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MULTIPLE POSITIVE SOLUTIONS FOR A
SCHRÖDINGER-NEWTON SYSTEM WITH SINGULARITY
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Abstract. In this work, we study a class of Schrödinger-Newton systems

with singular and critical growth terms in unbounded domains. By using the
variational methods and the Brézis-Lieb [6] classical technique, the existence

and multiplicity of positive solutions are established.

1. Introduction and statement of main result

In this work, we are concerned with the existence and multiplicity of positive
solutions to the Schrödinger-Newton system

−∆u = λg(x)u−γ + φ|u|2
∗−3u, in RN ,

−∆φ = |u|2
∗−1, in RN ,

u > 0, in RN ,

(1.1)

where N ≥ 3, γ ∈ (0, 1) and λ > 0 is a real parameter and g ∈ L
2∗

2∗+γ−1 (RN ) is a
nonnegative function.

This system is derived from the Schrödinger-Poisson system

−∆u+ V (x)u+ ηφf(u) = h(x, u), in R3,

−∆φ = 2F (u), in R3.
(1.2)

Systems as (1.2) have been studied extensively by many researchers because (1.2)
has a strong physical meaning, which describes quantum particles interacting with
the electromagnetic field generated by the motion. For more details as regards the
physical relevance of the Schrödinger-Poisson system, we refer to [1, 4, 20]. System
(1.2) has been extensively studied after the seminal work of Benci and Fortunato
[4]. Many important results concerning existence of positive solutions, ground state
solutions and multiplicity of solutions, least energy solutions, and so on, have been
reported; see for instance [2, 3, 5, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 21, 22, 23, 30,
31, 32] and the references therein.
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There are some references which investigated Schrödinger-Poisson systems in-
volving the critical growing nonlocal term, such as [2, 3, 15, 18]. Precisely, in
bounded domains, the system

−∆u+ εqφf(u) = η|u|p−1u, in Ω,

−∆φ = 2qF (u), in Ω,
u = φ = 0, in ∂Ω,

was considered in [15], where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, and
the existence and multiplicity results were established when f a subcritical growth
condition or the critical growth case by using the methods of a cut-off function
and the variational arguments. In [3], the following system involving the critical
growing nonlocal term was also considered

−∆u = λu+ φ|u|2
∗−3u, in Ω,

−∆φ = |u|2
∗−1, in Ω,

u = φ = 0, in ∂Ω.

They proved the existence and nonexistence results of positive solutions whenN = 3
and existence of solutions in both the resonance and the non-resonance case for
higher dimensions.

Specially, in unbounded domains, Liu [18] studied the system

−∆u+ V (x)u = K(x)φ|u|3u+ h(x, u), in R3,

−∆φ = K(x)|u|5, in R3,

where V,K, h are asymptotically periodic functions, and a positive solution was
obtained by using variational methods.

Recently, in a bounded domain, in [31], the following system involving weak
singularity was studied

−∆u+ ηφu = µu−γ , in Ω,

−∆φ = u2, in Ω,
u > 0, in Ω,

u = φ = 0, on ∂Ω.

The existence, uniqueness and multiplicity of positive solutions for the above system
are obtained in the case when η = ±1 by employing the Nehari manifold.

In bounded domains, the singular semilinear elliptic problem

−∆u = λf(x)u−γ + µh(x)up, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

has been extensively studied. For example, Yang [29] obtained the multiplicity
positive solutions by combining variational and sub-supersolution methods when
0 < γ < 1 < p ≤ N+2

N−2 , f = µh = 1, λ enough small. In the case when 0 < γ <

1 < p ≤ N+2
N−2 and h = 1, λ = 1 and µ enough small, Sun and Wu [25] also got two

positive solutions by employing the Nehari manifold provided µ enough small. In
[13], Hirano et al. studied the existence of multiple positive solutions in the case of
0 < γ ≤ 1 < p ≤ N+2

N−2 , µ > 0. When Ω = RN , we should mention that semilinear
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elliptic equations involving singular and subcritical growth terms have been dealt
with by a number of authors, see for example, [12, 24] and the references therein.

Motivated by the above facts, to the best of our knowledge, there are no results
on the multiplicity of positive solutions for Schrödinger-Newton system involving
critical and weak singular nonlinearities on unbounded domains. We shall give a
positive answer to this question. Our main result reads as follows.

Theorem 1.1. Assume that γ ∈ (0, 1). Then there exists λ∗ > 0 such that for any
λ ∈ (0, λ∗), system (1.1) has at least two positive solutions (u, φu) ∈ D1,2(RN ) ×
D1,2(RN ), and one of the solutions is a positive ground state solution.

Throughout this paper, we use the following notation:
• The space D1,2(RN ) = {u ∈ L2∗(RN ) : ∂u

∂xi
∈ L2(RN )} endowed with the

norm ‖u‖2 =
∫

RN |∇u|
2dx. The norm in Lp(RN ) is denoted by | · |p;

• C,C1, C2, . . . denote various positive constants, which may vary from line
to line;
• Let S be the best constant for Sobolev embedding D1,2(RN ) ↪→ L2∗(RN ),

namely

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|

2dx

(
∫

RN |u|2
∗dx)

2
2∗
.

2. Existence of the first positive solution of system (1.1)

The energy functional associated with system (1.1) is defined as

Iλ(u) =
1
2
‖u‖2 − λ

1− γ

∫
RN

g(x)|u|1−γdx− 1
2(2∗ − 1)

∫
RN

φu|u|2
∗−1dx

=
1
2
‖u‖2 − λ

1− γ

∫
RN

g(x)|u|1−γdx− 1
2(2∗ − 1)

∫
RN
|∇φu|2dx.

In general, a function u ∈ D1,2(RN ) is called a solution of system (1.1), that is
(u, φu) is a solution of system (1.1) and u > 0 enjoying∫

RN
(∇u,∇v)dx− λ

∫
RN

g(x)u−γvdx−
∫

RN
φu|u|2

∗−3uvdx = 0, ∀v ∈ D1,2(RN ).

It is well known that the singular term leads to the non-differentiability of the
functional Iλ on D1,2(RN ), therefore system (1.1) cannot be considered by using
critical point theory directly. In order to obtain the multiple positive solutions of
system (1.1), we consider a set

Nλ =
{
u ∈ D1,2(RN ) : ‖u‖2 − λ

∫
RN

g(x)|u|1−γdx−
∫

RN
φu|u|2

∗−1dx = 0
}
,

and split Nλ as follows:

N+
λ = {u ∈ Nλ : ψ(u) > 0} ,
N 0
λ = {u ∈ Nλ : ψ(u) = 0} ,
N−λ = {u ∈ Nλ : ψ(u) < 0} ,

where

ψ(u) = 2‖u‖2 − λ(1− γ)
∫

RN
g(x)|u|1−γdx− 2(2∗ − 1)

∫
RN

φu|u|2
∗−1dx.

Before proving our Theorem 1.1, we recall the following lemma (see [3]).
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Lemma 2.1. For every u ∈ D1,2(RN ), there exists a unique φu ∈ D1,2(RN ) solu-
tion of

−∆φ = |u|2
∗−1, inRN .

Also
(1) φu ≥ 0 for x ∈ RN .
(2) For each t 6= 0, φtu = t2

∗−1φu.
(3) ∫

Ω

φu|u|2
∗−1dx =

∫
Ω

|∇φu|2dx ≤ S−2∗‖u‖2(2∗−1).

(4) Assume that un ⇀ u in D1,2(RN ), then∫
RN

φun |un|2
∗−1dx−

∫
RN

φun−u|un − u|2
∗−1dx =

∫
RN

φu|u|2
∗−1dx+ on(1).

Set

Λ0 = |g|−1
2∗

2∗+γ−1

2(2∗ − 2)S
1−γ

2

2 · 2∗ + γ − 3

[ (1 + γ)S2∗

(2 · 2∗ + γ − 3)

] 1+γ
2(2∗−2)

.

Lemma 2.2. Assume λ ∈ (0,Λ0). Then (1) N±λ 6= ∅ and (2) N 0
λ = {0}.

Proof. (i) For each u ∈ D1,2(RN )\{0}, we have

t[
d

dt
Iλ(tu)]

= t2‖u‖2 − λt1−γ
∫

RN
g(x)|u|1−γdx− t2(2∗−1)

∫
RN

φu|u|2
∗−1dx

= t1−γ
[
t1+γ‖u‖2 − t2·2

∗+γ−3

∫
RN

φu|u|2
∗−1dx− λ

∫
RN

g(x)|u|1−γdx
]
.

Set
Γ(t) = t1+γ‖u‖2 − t2·2

∗+γ−3

∫
RN

φu|u|2
∗−1dx, t ≥ 0.

We see that Γ(0) = 0 and limt→∞ Γ(t) = −∞. Then Γ achieves its maximum at

tmax =
[ (1 + γ)‖u‖2

(2 · 2∗ + γ − 3)
∫

RN φu|u|2
∗−1dx

] 1
2(2∗−2)

,

and so,

Γ(tmax) =
2(2∗ − 2)‖u‖2

2 · 2∗ + γ − 3

[ (1 + γ)‖u‖2

(2 · 2∗ + γ − 3)
∫

RN φu|u|2
∗−1dx

] 1+γ
2(2∗−2)

.

Consequently,

Γ(tmax)− λ
∫

RN
g(x)|u|1−γdx

=
2(2∗ − 2)‖u‖2

2 · 2∗ + γ − 3

[ (1 + γ)‖u‖2

(2 · 2∗ + γ − 3)
∫

RN φu|u|2
∗−1dx

] 1+γ
2(2∗−2) − λ

∫
RN

g(x)|u|1−γdx

≥ 2(2∗ − 2)‖u‖2

2 · 2∗ + γ − 3

[ (1 + γ)S2∗‖u‖2

(2 · 2∗ + γ − 3)‖u‖2(2∗−1)

] 1+γ
2(2∗−2) − λ|g| 2∗

2∗+γ−1
S−

1−γ
2 ‖u‖1−γ

=
{ 2(2∗ − 2)

2 · 2∗ + γ − 3

[ (1 + γ)S2∗

(2 · 2∗ + γ − 3)

] 1+γ
2(2∗−2) − λ|g| 2∗

2∗+γ−1
S−

1−γ
2

}
‖u‖1−γ > 0,

(2.1)
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the last inequality holds provided 0 < λ < Λ0. Consequently, there exactly exist
two points 0 < t+u < tmax < t−u such that

Γ(t+u ) = Γ(t−u ) = λ

∫
RN

g(x)|u|1−γdx,Γ′(t+u ) > 0 > Γ′(t−u ),

which imply that t+u u ∈ N+
λ , t−u u ∈ N−λ . That is, N±λ 6= ∅.

(ii) We prove (ii) by contradiction, suppose that there exists u0 6= 0 such that
u0 ∈ N 0

λ , similar to (2.1), it holds that

0 <
{ 2(2∗ − 2)

2 · 2∗ + γ − 3

[ (1 + γ)S2∗

(2 · 2∗ + γ − 3)

] 1+γ
2(2∗−2) − λ|g| 2∗

2∗+γ−1
S−

1−γ
2

}
‖u0‖1−γ

≤ 2(2∗ − 2)‖u0‖2

2 · 2∗ + γ − 3

[
(1 + γ)‖u0‖2

(2 · 2∗ + γ − 3)
∫

RN φu0 |u0|2∗−1dx

] 1+γ
2(2∗−2)

− λ
∫

RN
g(x)|u0|1−γdx = 0,

this is a contradiction, therebyN 0
λ = {0} for λ ∈ (0,Λ0). The proof is complete. �

Lemma 2.3. The functional Iλ is coercive and bounded below on Nλ.

Proof. Suppose u ∈ Nλ, then by Sobolev inequality,

Iλ(u) =
1
2
‖u‖2 − λ

1− γ

∫
RN

g(x)|u|1−γdx− 1
2(2∗ − 1)

∫
RN

φu|u|2
∗−1dx

=
2∗ − 2

2(2∗ − 1)
‖u‖2 − λ

[ 1
1− γ

− 1
2(2∗ − 1)

] ∫
RN

g(x)|u|1−γdx

≥ 2
N + 2

‖u‖2 − λ
[ 1

1− γ
− 1

2(2∗ − 1)

]
|g| 2∗

2∗+γ−1
S−

1−γ
2 ‖u‖1−γ ,

as 0 < γ < 1, it follows that Iλ is coercive and bounded below on Nλ. �

We remark that by Lemma 2.2 we have Nλ = N+
λ ∪N

−
λ ∪N 0

λ for all λ ∈ (0,Λ0).
Moreover, we know that N+

λ and N−λ are non-empty and by Lemma 2.3 we may
define

αλ = inf
u∈Nλ

Iλ(u), α+
λ = inf

u∈N+
λ

Iλ(u), α−λ = inf
u∈N−

λ

Iλ(u).

Lemma 2.4. αλ ≤ α+
λ < 0.

Proof. Assume u ∈ N+
λ . Then∫

RN
φu|u|2

∗−1dx <
1 + γ

2 · 2∗ + γ − 3
‖u‖2,

so that

Iλ(u) =
1
2
‖u‖2 − λ

1− γ

∫
RN

g(x)|u|1−γdx− 1
2(2∗ − 1)

∫
RN

φu|u|2
∗−1dx

=
(1

2
− 1

1− γ

)
‖u‖2 +

( 1
1− γ

− 1
2(2∗ − 1)

)∫
RN

φu|u|2
∗−1dx

<
[(1

2
− 1

1− γ

)
+
( 1

1− γ
− 1

2(2∗ − 1)

) 1 + γ

2 · 2∗ + γ − 3

]
‖u‖2

=
[
− 1 + γ

2(1− γ)
+

1 + γ

2(2∗ − 1)(1− γ)

]
‖u‖2
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= − (2∗ − 2)(1 + γ)
2(2∗ − 1)(1− γ)

‖u‖2 < 0.

By the definitions of αλ and α+
λ , one obtains αλ ≤ α+

λ < 0. �

Lemma 2.5. For u ∈ Nλ (respectively N−λ ), there exist ε > 0 and a continuous
function f = f(w) > 0, w ∈ D1,2(RN ), ‖w‖ < ε satisfying

f(0) = 1, f(w)(u+ w) ∈ Nλ (respectively N−λ ),

for all w ∈ D1,2(RN ), ‖w‖ < ε.

Proof. For u ∈ Nλ, define F : R×D1,2(RN )→ R by

F (t, w) = t2‖u+ w‖2 − t2(2∗−1)

∫
RN

φu+w|u+ w|2
∗−1dx

− λt1−γ
∫

RN
g(x)|u+ w|1−γdx.

Since u ∈ Nλ, it is easily obtained that F (1, 0) = 0 and

Ft(1, 0) = 2‖u‖2 − 2(2∗ − 1)
∫

RN
φu|u|2

∗−1dx− λ(1− γ)
∫

RN
g(x)|u|1−γdx.

As u 6= 0, by Lemma 2.2, we know that Ft(1, 0) 6= 0. Thus, we can apply the
implicit function theorem at the point (0, 1), and obtain ε > 0 and a continuous
function f : B(0, ε) ⊂ D1,2(RN )→ R+ satisfying

f(0) = 1, f(w) > 0, f(w)(u+ w) ∈ Nλ,
for all w ∈ D1,2(RN ) with ‖w‖ < ε.

The case u ∈ N−λ can be obtained in the same way. The proof is complete. �

Lemma 2.6. If {un} ⊂ Nλ is a minimizing sequence of Iλ, for each φ ∈ D1,2(RN )
, it holds

− |f
′
n(0)|‖un‖+ ‖ϕ‖

n
≤ 〈J ′(un), ϕ〉 ≤ |f

′
n(0)|‖un‖+ ‖ϕ‖

n
, (2.2)

where

〈J ′(un), ϕ〉 =
∫

RN
(∇un,∇ϕ)dx−

∫
RN

φunu
2∗−2
n ϕdx− λ

∫
RN

g(x)u−γn ϕdx.

Proof. According to Lemma 2.3, Iλ is coercive on Nλ. Applying Ekeland’s varia-
tional principle, there exists a minimizing sequence {un} ⊂ Nλ of Iλ such that

Iλ(un) < αλ +
1
n
, Iλ(v)− Iλ(un) ≥ − 1

n
‖v − un‖, ∀v ∈ Nλ. (2.3)

Based on Iλ(|un|) = Iλ(un), we may assume that un ≥ 0 in RN , and there exist a
subsequence (by denoted itself) and u∗ in D1,2(RN ) such that

un ⇀ u∗ weakly in D1,2(RN ),

un(x)→ u∗(x) a.e. in RN .

Let t > 0 small enough, ϕ ∈ D1,2(RN ), we set u = un, w = tϕ ∈ D1,2(RN ) in
Lemma 2.5, then we have fn(t) = fn(tϕ) with fn(0) = 1, fn(t)(un + tϕ) ∈ Nλ.
Note that

‖un‖2 − λ
∫

RN
g(x)|un|1−γdx−

∫
RN

φun |un|2
∗−1dx = 0. (2.4)
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From (2.3), it follows that

1
n

[|fn(t)− 1| · ‖un‖+ tfn(t)‖ϕ‖] ≥ 1
n
‖fn(t)(un + tϕ)− un‖

≥ Iλ(un)− Iλ[fn(t)(un + tϕ)],
(2.5)

and

Iλ(un)− Iλ[fn(t)(un + tϕ)]

=
1− f2

n(t)
2

‖un‖2 +
f

2(2∗−1)
n (t)− 1

2(2∗ − 1)

∫
RN

φ(un+tϕ)|un + tϕ|2
∗−1dx

+ λ
f1−γ
n (t)− 1

1− γ

∫
RN

g(x)|un + tϕ|1−γdx+
f2
n(t)
2

(‖un‖2 − ‖un + tϕ‖2)

+
1

2(2∗ − 1)

∫
RN

[φ(un+tϕ)|un + tϕ|2
∗−1 − φun |un|2

∗−1]dx

+
λ

1− γ

∫
RN

g(x)((un + tϕ)1−γ − u1−γ
n )dx.

Combined with (2.4) and (2.5), dividing by t and letting t→ 0, we obtain

|f ′n(0)|‖un‖+ ‖ϕ‖
n

≥ −f ′n(0)
{
‖un‖2 − λ

∫
RN

g(x)u1−γ
n dx−

∫
RN

φun |un|2
∗−1dx

}
−
∫

RN
(∇un,∇ϕ)dx+

∫
RN

φun |un|2
∗−3uϕdx+ λ

∫
RN

g(x)u−γn ϕdx

= −
∫

RN
(∇un,∇ϕ)dx+

∫
RN

φun |un|2
∗−3uϕdx+ λ

∫
RN

g(x)u−γn ϕdx,

so, we obtain that for ϕ ∈ D1,2(RN ), ϕ ≥ 0, it holds∫
RN

(∇un,∇ϕ)dx−
∫

RN
[φun |un|2

∗−3u+ λg(x)u−γn ]ϕdx

≥ −|f
′
n(0)|‖un‖+ ‖ϕ‖

n
.

(2.6)

Since the above inequality holds for −ϕ, it follows that∫
RN

(∇un,∇ϕ)dx−
∫

RN
[φun |un|2

∗−3u+ λg(x)u−γn ]ϕdx

≤ |f
′
n(0)|‖un‖+ ‖ϕ‖

n
.

Set

〈J ′(u), ϕ〉 =
∫

RN
(∇u,∇ϕ)dx−

∫
RN

φun |un|2
∗−3uϕdx− λ

∫
RN

g(x)u−γn ϕdx,

consequently (2.2) holds. As in [31], we can prove that {f ′n(0)} is bounded for all
n. The proof is complete. �

Lemma 2.7. Supposes {vn} ⊂ N−λ is a minimizing sequence for Iλ with

α−λ <
2

N + 2
S
N
2 −Dλ

2
1+γ where D = D(N, γ, S, |g| 2∗

2∗+γ−1
).
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Then there exists v∗ ∈ D1,2(RN ) such that vn → v∗ in D1,2(RN ) and∫
RN

φvn |vn|2
∗−1dx→

∫
RN

φv∗ |v∗|2
∗−1dx

as n→∞.

Proof. Let {vn} ⊂ N−λ be a minimizing sequence for Iλ, similarly to the proof of
Lemma 2.6, one obtains

− |f
′
n(0)|‖vn‖+ ‖ϕ‖

n
≤ 〈J ′(vn), ϕ〉 ≤ |f

′
n(0)|‖vn‖+ ‖ϕ‖

n
. (2.7)

Since {vn} is bounded in D1,2(RN ), there exist a subsequence, still denoted by
itself, and a function v∗ ∈ D1,2(RN ) such that

vn ⇀ v∗, weakly in D1,2(RN ),

vn(x)→ v∗(x), a.e. in RN

as n→∞. We firstly claim that∫
RN

g(x)v1−γ
n dx→

∫
RN

g(x)v1−γ
∗ dx.

In fact, by Hölder’s inequality and the boundedness of {vn}, it holds that∣∣ ∫
|x|>m

g(x)[v1−γ
n − v1−γ

∗ ]dx
∣∣

≤
∫
|x|>m

g(x)|v1−γ
n − v1−γ

∗ |dx

≤
∫
|x|>m

g(x)(|vn|1−γ + |v∗|1−γ)dx

=
∫
|x|>m

g(x)|vn|1−γdx+
∫
|x|>m

g(x)|v∗|1−γdx

≤
(∫
|x|>m

g(x)
2∗

2∗+γ−1 dx
) 2∗+γ−1

2∗ |vn|1−γ2∗ +
(∫
|x|>m

g(x)
2∗

2∗+γ−1 dx
) 2∗+γ−1

2∗ |v∗|1−γ2∗

≤ C
(∫
|x|>m

g(x)
2∗

2∗+γ−1 dx
) 2∗+γ−1

2∗

→ 0, as m→∞,

which implies that for any ε > 0, there exists N1 > 0 such that∣∣ ∫
|x|>m

g(x)[v1−γ
n − v1−γ

∗ ]dx
∣∣ < ε

2
, for each m > N1.

LetM = {x ∈ RN : |x| ≤ N1 +1}. Note that {vn} is bounded in D1,2(RN ), then( ∫
|x|≤N1+1

v2∗

n dx
) 1−γ

2∗ ≤ M ′ for some M ′ > 0. Moreover, from absolute continuity
of the Lebesgue integral, for every ε > 0, there exists δ′ > 0 such that for each
E ⊂M with meas E < δ′, it holds∫

E

g(x)
2∗

2∗+γ−1 dx <
( ε

M ′

) 2∗
2∗+γ−1

.
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Consequently,∫
E

g(x)v1−γ
n dx ≤

(∫
E

g(x)
2∗

2∗+γ−1 dx
) 2∗+γ−1

2∗
(∫

E

|vn|2
∗
dx
) 1−γ

2∗
< ε.

Hence {
∫
|x|≤N1+1

g(x)v1−γ
n dx, n ∈ N+} is equi-absolutely-continuous. It follows

easily from Vitali Convergence Theorem that∫
|x|≤N1+1

g(x)v1−γ
n dx→

∫
|x|≤N1+1

g(x)v1−γ
∗ dx, as n→∞.

That is, there exists N2 > 0 such that∣∣ ∫
|x|≤N1+1

g(x)[v1−γ
n − v1−γ

∗ ]dx
∣∣ < ε

2
, for each n > N2.

Therefore, from the above inequalities, it follows that∣∣ ∫
RN

g(x)v1−γ
n dx−

∫
RN

g(x)v1−γ
∗ dx

∣∣
=
∣∣ ∫
|x|≤N1+1

g(x)[v1−γ
n − v1−γ

∗ ]dx+
∫
|x|>N1+1

h(x)[v1−γ
n − v1−γ

∗ ]dx
∣∣

≤
∣∣ ∫
|x|≤N1+1

g(x)[v1−γ
n − v1−γ

∗ ]dx
∣∣+
∣∣ ∫
|x|>N1+1

g(x)[v1−γ
n − v1−γ

∗ ]dx
∣∣ < ε

for n > N2, which implies∫
RN

g(x)v1−γ
n dx→

∫
RN

g(x)v1−γ
∗ dx, as n→∞.

Now, set wn = vn − v∗, then ‖wn‖ → 0. Otherwise, there exists a subsequence
(still denoted by wn) such that

lim
n→∞

‖wn‖ = l > 0.

From (2.7), letting n→∞, for every ϕ ∈ D1,2(RN ), it follows∫
RN

(∇v∗,∇ϕ)dx− λ
∫

RN
g(x)v−γ∗ ϕdx−

∫
RN

φv∗v
2∗−2
∗ ϕdx = 0. (2.8)

Taking the test function ϕ = v∗ in (2.8), it follows that

‖v∗‖2 − λ
∫

RN
g(x)v1−γ

∗ dx−
∫

RN
φv∗v

2∗−1
∗ dx = 0. (2.9)

Putting ϕ = vn in (2.7), by the Brézis-Lieb’s lemma (see [6]) and Lemma 2.1, it
follows that

‖wn‖2 + ‖v∗‖2 −
∫

RN
[φwn |wn|2

∗−1 + φv∗ |v∗|2
∗−1]dx

− λ
∫

RN
g(x)v1−γ

∗ dx = o(1).
(2.10)

It follows from (2.9) and (2.10) that

‖wn‖2 −
∫

RN
φwn |wn|2

∗−1dx = o(1). (2.11)

Note that
∫

RN φwn |wn|
2∗−1dx ≤ S−2∗‖wn‖2(2∗−1); then

l ≥ S
2∗

2(2∗−2) , l > 0.
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On the one hand, from (2.9), by the Young inequality,

Iλ(v∗) =
1
2
‖v∗‖2 −

1
2(2∗ − 1)

∫
RN

φv∗v
2∗−1
∗ dx− λ

1− γ

∫
RN

g(x)v1−γ
∗ dx

=
2∗ − 2

2(2∗ − 1)
‖v∗‖2 − λ

[ 1
1− γ

− 1
2(2∗ − 1)

] ∫
RN

g(x)v1−γ
∗ dx

≥ 2
N + 2

‖v∗‖2 − λ
[ 1
1− γ

− 1
2(2∗ − 1)

]
|g| 2∗

2∗+γ−1
S−

1−γ
2 ‖v∗‖1−γ

≥ −Dλ
2

1+γ ,

where D = D(N, γ, S, |g| 2∗
2∗+γ−1

) > 0 is a constant (independent of λ).
On the other hand, from (2.11),

Iλ(v∗) = Iλ(vn)− 1
2
‖wn‖2 +

1
2(2∗ − 1)

∫
RN

φwn |wn|2
∗−1dx+ o(1)

= Iλ(vn)− 2∗ − 2
2(2∗ − 1)

‖wn‖2 + o(1)

≤ α−λ −
2

N + 2
l2

<
2

N + 2
S
N
2 −Dλ

2
1+γ − 2

N + 2
S
N
2

= −Dλ
2

1+γ .

This is a contradiction. Therefore, l = 0, it implies that vn → v∗ in D1,2(RN ).
Note that

0 ≤
∫

RN
φvnv

2∗−1
n dx−

∫
RN

φv∗v
2∗−1
∗ dx

=
∫

RN
φwnw

2∗−1
n dx+ o(1)

≤ S−2∗‖wn‖2(2∗−1) + o(1)→ 0,

which implies that
∫

RN φvnv
2∗−1
n dx →

∫
RN φv∗v

2∗−1
∗ dx as n → ∞. The proof is

complete. �

Theorem 2.8. Under the assumptions of Theorem 1.1, system (1.1) has a positive
ground state solution (uλ, φuλ) ∈ D1,2(RN )×D1,2(RN ) with Iλ(uλ) < 0.

Proof. There exists a constant δ > 0 such that 2
N+2S

N
2 − Dλ

2
1+γ > 0 for λ < δ.

Set Λ1 = min{Λ0, δ}, then Lemmas 2.1–2.7 hold for all 0 < λ < Λ1. Therefore,
there exist a bounded minimizing sequence {un} ⊂ Nλ of Iλ and uλ ∈ D1,2(RN )
such that

un ⇀ uλ, weakly in D1,2(RN ),

un(x)→ uλ(x), a.e. in RN ,

as n→∞. Now we will prove that uλ is a positive ground state solution of system
(1.1).

Indeed, by Lemmas 2.4–2.7, we can deduce that

lim
n→∞

∫
RN

φunu
2∗−1
n dx =

∫
RN

φuλu
2∗−1
λ dx.
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By Fatou’s lemma,

0 = lim
n→∞

{
‖un‖2 − λ

∫
RN

g(x)u1−γ
n dx−

∫
RN

φunu
2∗−1
n dx

}
≥ ‖uλ‖2 − λ

∫
RN

g(x)u1−γ
λ dx−

∫
RN

φuλu
2∗−1
λ dx.

(2.12)

Letting n→∞ in (2.2) and using the Fatou’s lemma again, for each ϕ ∈ D1,2(RN ),
ϕ ≥ 0, it holds∫

RN
(∇uλ,∇ϕ)dx− λ

∫
RN

g(x)u−γλ ϕdx−
∫

RN
φuλu

2∗−2
λ ϕdx ≥ 0. (2.13)

Now, for any v ∈ D1,2(RN ), we set Ψ = (uλ + εv)+, it follows from (2.12) and
(2.13) that

0 ≤
∫

RN
[(∇uλ,∇Ψ)− φuλu

2∗−2
λ Ψ− λg(x)u−γλ Ψ]dx

=
∫
{uλ+εv>0}

[
(∇uλ,∇(uλ + εv))− φuλu

2∗−2
λ (uλ + εv)

− λg(x)u−γλ (uλ + εv)
]
dx

=
(∫

RN
−
∫
{uλ+εv≤0}

)
[(∇uλ,∇(uλ + εv)

− φuλu
2∗−2
λ (uλ + εv)− λg(x)u−γλ (uλ + εv)]dx

≤ ‖uλ‖2 −
∫

RN
φuλu

2∗−1
λ dx− λ

∫
RN

g(x)u1−γ
λ dx

+ ε

∫
RN

[
(∇uλ,∇v)− φuλu

2∗−2
λ v − λg(x)u−γλ v

]
dx

−
∫
{uλ+εv≤0}

(∇uλ,∇(uλ + εv))dx

+
∫
{uλ+εv≤0}

[
φuλu

2∗−2
λ (uλ + εv) + λg(x)u−γλ (uλ + εv)

]
dx

≤ ε
∫

RN

[
(∇uλ,∇v)− φuλu

2∗−2
λ v − λg(x)u−γλ v

]
dx

− ε
∫
{uλ+εv≤0}

(∇uλ,∇v)dx.

(2.14)

Since ∇uλ = 0 for a.e. x ∈ R3 with uλ(x) = 0 and

meas{x|uλ(x) + εv(x) < 0, uλ(x) > 0} → 0 as ε→ 0,

then, we have∣∣ ∫
{uλ+εv<0}

(∇uλ,∇v)dx
∣∣ =

∫
{uλ+εv<0,uλ>0}

(∇uλ,∇v)dx→ 0 as ε→ 0.

Therefore, dividing by ε and letting ε→ 0 in (2.14), one gets∫
RN

(∇uλ,∇v)dx−
∫

RN
φuλu

2∗−2
λ vdx− λ

∫
RN

g(x)u−γλ vdx ≥ 0.
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As v is arbitrarily, consequently, uλ is a nonzero negative solution of system (1.1).
Note that uλ ∈ Nλ and αλ < 0 (by Lemma 2.4), then[ 1

1− γ
− 1

2(2∗ − 1)
]
λ

∫
RN

g(x)u1−γ
λ dx =

2
N + 2

‖uλ‖2 − Iλ(uλ)

≥ 2
N + 2

‖uλ‖2 − αλ > 0,

which implies that uλ 6≡ 0. Note that uλ ≥ 0 in RN . By standard arguments
as in DiBenedetto [11] and Tolksdorf [27], we have that uλ ∈ L∞(RN ) and uλ ∈
C1,α
loc (RN ) with 0 < α < 1. Furthermore, by Harnack’s inequality (see Trudinger

[28]), uλ > 0 for any x ∈ RN . Furthermore, we have

αλ = lim
n→∞

Iλ(un) = Iλ(uλ). (2.15)

Next, we claim that uλ ∈ N+
λ . On the contrary, assume that uλ ∈ N−λ (N 0

λ = {0}
for λ ∈ (0,Λ0)), then by Lemma 2.2, there exist positive numbers t+ < tmax < t− =
1 such that t+uλ ∈ N+

λ , t−uλ ∈ N−λ and

αλ < Iλ(t+uλ) < Iλ(t−uλ) = Iλ(uλ) = αλ,

this is a contradiction. Hence, uλ ∈ N+
λ . By the definition of α+

λ , we have α+
λ ≤

Iλ(uλ). It follows from Lemma 2.4 and (2.15) that

Iλ(uλ) = α+
λ = αλ < 0.

From the above analysis, we obtain that uλ is a positive ground state solution of
system (1.1). The proof is complete. �

3. Existence of the second positive solution of system (1.1)

From [26], For x ∈ RN , it is well known that the function

Φ(x) =
( N
N−2 )

N−2
4

(1 + |x|2)
N−2

2

solves

−∆u = u2∗−1 x ∈ RN ,

‖Φ‖2 =
∫

RN
Φ2∗dx = S

N
2 .

Lemma 3.1. There exists Λ3 > 0 such that for each λ ∈ (0,Λ3), it holds

sup
t≥0

Iλ(tΦ) <
2

N + 2
S
N
2 −Dλ

2
1+γ . (3.1)

Proof. We are going to give an estimate of the value of Iλ. Observe that, multiplying
the second equation of system (1.1) by |u| and integrating, one has

|u|2
∗

2∗ =
∫

RN
∇φu|∇|u||dx ≤

1
2
|∇φu|22 +

1
2
|∇|u||22.

So, if we introduce the new functional Jλ : D1,2(RN )→ R defined in the following
way

Jλ(u) =
N

N + 2
‖u‖2 − 1

2∗ − 1

∫
RN
|u|2

∗
dx− λ

1− γ

∫
RN

g(x)|u|1−γdx.
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Then, we have Iλ(u) ≤ Jλ(u) for any u ∈ D1,2(RN ). For t ≥ 0, set

h(t) =
Nt2

N + 2
‖Φ‖2 − t2

∗

2∗ − 1

∫
RN

Φ2∗dx

=
Nt2

N + 2
S
N
2 − t2

∗

2∗ − 1
S
N
2 .

Then

sup
t≥0

h(t) = sup
t≥0

{ Nt2

N + 2
S
N
2 − t2

∗

2∗ − 1
S
N
2

}
=

2
N + 2

S
N
2 .

When λ ∈ (0, δ), we have 2
N+2S

N
2 −Dλ

2
1+γ > 0, which implies that there exists

t0 > 0 small such that

sup
0≤t≤t0

Iλ(tΦ) <
2

N + 2
S
N
2 −Dλ

2
1+γ for each λ ∈ (0, δ).

We next consider the case where t > t0. Since 2
1+γ > 1, there exists Λ2 > 0 such

that

−λ t
1−γ
0

1− γ

∫
RN

g(x)Φ1−γdx < −Dλ
2

1+γ for each λ ∈ (0,Λ2).

Then, for each λ ∈ (0,Λ2), it follows

sup
t≥t0

Iλ(tΦ) ≤ 2
N + 2

S
N
2 − λ t

1−γ

1− γ

∫
RN

g(x)Φ1−γdx

≤ 2
N + 2

S
N
2 − λ t

1−γ
0

1− γ

∫
RN

g(x)Φ1−γdx

<
2

N + 2
S
N
2 −Dλ

2
1+γ .

Set Λ3 = min{δ,Λ2}. From the above information, it holds that

sup
t≥0

Iλ(tΦ) <
2

N + 2
S
N
2 −Dλ

2
1+γ for each λ ∈ (0,Λ3).

Therefore, (3.1) holds true when λ < Λ3. The proof is complete. �

Theorem 3.2. There exists λ∗ > 0 such that problem (1.1) has a positive solution
vλ with vλ ∈ N−λ for each 0 < λ < λ∗.

Proof. Let λ∗ = min{Λ0,Λ3}. Since Iλ is also coercive on N−λ , we apply the
Ekeland’s variational principle to the minimization problem α−λ = infv∈N−

λ
Iλ(v),

there exists a minimizing sequence {vn} ⊂ N−λ of Iλ with the following properties:

(i) Iλ(vn) < α−λ + 1
n ;

(ii) Iλ(u) ≥ Iλ(vn)− 1
n‖u− vn‖ for all u ∈ N−λ .

Since {vn} is bounded in D1,2(RN ), up to a subsequence if necessary, there exists
vλ ∈ D1,2(RN ) such that

vn ⇀ vλ, weakly in D1,2(RN ),

vn(x)→ vλ(x), a.e. inRN as n→∞.

Using Lemmas 2.5–2.7 and Lemma 3.1, similarly, we can get that vλ is a non-
negative solution of system (1.1).
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Now, we prove that vλ > 0 in RN . Since vn ∈ N−λ , it holds

(1 + γ)‖vn‖2 < (2 · 2∗ + γ − 3)
∫

RN
φvnv

2∗−1
n dx

< (2 · 2∗ + γ − 3)S−2∗‖vn‖2(2∗−1),

so that

‖vn‖ >
( (1 + γ)S2∗

2 · 2∗ + γ − 3

) 1
2(2∗−2) ∀vn ∈ N−λ ,

which implies that vλ 6≡ 0. Similarly, by Harnacks inequality, we also obtain vλ > 0
for any x ∈ RN .

Next, we prove that vλ ∈ N−λ , it suffices to prove that N−λ is closed.
Indeed, by Lemma 2.7 and Lemma 3.1, for {vn} ⊂ N−λ , it holds

lim
n→∞

∫
RN

φvnv
2∗−1
n dx =

∫
RN

φvλv
2∗−1
λ dx.

By the definition of N−λ , it holds that

2‖vn‖2 − (2∗ − 1)
∫

RN
φvnv

2∗−1
n dx− λ(1− γ)

∫
RN

g(x)v1−γ
n dx < 0,

thus

2‖vλ‖2 − (2∗ − 1)
∫

RN
φvλv

2∗−1
λ dx− λ(1− γ)

∫
RN

g(x)v1−γ
λ dx ≤ 0,

which implies that vλ ∈ N 0
λ ∪ N

−
λ . If N−λ is not closed, then we have vλ ∈ N 0

λ , by
Lemma 2.2, it follows that vλ = 0, this contradicts vλ > 0. Consequently, vλ ∈ N−λ .
Note that, N+

λ ∩ N
−
λ = ∅, then uλ and vλ are different positive solutions of (1.1).

This completes the proof. �
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