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ABSTRACT. In this work, we show the existence of a spectral function for a
singular Sturm-Liouville problem with transmission condition. Also we estab-
lish a Parseval equality and expansion formula in eigenfunctions in terms of
the spectral function.

1. INTRODUCTION

Sturm-Liouville problems are one of the important research areas of mathemat-
ical physics. They arise when we apply the method of separation of variables to
equations in mathematical physics. To study the problem of expanding an arbitrary
function as a series of eigenfunctions, we need eigenfunction expansions theorems
for which there are a lot of studies, see [13| 21].

On the other hand, the Sturm-Liouville problems with transmission conditions
arise in problems of heat and mass transfer, various physical transfer problems
[15], radio science [16], and geophysics [12]. Such conditions are known by various
names including transmission conditions, interface conditions, jump conditions and
discontinuous conditions. Regular problems were investigated in [II, 8, @, 10, [I7)
18, 19, 20, 23, 24] 25], and singular problems in [2] B, 4, [5 [6] [7, 22]. Li et al.
[14] investigated a singular Sturm-Liouville problems with transmission conditions
at finitely many interior points. They gave a definition of Weyl function for such
problems in the limit circle case.

In this article, we consider singular Sturm-Liouville problems with transmission
conditions. We prove the existence of a spectral function, and give a Parseval
equality and an expansion formula in eigenfunctions, for such problems.

2. MAIN RESULTS

We consider the Sturm-Liouville expression

I(y) = —(p(2)y) +al@)y, =€ (a,c)U(c,D),
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where I := [a,¢), Is = (¢,b], —o0 < a < ¢ < b < +oo and I := I; UI,. We assume
that the points a, b and c are regular for the differential expression [. p and g are
real-valued, Lebesgue measurable functions on I and 1/p,q € L'(I}), k = 1,2. The
point ¢ is regular if 1/p,q € L'[c — €, ¢ + €] for some € > 0.

Let us consider the Sturm-Liouville equation

y) =Xy, zel, (2.1)
with the boundary condition
y(a)cos B+ (py')(a)sinf =0, B€R:=(—00,00), (2.2)
and transmission conditions
Y(ct) = CY(c-), Y—»Qi),
C e MyR), detC=246>0,

(2.3)

where M5(R) denotes the the 2 x 2 matrices with entries from R.
Now, we introduce the Hilbert space Hy = L2(I;)+L2(I,) with the inner product

c b
— — 1
g = [ £OG0do oy [ fO@dn, =,
where

f@(x), zely, 9P (), ze€l.

Denote by D the set of linear functions y € Hj such that y, py’ are locally
absolutely continuous functions on I, one-sided limits y(ct), (py’)(c£) exist and
are finite and I(y) € H;. The operator L defined by Ly = I(y) is called the
maximal operator 7" on Hj.

For arbitrary functions y, z € D, we have Green’s formula

/ 1(y)zdz — / JE)dz = [, e — [y 2o+ [ 2o — [ der,  (24)

f@)—{ﬂD@L veli g {ﬁ”@% rel

where [y, 2] = y(x)(p')(x) — (py')(x)2(x) (x € I). Denote by

JeW(x,N), zel
¢($, )\) - {d)@)(.’l},)\), T € 12

the solution of (2.1)) satisfying the initial conditions
d)(a, )‘) = sin ﬂa (p¢/)(a7 >‘) - - 008/67 (25)

and transmission conditions

der N =Cote- . o) = (A7)

C e MyR), detC=06>0.
Now, to problem 1) we add the boundary condition
(py")(b)sina +y(b)cosa =0, a €R. (2.7)

Then, (2.1))-(2.3), is a regular problem for a Sturm-Liouville equation with
transmission conditions.
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In [8L @, 10, 23, 24] the authors proved that the regular self-adjoint boundary-
value problem —, with transmission conditions has a compact resol-
vent, so it has a purely discrete spectrum.

Let Ay p (m € N:={1,2,...}) denote the eigenvalues of this problem and

7 (bfi)b(x), rely
Omp(x) = {¢(2) (2), web,
¢m,b( ) = ¢($, )\m,b)

the corresponding real-valued eigenfunctions which satisfy conditions (2.2)), (2.3)),
(2.7). If f € H;y is real-valued function with

B fD(x), zel
B fA(z), zely,

and

c b
= [ @) de [ (62 @)2ds,

/: (f(n(x))de + 'y/b (f(2)(g;))2dx

then

1£1172,

(2.8)
2
= / O dx+7/ (@ ( )dm} .
m= 1 m b
which is called the Parseval equality [9] [10].
Now, let us define a nondecreasing step function on R,
-3 S for A< 0
on(N) = A Am s <O (2.9)

Socrnacrs  forA20.

,b

Then (2.8) can be written as

c b %)
/(f(l)(x))de—i—v/ (f@)(x))?dm:/_ F2(X)doy(N), (2.10)
where
F()) = / FO @)D (@, N)da + / F2(2)6 (2, \)de.

We will show that the Parseval equality for problem ([2.1] ., . can be ob-
tained from (2.10) by letting b — oc.

A function f defined on an interval [a,b] is said to be of bounded variation if
there is a constant C' > 0 such that

S I fxk) = flag1) < C
k=1

for every partition a = zo < 1 < -+ < x,, = b of [a, b].
Let f be a function of bounded variation. Then, by the total variation of f on
[a, b], denoted by

Vo(f) =sup > _ [ f(zx) = flax-1)],
k=1
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where the supremum is taken over all (finite) partitions of the interval [a,b] (see
[T1]).

Lemma 2.1. For any positive N, there is a positive constant T = Y(N) indepen-
dent of b such that

1
V¥ (es(N) = Z 2 op(N) — op(=N) < T. (2.11)
—N<Apm p<N b
Proof. Let sin 8 # 0. Since ¢(z, \) is continuous in domain —N <A< N, a <z <
¢, by the condition ¢(a,\) = sin g, there is a small positive number k such that,
for [A\| < N,

1 k 2 1
ﬁ(/ ¢(1)(9c,)\)dx) > §si1r12 8. (2.12)
Let us define
1/k, a<zx<k
Jilw) = {O, x> k.

From (2.10)), (2.11)) and (2.12)), we obtain

/ak R (x)de = % - /Z (% /ak 6Dz, /\)dx)ngb()\)

/i(il%@uAm@%%@>

v

1 N
fm%/dmn
2

\%

= %sin2 Heov(N) — os(=N)},

which proves the inequality (2.11]).
If sin 8 = 0, then we define the function

/K%, a<z<k
fel@) = {O7 x>k
So, we obtain (2.11]) by applying the Parseval equality. O
Now, we recall the following two well-known Helly’s theorems.

Theorem 2.2 ([I1]). Let (wy)nen be a uniformly bounded sequence of real nonde-
creasing function on a finite interval a < A < b. Then there exists a subsequence
(wn, )ken and a nondecreasing function w such that

klim Wn, (A) =w(A), a<A<b

Theorem 2.3 ([11]). Assume (wy)nen 48 a real, uniformly bounded, sequence of
nondecreasing function on a finite interval a < X\ < b, and suppose

lim w,(A\) =w(\), a<A<b.

If f is any continuous function on a < X\ < b, then
b

b
lim [ f(\)dw,(N) = / F)dw(N).

n—oo
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We introduce the Hilbert space H := L?(I;) -i-LQ(Ig), (I; :=[a,¢), Is := (¢, 0))
with the inner product

(f,9)n 12/ f(l)ﬁdaﬂrv/ fPg@de,

C

where

fA(z), zels, B g (x), zels.

Let o be any nondecreasing function on —co < A < oo. Denote by Lz(R) the
Hilbert space of all functions f : R — R which are measurable with respect to the
Lebesque-Stieltjes measure defined by ¢ and such that

[%WMMMM<m,

O(x), =z O(x), =z
ﬂﬂ:{f(>7 €h {g<>, €h

with the inner product

(F9) = [ OV,
—00
The main result of this article reads as follows.

Theorem 2.4. For the Sturm-Liouville problem (2.1)-(2.3), there exists a nonde-
creasing function g(\) on —oo < A < oo with the following properties:

W(z), zel

(), zels
is real valued function and f € H, then there exist a function F € LZ(R)
such that
o0 Cc n 2
lim @%M—/'ﬂWm¢”uAMw—v/ F@@)6 (@)} do() =0,
n—00 — 00 a Cc

(2.13)
and the Parseval equality

= [ (r0@) ot [P = [T RO (21)
(ii) The integral [°°_ F(N)¢(z,N)do()) converge to f in H; that is,
i { [0 - [ FOW (@) do()ds

oo n
[ 1O - [ P06 @ 0 de(Pde} =
c —n
We note that the function g is called a spectral function for boundary value

problem —.

Proof. Assume that
f(l) ), € |a,c
fe(a) = 4 J5,) (0 €l
fg (z), =€ (¢
satisfies the following conditions.
(1) fe(z) vanishes outside the set [a, c) U (¢, €] with £ < b;
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(2) (pf¢)(z) has a continuous derivative.
(3) fe(z) satisfy the conditions (2.2))-(2.3).

When we apply the Parseval equality (2.10) to f¢(z), we obtain

| @ @pris+n / UP@Pde = [ RN, )
where
Fe(M) = / ’ £ (@)D (2, Ndz + / ‘ £ (2)¢ (2, N da. (2.16)
Since ¢(z, ) satisfies (2.1)), we see that
b, N) =
By (2-16), we obtain
=3 [ @ (0 (@) + )60 0 o

[ = (¢') (2, X) + q(z)d(x, N)].

> =

/ @) = @) (@A) + a()6 (z, N)) da.

Since fe(x) vanishes in a neighborhood of the point b and f¢(z) and ¢(z, \) satisfy
the boundary conditions @ we obtain

/¢<1 2 N[~ (pfY) (@) + (@)1 ()] deo
1 [ 6PN~ ) @)+ a1 )

using integration by parts.
For any finite N > 0, using ([2.10)), we have

[ FEdao)
[A[>N
<y [ UL e N0 @+ s @)
b NV 2 2
1 [ 6@ (f) @) + o) 7 @) o} dan(n)
<qz [ _{[ o= 01 @) + a0 @) o
b 2
1 [N = 05 @)+ ala)s @) do} dan()
= [ 1= 05 @+ o) @) e

3
377 [ (=21 @)+ o) @) o
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From (2.15)), we see that

y/ (fM (@) dm+7/((2) /F§ )doy(M)|

< / [— erY (@) + a(@) O (@) *de (2.17)

¢ N 2
327 [ 1= @Y @+ a@s @) o

By Lemmal[2.1] the set {g,())} is bounded. Using Theorems[2.2]and[2.3] we can find
a sequence {by} (by — o) such that the functions gy, (A) converge to a monotone
function p()). Passing to the limit with respect to {bx} in (2.17)), we obtain

N
|/ (1 (@) derv/ (fg(Q)(x))zdz—LNFg(A)dQ(A)|
<m / [~ () (@) + () £ ()]
3 N 2 2
bz [ - 0 @+ a@) @) da

Hence, letting N — oo, we obtain
© 2 @2 -
[ @2 [T aP @)= [ ROy,

Now, let f be an arbitrary real valued function on H. It is known that there
exists a sequence of functions {f¢(x)} satisfying the condition 1-3 and such that

c 13
tim { / (FO (@) — 1V @)z + 5 / (F2 (@) = & (@))%} 0.

£—o0
Let

/ F (@)W (2, \) dx+’y/ £ (2)® (2, \)da.

Then, we have

c 3 *
[ uP@raren [ @ = [ RO

Since
[ 0w - 0@y [P - 12w 0

as &1,& — 0o, we have

| ) - R Paey

- [P - 1@+ [T - 12 @) —o

as &1, & — o0o. Consequently, there is a limit function F' which satisfies

| (s0@) aoy [T (10@) = [T Fovde

o0

by the completeness of the space LE(R).
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Our next goal is to show that

c 3
N = [ 1@ @ Nda [ D @) 0 Nds - F

as £ — 0o, in the metric of space LZ(R). Let g be another real-valued function in
H. By a similar arguments, let G(\) be defined by g. It is clear that

/C(f“)() s@) drty [T (1) - @)

- [ ) - 6o
Set
f(z), z€la,c)Uled]
9(x) = {O, x € (&,00)
Then

/ TLEO) - Ke(V))2do(n) = /E T (O (@)dr — 0, as € — oo,

which proves that K¢ converges to F' in L2(R) as & — oco. This proves (i).

Now, we prove (ii). Suppose that the real valued functions f,g € H, and F())
and G(X) are their Fourier transforms (see (2.13)). Then F F G are transforms of
f F g. Consequently, by (2.14)), we have

/ O @) + 9O @) de + / T O (@) + g (@) de

c
o

:/ [F(N) + G(V)]2do(N),

— 00

/ TO(@) - g0 (@) de + / T 1O (@) - g (@)]2de
= [T 1F0) - G0Pao

—0oQ
Subtracting the second relation from the first, we obtain
[ 10@g0 @+ [T O@e@ @i = [T P0G (215)
which is called the generalized Parseval equality. Set

9@ - [ " OO (@, Ndo(N), =12,

-7
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where F' is the function defined in (2.13)). Let ¢ € H be a real valued function
which equals zero outside the set [a, ) U (¢, p]. Thus, we obtain

/ FO@)g D a)do + [ " ()9 (@)
/ { F o (z /\)dg()\)} W) (1) dz
+y / / FOP (@ A)dg(A)}g@)(x)dx (2.19)
/ F(X / oM (2, gD (z) da:+7/ 6@ (2, 0)g? (a )dx}dg()\)

/ FONGN)do(N).

Subtracting (2.18)) and ( -7 we have
| 406 = 10@) @+ [ (@) - 12 ) @)

_ / FOYGAN)do(N).
A>T
Using Cauchy-Schwarz inequality, we obtain

([ 4@ - 10 @)D @n o [0 @) - 12w @)

2 2
< /WF (\)de() /M>TG (\)do(N).

We apply this inequality to the function

o(2) = {ﬁ(az) ~f@), Tela0Ulen

0, T € (p,00),
we obtain
[ 0@ - 0@ et [ (0@ - 12@) s
< / F2(\)do(N).
| A>T
Letting 7 — oo yields the desired result, since the right-hand side does not depend
on K. |:|
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