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NON-SIMULTANEOUS QUENCHING IN A SEMILINEAR

PARABOLIC SYSTEM WITH MULTI-SINGULAR

REACTION TERMS

ZHE JIA, ZUODONG YANG, CHANGYING WANG

Abstract. This article concerns quenching properties of solutions for a semi-
linear parabolic system with multi-singular reaction terms. We obtain suffi-

cient conditions for the existence of finite time quenching of global solutions.

The blow up of time-derivatives at the quenching point is verified. In addi-
tion, we identify simultaneous and non-simultaneous quenching, and provide

a classification of parameters for the simultaneous quenching rates.

1. Introduction

In this article, we consider the semilinear parabolic system

ut = ∆u+ (1− u)−p1 + (1− v)−q1 , x ∈ Ω, t > 0,

vt = ∆v + (1− u)−p2 + (1− v)−q2 , x ∈ Ω, t > 0,

u(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

(1.1)

where p1, p2 ≥ 0, q1, q2 > 0, and Ω ⊂ RN is a bounded domain with smooth
boundary. In addition, u0(x), v0(x) ∈ C2(Ω) ∩ C1(Ω̄) are sufficiently smooth func-
tions satisfying the compatibility conditions and 0 ≤ u0(x), v0(x) < 1 in Ω̄. This
problem can be considered as the classical non-Newtonian filtration system that in-
corporates the effects of singular boundary outflux and nonlinear reaction sources.
The quenching behavior represents an interesting phenomenon where the solution
tends to a constant but the time derivative approaches infinity as (x, t) tends to
some point in the spatial-time space.

Definition 1.1. We say that the solution (u, v) to problem (1.1) quenches in finite
time, if there exists 0 < T <∞ such that

lim
t→T−

max
x∈Ω̄
{u(x, t), v(x, t)} = 1.

From now on, we denote by T (0 < T <∞) the quenching time of problem (1.1).
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The study of the quenching behavior began with the work by Kawarada [1]
who first introduced the quenching behavior of the semilinear heat equation ut =
uxx + (1 − u)−1 at level u = 1, and obtained that the reaction term and the time
derivative blow up as u reached this level. Since then, many researchers have worked
on the quenching properties of solutions for different kinds of parabolic equations
(see [2]-[13] and the references therein). In particular, Zhi and Mu [9] considered
the quenching properties for the semilinear equation

ut = uxx + (1− u)−p, 0 < x < 1, t > 0

ux(0, t) = u−q(0, t), ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1,

(1.2)

and studied solution quenching in finite time, blow-up of time-derivatives and
bounds of quenching rates. Later, Wang et al [11] investigated the following para-
bolic equation with localized reaction term,

ut = ∆u+ (1− u(x, t))−p + (1− u(x∗, t))−q, x ∈ B, t > 0

u(x, t) = 0, x ∈ ∂B, t > 0,

u(x, 0) = u0(x), x ∈ B,
(1.3)

where B = {x ∈ Rn : ‖x‖ < 1}, x∗ ∈ B. They obtained the existence of the unique
classical solution and proved the solution quenched in a finite time. In addition,
when x∗ = 0, they also gave bounds for the quenching rate.

There are two evident gaps in [11]: (a) the existence of classical solution in
Ω ⊂ Rn; (b) the bounds of the quenching rate for any x∗ ∈ Ω. This article explore
these two questions and extend the results for equation (1.3) to the system (1.1).
Also we try obtain non-simultaneous quenching results.

Recently, some papers considered the non-simultaneous quenching behavior of
solutions reaching the level u = 0 for parabolic systems (see [14]–[20]). For instance,
Zheng and Wang [19] studied quenching properties for the nonlinear parabolic sys-
tem

ut = ∆u− v−p, x ∈ Ω, t > 0,

vt = ∆v − u−q, x ∈ Ω, t > 0

, u = v = 1, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄.

(1.4)

They obtained a solution quenching in finite time, and time-derivative blow up
at the quenching point, under proper conditions. In addition, when Ω = BR,
they studied sufficient conditions for non-simultaneous and simultaneous quenching.
Later, Ji, Zhou and Zheng [17] studied the quenching behavior of solutions for heat
system

ut = uxx − u−m − v−p, vt = vxx − u−q − v−n,
with Neumann boundary conditions, They identified non-simultaneous and simul-
taneous quenching and described four possible simultaneous quenching rates via a
characteristic algebraic system. However, there are very few papers in nonsimul-
taneous quenching for solutions reaching the level u = 1, which motivates us to
consider the problem in this article.

This article is organized as follows. In Section 2, we obtain the global existence
result for Ω small enough and finite time quenching for Ω large enough. Also we
deduce the blow up of time-derivatives at the quenching point. In Section 3, we
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consider the non-simultaneous quenching of solutions for (1.1) with Ω = BR(x∗).
We will prove if p2 ≥ p1 +1 and q1 ≥ q2 +1, then quenching is always simultaneous;
while p2 ≥ p1 + 1 and q1 < 1, then quenching is always non-simultaneous. If
p2 < p1 + 1 and q1 < q2 + 1), then the non-simultaneous quenching may occur;
and if p2 < p1 + 1 and q1 < q2 + 1, then both non-simultaneous and simultaneous
quenching also may occur for proper initial data. In Section 4, we give a precise
classification of parameters for the simultaneous quenching rates.

In this article we use the hypothesis

∆u0 + (1− u0)−p1 + (1− v0)−q1 > 0,

∆v0 + (1− u0)−p2 + (1− v0)−q2 > 0.
(1.5)

2. Finite time quenching and blow up of time derivatives

Let λ1 and ϕ1 denote the first eigenvalue and the first eigenfunction of the
problem

∆ϕ+ λϕ = 0, in Ω,

ϕ = 0, on ∂Ω,

and choose ϕ1(x) to satisfy

ϕ1(x) > 0, in Ω,

∫
Ω

ϕdx = 1.

Theorem 2.1. If λ1 < min{p1 + p2, q1 + q2}+ 2, then there exists a finite time T ,
such that the solution of (1.1) quenches at this time.

Proof. By the maximum principle, we have 0 < u, v < 1 in Ω× (0, T ). Assume that
p1 + p2 ≥ q1 + q2. Let F (t) =

∫
Ω
uϕdx, G(t) =

∫
Ω
vϕdx, and Φ(t) = F (t) + G(t)

for t ∈ [0, T ). By Jensen’s inequality,

F ′(t) =

∫
Ω

∆uϕdx+

∫
Ω

(1− u)−p1ϕdx+

∫
Ω

(1− v)−q1ϕdx

≥ −
∫

Ω

λ1uϕdx+ p1

∫
Ω

uϕdx+ q1

∫
Ω

vϕdx+ 2

= (p1 − λ1)F (t) + q1G(t) + 2.

(2.1)

Similarly, we have
G′(t) ≥ (q2 − λ1)G(t) + p2F (t) + 2, (2.2)

so we have
Φ′(t) ≥ (p1 + p2 − λ1)F (t) + (q1 + q2 − λ1)G(t) + 4

≥ (p1 + p2 − λ1)Φ(t) + 4.
(2.3)

Since λ1 < min{p1+p2, q1+q2}+2 and 0 < F,G < 1, we have (p1+p2−λ1)Φ(t)+4 >
0 for t ∈ [0, T ). Integrating (2.3) from 0 to t, we have

t ≤

{
1

p1+p2−λ1
ln (p1+p2−λ1)Φ(t)+4

(p1+p2−λ1)Φ(0)+4 , λ1 6= p1 + p2,

1
4 [Φ(t)− Φ(0)] , λ1 = p1 + p2,

(2.4)

Since limt→T− Φ(t) ≤ 2, so we have the upper bound for quenching time T :

T ≤

{
1

p1+p2−λ1
ln 2(p1+p2−λ1)+4

(p1+p2−λ1)Φ(0)+4 , λ1 6= p1 + p2,

1
4 [2− Φ(0)] , λ1 = p1 + p2,

(2.5)



4 Z. JIA, Z. YANG, C. WANG EJDE-2019/100

it is easy to see the right-hand side of (2.5) is greater than 0, so the solution of
(1.1) quenches in finite time. �

We note that λ1 decreases when the domain size increases, so Theorem 2.1 says
that the solution of (1.1) will quench in finite time for Ω large enough. Next, we
obtain the existence of a global solution for Ω small enough, which can be proved
by adapting methods that are established in [19].

Theorem 2.2. Assume that u0, v0 ≤ σ0 < 1 in Ω̄ and the diameter of Ω is small
enough. Then the solutions of (1.1) exist globally.

Proof. Consider the auxiliary problem

ūt = ∆ū+ (1− ū)−p1 + (1− v̄)−q1 , (x, t) ∈ Ω× [0, T ),

v̄t = ∆v̄ + (1− ū)−p2 + (1− v̄)−q2 , (x, t) ∈ Ω× [0, T ),

ū(x, t) = σ0, v̄(x, t) = σ0, x ∈ ∂Ω, t > 0,

ū(x, 0) = σ0, v̄(x, 0) = σ0, x ∈ Ω.

(2.6)

It is easy to see the solution of (2.6) is an upper-solution of (1.1). By the comparison
principle, we have u ≤ ū, v ≤ v̄, it suffices to prove that (ū, v̄) is global. Let φ satisfy

∆φ− C0 = 0, x ∈ BR(x∗),

φ = σ0, x ∈ ∂BR(x∗),
(2.7)

where BR(x∗) = {x ∈ Ω : |x− x∗| ≤ R} and

C0 < min{−(1− σ0)−p1 − (1− σ0)−q1 ,−(1− σ0)−p2 − (1− σ0)−q2} < 0,

hence

φ(x) =
C0(|x− x∗|2 −R2)

2N
+ σ0 (2.8)

with maxB̄R(x∗) φ(·) = σ0 − C0R
2

2N . Taking R small enough such that

C0 < min
B̄R(x∗)

{
− (1− φ)−p1 − (1− φ)−q1 ,−(1− φ)−p2 − (1− φ)−q2

}
,

so (φ, φ) is a time-independent upper-solution of (2.6) for Ω ⊂ BR(x∗), which
implies the global solutions of (1.1) exist for the diameter of Ω small enough. �

Now we consider the blow up of time derivatives.

Lemma 2.3. If (1.5) holds, then ut, vt > 0 for (x, t) ∈ Ω × [0, T ). Moreover, for
any η > 0, there exists c > 0 such that

ut(x, t), vt(x, t) ≥ c, ∀(x, t) ∈ Ω̄η × [0, T ),

with Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.

Proof. Let Φ = ut(x, t), Ψ = vt(x, t), since (1.5) holds, we have

Φt −∆Φ = p1(1− u)−p1−1Φ + q1(1− v)−q1−1Ψ, (x, t) ∈ Ω× [0, T ),

Ψt −∆Ψ = q2(1− v)−q2−1Ψ + p2(1− u)−p2−1Φ, (x, t) ∈ Ω× [0, T ),

Φ(x, t) = Ψ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ),

Φ(x, 0) = ∆u0 + (1− u0)−p1 + (1− v0)−q1 > 0, x ∈ Ω̄,

Ψ(x, 0) = ∆v0 + (1− u0)−p2 + (1− v0)−q2 > 0, x ∈ Ω̄,

(2.9)
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so by the maximum principle, Φ = ut(x, t) > 0, Ψ = vt(x, t) > 0 for (x, t) ∈
Ω× [0, T ).

Let (u∗, v∗) be the solution for the auxiliary problem

u∗t = ∆u∗ + (1− u0)−p1 + (1− v0)−q1 , x ∈ Ω, t > 0,

v∗t = ∆v∗ + (1− u0)−p2 + (1− v0)−q2 , x ∈ Ω, t > 0,

u∗(x, t) = 0, v∗(x, t) = 0, x ∈ ∂Ω, t > 0,

u∗(x, 0) = u0(x), v∗(x, 0) = v0(x), x ∈ Ω .

(2.10)

Let Φ∗ = u∗t (x, t), Ψ∗ = v∗t (x, t), Then by the abovewe deduce that u∗t , v
∗
t > 0 .

Next, let w = u− u∗, z = v − v∗ and Φ̂ = wt, Ψ̂ = zt. It is easy to obtain

Φ̂t −∆Φ̂ ≥ 0, (x, t) ∈ Ω× [0, T ),

Ψ̂t −∆Ψ̂ ≥ 0, (x, t) ∈ Ω× [0, T ),

Φ̂(x, t) = Ψ̂(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ),

Φ̂(x, 0) = Ψ̂(x, 0) = 0, x ∈ Ω̄,

so that ut ≥ u∗t , vt ≥ v∗t in Ω× [0, T ). Taking

c = min
{

min
Ω̄η×[η,T )

|u∗t |, min
Ω̄η×[η,T )

|v∗t |
}
,

we have ut, vt ≥ c in Ω̄η × [η, T ). �

Lemma 2.4. Assume that Ω is a convex domain and (1.5) holds, then for any η.
Then there exists a positive constant ζ such that

ut ≥ ζ[(1− u)−p1 + (1− v)−q1 ], in Ωη × (η, T ),

vt ≥ ζ[(1− u)−p2 + (1− v)−q2 ], in Ωη × (η, T ).
(2.11)

Proof. Let

I = ut − ζ[(1− u)−p1 + (1− v)−q1 ], (x, t) ∈ Ωη × (η, T ),

J = vt − ζ[(1− u)−p2 + (1− v)−q2 ], (x, t) ∈ Ωη × (η, T ) .
(2.12)

Then we have

It −∆I = (ut −∆u)t − ζp1(1− u)−p1−1(ut −∆u)− ζq1(1− v)−q1−1(vt −∆v)

+ ζp1(p1 + 1)(1− u)−p1−2|∇u|2 + ζq1(q1 + 1)(1− v)−q1−2|∇v|2

≥ p1(1− u)−p1−1I + q1(1− v)−q1−1J .

Similarly,
Jt −∆J ≥ q2(1− v)−q2−1J + p2(1− u)−p2−1I. (2.13)

In addition, by Lemma 2.3 and taking ζ small enough, we have

I(x, t) = ut − ζ[(1− u)−p1 + (1− v)−q1 ] ≥ 0, (x, t) ∈ ∂Ωη × (0, T ),

J(x, t) = vt − ζ[(1− u)−p2 + (1− v)−q2 ] ≥ 0, (x, t) ∈ ∂Ωη × (0, T ),
(2.14)

and the initial data
I(x, 0), J(x, 0) ≥ 0 x ∈ Ωη, (2.15)

By the maximum principle, we have I(x, t), J(x, t) ≥ 0 for (x, t) ∈ Ωη × (0, T ). �

As a direct consequence of Lemma 2.4, we deduce time-derivatives blow up at
the quenching point.
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Theorem 2.5. If Ω is a convex domain and (1.5) holds, then (ut, vt) blows up at
the quenching point.

3. Simultaneous and non-simultaneous quenching

In this section, we deal with radial solutions of (1.1) with Ω = BR(x∗) = {x ∈
RN : |x − x∗| < R}, and non-increasing initial data satisfying (1.5). By the maxi-
mum principle [11, Lemma 3.2], we have ur(r, t), vr(r, t) ≤ 0. At first, we give the
sufficient condition for finite-time quenching of radical solutions in B̄R(x∗)× (0, T ).

Lemma 3.1. Assume (u, v) is the global solution of (1.1) with (u0, v0) ≡ (0, 0), in
other words, there exists a constant c ∈ [0, 1) such that u, v ≤ c < 1 on B̄R(x∗) ×
[0,∞). Then (u, v) approaches uniformly from below to a solution (U, V ) of the
steady-state problem

∆U = −(1− U)−p1 − (1− V )−q1 , x ∈ BR(x∗),

∆V = −(1− U)−p2 − (1− V )−q2 , x ∈ BR(x∗),

U = V = 0, x ∈ ∂BR(x∗).

(3.1)

Proof. By [19, Lemma 4.1], we define

W (x, t) =

∫
BR(x∗)

G(x, y)u(y, t)dy, Z(x, t) =

∫
BR(x∗)

G(x, y)v(y, t)dy,

for (x, t) ∈ B̄R(x∗)× [0,∞), where G(x, y) is Green’s function associated with the
operator −∆ on BR(x∗) under Dirichlet boundary conditions. then

Wt(x, t) = 1− u(x, t) +

∫
BR(x∗)

G(x, y)(1− u)−p1dy +

∫
BR(x∗)

G(x, y)(1− v)−q1dy,

Zt(x, t) = 1− v(x, t) +

∫
BR(x∗)

G(x, y)(1− u)−p2dy +

∫
BR(x∗)

G(x, y)(1− v)−q2dy.

Combining Lemma 2.3 and the monotone convergence theorem, we have

lim
t→∞

Wt(x, t)

= 1− U(x) +

∫
BR(x∗)

G(x, y)(1− U)−p1dy +

∫
BR(x∗)

G(x, y)(1− V )−q1dy,

lim
t→∞

Zt(x, t)

= 1− V (x) +

∫
BR(x∗)

G(x, y)(1− U)−p2dy +

∫
BR(x∗)

G(x, y)(1− V )−q2dy,

where c ≥ U(x) = limt→∞ u(x, t), c ≥ V (x) = limt→∞ v(x, t). In addition, since
W,Z are bounded and Wt, Zt ≥ 0, we have

lim
t→∞

Wt(x, t) = 0, lim
t→∞

Zt(x, t) = 0, (3.2)

which imply

U(x) = 1 +

∫
BR(x∗)

G(x, y)(1− U)−p1dy +

∫
BR(x∗)

G(x, y)(1− V )−q1dy,

V (x) = 1 +

∫
BR(x∗)

G(x, y)(1− U)−p2dy +

∫
BR(x∗)

G(x, y)(1− V )−q2dy,

(3.3)
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which is the solution of (3.1), and by Dini’s theorem, we can get the uniform
convergence. �

Inspired by [20, Theorem 1.3], with Lemma 3.1 at hand, we obtain the following
theorem.

Theorem 3.2. If R ≥
√
N , then the radial solution of (1.1) will quench in finite

time for any initial data.

Proof. Considering the auxiliary system

ut = ∆u+ (1− u)−p1 + (1− v)−q1 , (x, t) ∈ BR(x∗)× [0, T ),

vt = ∆v + (1− u)−p2 + (1− v)−q2 , (x, t) ∈ BR(x∗)× [0, T ).

u(x, t) = 0, v(x, t) = 0, x ∈ ∂BR(x∗), t > 0,

u(x, 0) = 0, v(x, 0) = 0, x ∈ B̄R(x∗),

(3.4)

by the comparison principle, we have u ≥ u, v ≥ v. Now we introduce the problem

−∆u∗ = 2, −∆v∗ = 2, r ∈ BR(x∗),

u∗ = v∗ = 0, r ∈ ∂BR(x∗),
(3.5)

with solution denoted as

u∗ =
−2(|x− x∗|2 −R2)

2N
, v∗ =

−2(|x− x∗|2 −R2)

2N
. (3.6)

So we have max{u∗, v∗} = R2/N . Clearly, (u∗, v∗) is a sub-solution of (1.1). By
Lemma 3.1, the solution (u, v) is global only if u∗, v∗ < 1. Therefore, if u∗ or

v∗ ≥ 1, namely R ≥
√
N , then the solution of (1.1) quenches in finite time for any

initial data. �

Remark 3.3. Theorem 3.2 indicates that the solution quenches in finite time for
R ≥

√
N . However, for radical solutions of (1.1) with Ω = BR = {x ∈ RN : ‖x‖ <

R} and assuming (1.5) and that u′0(r), v′0(r) ≤ 0, by [20], we can obtain that the

solution quenches in finite time without the condition R ≥
√
N . Also we obtain

that r = 0 is the only quenching point.

Next, we will focus on the simultaneous and non-simultaneous quenching quench-
ing of solutions for (1.1). To simplify our work, we deal with the radical solu-
tions of (1.1) with Ω = BR = {x ∈ RN : |x| < R}, and assume that (1.5)
holds and u′0(r), v′0(r) ≤ 0. It is easy to see that max0≤r≤R u(r, t) = u(0, t),
max0≤r≤R v(r, t) = v(0, t) by Remark 3.3. In addition, c, ci, C, Ci denote positive
constants independents of t, which are different from line to line. First, we give a
necessary condition for the non-simultaneous quenching.

Theorem 3.4. If v(0, t) ≤ c < 1 for t ∈ [0, T ), then p2 < p1 + 1.

Proof. Since ur, vr ≤ 0, by the Hopf’s lemma, we can see that urr(0, t), vrr(0, t) ≤ 0.
Then by Lemma 2.4, we have

ζ((1− u)−p1 + (1− v)−q1)(0, t) ≤ ut(0, t) ≤ (1− u)−p1 + (1− v)−q1(0, t),

ζ((1− u)−p2 + (1− v)−q2)(0, t) ≤ vt(0, t) ≤ (1− u)−p2 + (1− v)−q2(0, t).
(3.7)

Combing (??) with v(0, t) ≤ c < 1, we have

ut(0, t) ≤ C(1− u)−p1(0, t). (3.8)
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Integrating on (t, T ) gives

1− u(0, t) ≤ C(T − t)
1

p1+1 . (3.9)

So by Lemma 2.4 and (??), we have

vt(0, t) ≥ ζ(1− u(0, t))−p2 ≥ C(T − t)−
p2
p1+1 .

Integrating on (0, T ), we have

v(0, T )− v(0, 0) ≥ C
∫ T

0

(T − t)−
p2
p1+1 dt. (3.10)

If p2 ≥ p1 + 1, this integral diverges. The proof is complete. �

Corollary 3.5. If p2 ≥ p1 + 1 and q1 ≥ q2 + 1, then quenching is simultaneous.

Next, we give a sufficient condition for non-simultaneous quenching.

Theorem 3.6. If p2 ≥ p1 + 1, q1 < 1, then u(0, t) ≤ c < 1 for t ∈ [0, T ].

Proof. Define (ũ(t), ṽ(t)) := (u(0, t), v(0, t)). By (??), there exist two positive con-
stants c0, c1 such that

c0[(1− ũ)−p1 + (1− ṽ)−q1 ]ṽ′ ≤ ũ′[(1− ũ)−p2 + (1− ṽ)−q2 ]

≤ c1[(1− ũ)−p1 + (1− ṽ)−q1 ]ṽ′,
(3.11)

Multiplying the second inequality by (1− ũ)p1(1− ṽ)q1 , we have

ũ′(1− ũ)−p2+p1 ≤ cṽ(1− ṽ)−q1 . (3.12)

Integrating on (0, T ), if p2 > p1 + 1, q1 < 1, we have

(1− ũ(T ))1−p2+p1 ≤ c0 − c(1− ṽ(T ))1−q1 , (3.13)

if p2 = p1 + 1, q1 < 1, we have

− ln(1− ũ(T )) ≤ c0 − c(1− ṽ(T ))1−q1 ,

a contradiction, if u quenches. �

Theorem 3.7. If p2 < p1 + 1 (q1 < q2 + 1), then there exist the initial data such
that u(v) quenches while v(u) ≤ c0 < 1.

Proof. By Lemma 2.4, we have

ut(0, t) ≥ ζ(1− u(0, t))−p1 , (3.14)

Integrating (??) on (t, T ), we have there exists a positive constant C such that

1− u(0, t) ≥ C(T − t)
1

p1+1 . (3.15)

Similarly,

1− v(0, t) ≥ C(T − t)
1

q2+1 . (3.16)

Combining (??), (??) and (??), we obtain

vt(0, t) ≤ C(T − t)−
p2

1+p1 + C(T − t)−
q2

1+q2 . (3.17)

Integrating on (0, T ), we obtain

v(0, T ) ≤ v(0, 0) + c1T
1+p1−p2

1+p1 + c2T
1

1+q2 . (3.18)

By Lemma 2.3, we have ut, vt ≥ c. By integrating on (0, t) and letting t→ T−, we
have T ≤ 1

c min{1 − u0(0), 1 − v0(0)}. We take u0(x) = 1 − ε, then T ≤ 1
c ε. If ε,
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and hence T , are small enough, we can conclude from (??) that v(0, T ) ≤ c0 < 1.
The proof is complete. �

Next we show that if p2 < p1 + 1 and q1 < q2 + 1, then both non-simultaneous
and simultaneous quenching also may occur for proper initial data. At first, we
give the following lemma.

Lemma 3.8 ([19, Lemma 4.5]). If p2 < p1 + 1, q1 < q2 + 1, then the set of initial
data such that one of the components quenching alone is open.

Theorem 3.9. If p2 < p1 + 1 and q1 < q2 + 1, then both simultaneous and non-
simultaneous quenching may occur for proper initial data.

Proof. Step I. We prove non-simultaneous quenching. Assume for contradiction
that u and v quenches simultaneously for every initial data. Since ut(0, t) ≤ (1 −
u(0, t))−p1 + (1− v(0, t))−q1 by (??), integrating on (0, t) gives

v(0, t) ≤ v0(0) +

∫ t

0

(1− u(0, s))−p1 + (1− v(0, s))−q1ds, (3.19)

introducing (??) and (??) in (3.8), letting t→ T−, we obtain that

v(0, T ) ≤ v0(0) + T
1

q2+1 + T
p1−p2+1
p1+1 . (3.20)

As in Theorem 3.7. We take v0(x) = 1 − ε, then T ≤ 1
C ε. if ε, and hence T , are

small enough, we can conclude from (3.9) that v(0, T ) ≤ c < 1, a contradiction.

Step II. We prove simultaneous quenching. Since p2 < p1 + 1, q1 < q2 + 1, From
(??), we have

v(0, T ) ≤ v(0, 0) + c1T
1+p1−p2

1+p1 + c2T
1

1+q2 . (3.21)

Similarly,

u(0, T ) ≤ u(0, 0) + c3T
1+q2−q1

1+q2 + c4T
1

1+p1 . (3.22)

Denote (uα, vα) as a solution of (1.1) with initial data (1 − αu0, 1 − (1 − α)v0),
where α ∈ (0, 1). Let Tα be the quenching time, we have uα(0, T ) ≤ c < 1 for
α → 1 and vα(0, T ) ≤ c < 1 for α → 0. Define Ψu = {α ∈ (0, 1) : uα(0, T ) < 1},
Ψv = {α ∈ (0, 1) : vα(0, T ) < 1}, it is easy to see that

Φu ∩Ψv = ∅,
however by Lemma 3.8, we have that Φu and Psiv are open. Hence u, v quench
simultaneously for some initial data. The proof complete. �

4. Simultaneous and non-simultaneous quenching rates

The notation f ∼ g means that there exist positive constants c1, c2 such that
c1g ≤ f ≤ c2g. At first, we give a lemma which needs two additional assumptions.

(H1) p2 ≥ p1 + 1, q1 ≥ q2 + 1, q1 ≥ q2, and ξ(1 − u0)p2−1 ≥ (1 − v0)q1−1 with
ξ > p2−1

q1−p2 ;

(H2) p2 ≥ p1 + 1, q1 ≥ q2 + 1, q1 ≤ q2 and η(1 − u0)p2−1 ≤ (1 − v0)q1−1 with
η < p2−1

q1−p2 .

Lemma 4.1. Let (u, v) be the solution of problem (1.1). Then ξ(1 − u)p2−1 ≥
(1−v)q1−1 under assumption (H1), and η(1−u)p2−1 ≤ (1−v)q1−1 under assumption
(H2), for (r, t) ∈ (0, R)× (0, T ).
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Proof. Let ϕ = ξ(1−u)p2−1− (1− v)q1−1, ψ = η(1−u)p2−1− (1− v)q1−1. We have

ϕt − ϕrr − hϕr + lϕ

= −ξ(p2 − 1)(1− u)p2−p1−2 + ξ(q1 − 1)(1− u)−1(1− v)−1

+ (q1 − 1)(1− v)q1−q2−2 − ξ(p2 − 1)(1− u)p2−2(1− v)−q1

+ (q1 − p2)(1− u)−1(1− v)q1−2urvr

≥ ξ(q1 − p2)(1− u)−1(1− v)−1 − ξ(p2 − 1)(1− u)p2−2(1− v)−q1

+ (q1 − p2)(1− u)−1(1− v)q1−2urvr

= ξ(q1 − p2)(1− u)−1(1− v)−1 − (p2 − 1)(1− u)−1(1− v)−1(1 + ϕ(1− v)1−q1)

+ (q1 − p2)(1− u)−1(1− v)q1−2urvr

where

h =
N − 1

r
(q1 − 2)(1− v)−1vx + (p2 − 2)(1− u)−1ux,

l = (q1 − 1)(1− u)−p2(1− v)−1 − (p2 − 1)(q1 − 2)(1− u)−1(1− v)−1 ;
(4.1)

so
ϕt − ϕrr − hϕr + (l + (p2 − 1)(1− u)−1(1− v)−q1)ϕ

≥ (ξ(q1 − p2)− p2 + 1)(1− u)−1(1− v)−1

+ (q1 − p2)(1− u)−1(1− v)q1−2urvr

(4.2)

Since ξ > p2−1
q1−p2 , we have

ϕt − ϕrr − hϕr + (l + (p2 − 1)(1− u)−1(1− v)−q1)ϕ ≥ 0. (4.3)

In addition,

ϕ(r, 0) = ξ(1− u0)p2−1 − (1− v0)q1−1 ≥ 0, r ∈ [0, R],

ϕr(0, t) = ϕr(R, t) = 0, t ∈ (0, T )
(4.4)

By the maximum principle,

ϕ = ξ(1− u)p2−1 − (1− v)q1−1 ≥ 0 (4.5)

Similarly, if (H2) holds, we can obtain ψ = η(1 − u)p2−1 − (1 − v)q1−1 ≤ 0. The
proof is complete. �

Next, we give bounds for the non-simultaneous quenching rate.

Theorem 4.2. If quenching is non-simultaneous and u is the quenching component,
then for t→ T−, we have

1− u(0, t) ∼ (T − t)
1

1+p1 .

The proof of the above theorem is a direct consequence of (??) and (??). Next,
we give bounds for the simultaneous quenching rate.

Theorem 4.3. Assume that (H1) or (H2) hold. Then quenching is simultaneous,
and for t→ T−,

1− u(0, t) ∼ (T − t)
q1−1
p2q1−1 , 1− v(0, t) ∼ (T − t)

p1−1
p2q1−1 .
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Proof. Without loss of generality, consider the case of (H1) only. Since ξ(1 −
u)p2−1 ≥ (1− v)q1−1, by (??), we obtain

vt(0, t) ≤ (1− u(0, t))−p2 + (1− v(0, t))−q2

≤ (1− v(0, t))
−p2(q1−1)
p2−1 + (1− v(0, t))−q2

≤ c(1− v(0, t))
−p2(q1−1)
p2−1 ,

(4.6)

by p2 ≥ p1 + 1 and q1 ≥ q2 + 1. Integrating (4.6) on (0, T ), we have

1− v(0, t) ≤ C(T − t)
p2−1
p2q1−1 . (4.7)

By Lemma 2.4, we have

ut(0, t) ≥ ζ(1− v)−q1(0, t) ≥ c(T − t)
−q1(p2−1)
p2q1−1 . (4.8)

Integrating on (0, T ), we have

1− u(0, t) ≥ C(T − t)
q1−1
p2q1−1 , (4.9)

by Lemma 2.4 again, we have

vt(0, t) ≥ ζ(1− u)−p2(0, t). (4.10)

Integrating on (t, T ) we have

1− v(0, t) ≥ C
∫ T

t

(1− u(0, η))−p2dt ≥ c(1− u(0, t))−p2(T − t), (4.11)

by (??), we have

ut(0, t) ≤ (1− u(0, t))−p1 + C(1− u(0, t))p2q1(T − t)−q1 (4.12)

combining (??) and (??), we have

ut(0, t) ≤ C(1− u(0, t))p2q1(T − t)−q1 . (4.13)

Integrating (??) on (t, T ), we have

1− u(0, t) ≥ C(T − t)
q1−1
p2q1−1 , (4.14)

from Lemma 2.4, we have

vt(0, t) ≥ ζ(1− u)−p2 ≥ C(T − t)
−p2(q1−1)

1−p2q1 . (4.15)

Integrating on (t, T ), we have

1− v(0, t) ≥ C(T − t)
p2−1
p2q1−1 . (4.16)

�

Theorem 4.4. Assume p2 < p1 + 1, q1 < q2 + 1. Then quenching is simultaneous,
and for t→ T−,

1− u(0, t) ∼ (T − t)1− q1
q2+1 , 1− v(0, t) ∼ (T − t)

1
q2+1 ,

p1(q2 + 1)

p1 + 1
≤ q1 < q2 + 1, p2 ≤

q2(p1 + 1)

q2 + 1
,

1− u(0, t) ∼ (T − t)1− q1
q2+1 , 1− v(0, t) ∼ (T − t)

1
q2+1 , q1 < q2 + 1,

q2(p1 + 1)

q2 + 1
≤ p2 ≤

q2

q2 + 1− q1
,
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1− u(0, t) ∼ (T − t)
1

p1+1 , 1− v(0, t) ∼ (T − t)1− p2
p1+1 ,

q2(p1 + 1)

q2 + 1
≤ p2 <

q2

q2 + 1− q1
, q1 ≤

p1(q2 + 1)

p1 + 1
,

1− u(0, t) ∼ (T − t)
1

p1+1 , 1− v(0, t) ∼ (T − t)1− p2
p1+1 ,

p2 < p1 + 1,
p1(q2 + 1)

p1 + 1
≤ q1 ≤

p1

p1 + 1− p2
,

1− u(0, t) ∼ (T − t)
1

p1+1 , 1− v(0, t) ∼ (T − t)
1

q2+1 ,

q1 ≤
p1(q2 + 1)

p1 + 1
, p2 ≤

q2(p1 + 1)

q2 + 1
.

Note that Theorem 4.3 gives the simultaneous quenching rate under p2 ≥ p1 + 1
and q1 ≥ q2 + 1, while Theorem 4.4 gives the simultaneous quenching rate under
p2 < p1 + 1 and q1 < q2 + 1. The proof is similar to [17], so we omit it.

Acknowledgments. This research was supported by the National Natural Science
Foundation of China (grants 11571093 and 11471164).

References

[1] H. Kawarada; On solutions of initial boundary value problem for ut = uxx + 1/(1 − u)−1,

Publ. Res. Inst. Math. Sci., 1975, 10: 729-736.
[2] M. Fila, H. A. Levine; Quenching on the boundary, Nonlinear Anal. (TMA), 1993, 21: 795-

802.
[3] H. A. Levine; Quenching, nonquenching and beyond quenching foe solutions of some parabolic

equations, Ann. Mat. Pura. Appl., 1989, 155: 243-260.

[4] S. Zhou, C. Mu; Quenching for a reaction-diffusion system with coupled inner singular ab-
sorption terms, Bound. Value Probl., Atical ID 797182, 2010, 1-15.

[5] C. Y. Chan, X. O. Jiang; Quenching for a degenerate parabolic problem due to a concentrated

nonlinear source, Quarterly Appl. Math., 2004, 62: 553-568.
[6] C. Y. Chan; A quenching criterion for a multi-dimensional parabolic problem due to a con-

centrated nonlinear source, J. Comput. Appl. Math., 2011, 235(13): 3724-3727.

[7] M. J. Zhou, C. P. Wang, Y. Y. Nie; Quenching of solutions to a class of semilinear parabolic
equations with boundary degeneracy, J. Math. Anal. Appl., 2015, 421(1): 59-74.

[8] B. Selcuk, N. Ozalp; The quenching behavior of a semilinear heat equation with a singular

boundary outflux, Quart. Appl. Math. 2014, 72(4): 747-752.
[9] Y. H. Zhi, C. L. Mu; The quenching behavior of a nonlinear parabolic equation with nonlinear

boundary outflux, Appl. Math. Comput. 2007, 184(2): 624-630.
[10] Y. Yang, J. Yin, C. Jin; A quenching phenomenon for one-dimensional p-Laplacian with

singular boundary flux, Appl. Math. Lett., 2010, 23(9): 955-959.

[11] C. W. Chang, Y. H. Hsu, H. T. Liu; Quenching behavior of parabolic problems with localized
reaction term, Math. Stat., 2014, 2(1): 48-53.

[12] Q. Dai, Y. Gu; A short note on quenching phenomena for semilinear parabolic equations, J.

Differential Equations, 1997, 137(2): 240-250.
[13] Y. Yang; Quenching phenomenon for a non-Newtonian filtration equation with singular

boundary flux, Bound. Value Probl., 2015, 2015(1): 233.
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