y,t,&,m,7) is the Green function of problem (2.2 . ) for the equa-
tion

Ut = tﬁGQ(t)Au + f(xa Y, t)
By differentiating (4.20) twice by z,y and integrating by parts, we obtain

ug,, (T,y,t)
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l h
:/O/O Gra(x,y,t,£,m,0)pee (&, m)dEdn
t l .
+ / / Gz (2,1,0,7,7) (pn, (1.7) — TPas(ryn,, (0.7) — £(0,7,7)) dndr
0 0
t l
- / / Gz (2,1, b, 7) sz, (0, 7) — TPaa(T)piz,, (0,7) — F(hy, 7)) dydr
t h
- / / Chaz, y, 1,€,0, )P an (1), (€, 7)dEdr
0 0
t h
+/(; /0 Gl?(mayvtafvlaT>Tﬁa2(T)V2§5(§?T)d€dT
t l h
+/0/0/0 Gia(z,y,t,6,1,7) fec (&, m, )T) dE dn d,

U2yy (:L‘7 Y, t)

L rh
= /O ‘/O é12($7y7t,ﬁuﬂvO)(pnn(é"n)dgdn
t el
" /0 /0 élzﬁ (x’y7t’077777—)7—ﬁa2<7—)u17m (7777-> dndt
t pl
_ /0 /0 éle (-T7 Y, t, h; 7, T)TBG/Q (T)MQ"m (77, 7—) d77 dr
t rh
[ [ et 0000, 07) = Paa(minne (6.7~ 6,0,
0 Jo
t h R
T A A Glz(xvyatvaOaT)(VQT(n7T) - tBaQ(T)VQEg(gvT) - f(f’LT))dng

t l h
+ A A /; G12(3'57 Y, t, Ea m, T)fnn(é" 7, )7—) df dn dr.

From the above expression, we establish the following estimate for the kernel of
(4.19):

C
IK(t,7)] < ——2—.
t(t—7)
This means that
1
K(t,7)= ———K;(t,7),
(t,7) ) 1(t,7)

and the equation (4.19))) can be presented as
¢
1
a(t) :/ ——K\(t,T)a(r)dr, te0,T], 4.21
i) Ja(T) [0, 7] (4.21)

where | K1 (¢, 7)| < Cyq.
It was proved that there exists such an interval [0, to] where a(t) = 0. Then the
equation (4.21))) can be transformed to the form

(r)dr, t € [to,T], (4.22)

¢ 1
alt) = /t Tt
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and the following estimate holds:

’ # K
Vit —1)
Then the properties of the integral Volterra equations of the second kind imply that
equation ) has only the trivial solution. Hence, a(t) =0, ¢t € [0,T]. Using it
in the equation (4.12))), we obtain u(z,y,t) = 0, (z,y,t) € Qp because of the the
uniqueness of solution of the problem 74.14 [14]. The proof of Theorem
is complete.

Cys

1)) s ==

, te [tO,T].
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