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REGULARITY FOR ANISOTROPIC QUASI-LINEAR

PARABOLIC EQUATIONS WITH VARIABLE GROWTH
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Abstract. In this article, we study a class of anisotropic quasi-linear par-

abolic equations with variable exponents. Following DiBenedetto’s intrinsic
scaling method, we prove local continuity of solutions under the condition for

which only local boundedness was known.

1. Introduction

The study of nonlinear partial differential equations gained a significant impor-
tance in the recent past years, not only for their physical and biological relevance
but, and no less important, also for the mathematical novelties intrinsically related
to the subject. The development of the regularity theory for degenerate and/or
singular parabolic PDEs is one example of the contemporary analysis of nonlin-
ear PDEs. One has to go back to the late fifties to encounter the now standard
procedure that allows one to get a regularity result for the solutions of nonlinear
PDEs: regularity for elliptic PDEs was established by De Giorgi [[17]]; while Moser
[23, 24, 25, 26], Nash [27] and DiBenedetto [12] dealt with parabolic PDEs.

In this article we are concerned with the anisotropic parabolic equation

ut −
N∑
i=1

∂

∂xi

[∣∣ ∂u
∂xi

∣∣pi(x,t)−2 ∂u

∂xi

]
= 0 in ΩT , (1.1)

where ΩT = Ω × (0, T ], Ω is a bounded simple-connected domain in RN and 0 <
T < +∞. Throughout the paper we assume that the exponents pi(x, t) are given
measurable functions in ΩT such that for all i = 1, . . . , N

pi(x, t) ⊂ (p−i , p
+
i ) ⊆ [p−, p+] ⊂ (2,∞).

with finite constants p±, p±i > 2. Moreover, we assume that pi satisfies the following
log-continuity condition:

|pi(x, t)− pi(y, τ)| ≤ c0

ln 1
|t−τ |+|x−y|

∀(x, t), (y, τ) ∈ ΩT ,

|t− τ |+ |x− y| ≤ 1

2
.

(1.2)
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In this framework, a particularly relevant class of interest is given by functionals
with anisotropic structures, i.e. those whose energy sees each derivatives being
penalized with a different exponent. Yet firstly studied by Marcellini [22], further
contributions have been given by Leonetti [19, 20], Acerbi and Fusco [1], Fusco and
Sbordone [15, 16].

Anisotropic equations like (1.1) have strong physical background. They emerge,
for instance, from the mathematical description of the dynamics of fluids with
different conductivities in different directions. We refer to the extensive books by
Antontsev-Dı́az-Shmarev [3] and Bear [8] for discussions in this direction. They
also appear in biology, see Bendahmane-Karlsen [9] and Bendahmane-Langlais-
Saad [10], as a model describing the spread of an epidemic disease in heterogeneous
environments.

Our aim here is to obtain a local regularity result for local weak solutions of (1.1).
In order to achieve this goal, and since the equation is degenerate (the diffusion
coefficient vanishes when | ∂u∂xi | = 0), the idea is to study the equation within a geom-
etry that takes this feature into consideration. The building blocks of DiBenedetto’s
intrinsic scaling method is to show that the continuity of the solution at a point fol-
lows from measuring its oscillation in a sequence of nested and shrinking cylinders,
with vertex at that point, and showing that the oscillation converge to zero as the
cylinders shrink to the point. To fully understand the technical procedure, based
on the study of an alternative argument which makes use of energy and logarith-
mic estimates, one has not only to be familiar with Dibenedetto’s technique (see
[12, 13, 30]) but also to overcome the difficulty of having an (xi, t)−dependence on
the exponents pi for i = 1, . . . , N .

The local continuity of the anisotropic elliptic equation have been studied, and
the results are well documented. We refer to [14, 21] for the results and the refer-
ences to the original papers. It is known that the local solutions of the isotropic
parabolic case of equation (1.1) with variable growth are locally Hölder continuous
[2, 7]. To the best of the author’s knowledge, no regularity result is known for the
anisotropic parabolic equations with variable growth.

2. preliminary and main results

2.1. Function spaces. We recall in what follows some definitions and basic propri-
eties of the generalized Lebesgue-Sobolev spaces. We begin by defining the variable
exponent Lebesgue space as follows

Lp(x)(Ω) :=
{
u : Ω→ R is measurable and

∫
Ω

|u|p(x) dx dt < +∞
}
.

This set equipped with the Luxemburg norm

‖u‖Lp(·)(Ω) := inf
{
α > 0 :

∫
Ω

|u
α
|p(x) dx dt < 1

}
becomes a reflexive Banach space. Now, we define the Sobolev space

W 1,p(x)(Ω) := {u ∈ Lp(x)(Ω),∇u ∈ Lp(x)(Ω)}

endowed with the norm

‖u‖W 1,p(·)(Ω) := ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω).
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In addition, if p(x) is log-Hölder continuous then W
1,p(x)
0 (Ω) is the closure of C∞0 (Ω)

in W 1,p(x)(Ω).
Now, in connection with the anisotropic operators that we are considering, we

need to recall the definitions of the anisotropic Sobolev spaces:

W 1,(pi)(Ω) =
{
u ∈W 1,1(Ω),

∂u

∂xi
∈ Lpi(Ω), for i = 1, . . . , N

}
,

W
1,(pi)
0 (Ω) =

{
u ∈W 1,1

0 (Ω),
∂u

∂xi
∈ Lpi(Ω), for i = 1, . . . , N

}
.

The space W
1,(pi)
0 (Ω) also denotes the closure of C∞0 (Ω) with respect to the norm

‖u‖1,(pi) =

N∑
i=1

‖ ∂u
∂xi
‖Lpi (Ω).

The theory of anisotropic Sobolev spaces is developed in [18, 28, 29], and in
particular, the corresponding Sobolev embedding theorems were studied there. We
define

p∗ =
Np

N − p
, for p < N and

1

p
=

1

N

N∑
i=1

1

p−i
. (2.1)

In [29] it is proved that if p < N , then

W
1,(p−i )
0 (Ω) ↪→ Lr(Ω), ∀r ∈ [1, p∗].

This embedding is continuous and also compact if r < p∗. If p ≥ N , then

W
1,(p−i )
0 (Ω) ↪→ Lr(Ω), ∀r ∈ [1,+∞).

The following Sobolev type inequality is also proved; if p < N , then there exists a
positive constant C, depending only on Ω, p−i , and N , such that

‖u‖r,Ω ≤ C
N∏
i=1

‖ ∂u
∂xi
‖1/N
p−i ,Ω

, ∀r ∈ [1, p∗], (2.2)

for any u ∈W 1,(p−i )
0 (Ω).

For a.e. t ∈ (0, T ) we introduce the anisotropic Banach space

Vt(Ω) =
{
u(x) : u(x) ∈ L2(Ω) ∩W 1,1

0 (Ω), |∂u(x)

∂xi
|pi(x,t) ∈ L1(Ω)

}
,

‖u‖Vt(Ω) = ‖u‖2,Ω +

N∑
i=1

‖ ∂u
∂xi
‖pi(·,t),Ω.

The elements of the space Vt(Ω) depend on t ∈ (0, T ) as a parameter and the norms
‖u‖Vt(Ω) are functions of t. By W (ΩT ) we denote the Banach space

W (ΩT ) =
{
u : (0, T ) 7→ Vt(Ω) : u ∈ L2(ΩT ), | ∂u

∂xi
|pi(x,t) ∈ L1(ΩT ), u = 0 on Γ

}
,

‖u‖W (ΩT ) = ‖u‖2,ΩT +

N∑
i=1

‖ ∂u
∂xi
‖pi(·),ΩT .
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2.2. Mollification in time. Since weak solutions of parabolic equations, respec-
tively inequalities possess only weak regularity properties with respect to time, it
is in principle not possible to use the solution itself as a test-function in the weak
formulation of the problem. In order to be nevertheless able to test properly, there
are several possibilities to smooth the solution with respect to the time direction.
To overcome these faculties, we consider the Friedrichs mollifier as was done in [2].
Indeed, taking the kernel

ρ ≥ 0, ρ ∈ C∞0 (RN ), ρ(x) ≡ 0 for |x| ≥ 1,

∫
RN

ρ(x) dx = 1,

we introduce regularization of f ∈ Lp(x,t)loc (ΩT ) by

Ihf = fh(x, t) = h−1

∫ t+h

t

∫
|x−y|≤h

f(y, τ)ρh(x− y) dy dτ,

ρh(x) = h−Nρ(h−1x),

(2.3)

and consider these inside the cylinder ΩT , i.e., in cylinders Ω′T = Ω′ × (T1, T2),
where Ω′ ⊂ Ω, 0 < T1 < T2 < T . The basic property of the mollification, which
can be retrieved from [2, Lemma 2.1], is summarized in the following lemma.

Lemma 2.1. If the exponent p satisfies condition (1.2), then fh → f in L
p(x,t)
loc (ΩT )

as h→ 0, for any f ∈ Lp(x,t)loc (ΩT ).

2.3. Formulation of the problem. We will consider here local weak solutions of
equation (1.1), the existence of such solutions is guaranteed by [5, 6].

Definition 2.2. A local weak solution of (1.1) is a measurable function u(x, t)
defined in ΩT , such that

(i) u ∈W (ΩT ) ∩ C([0, T ];L2(Ω));
(ii) for every subset K of Ω and for every subinterval [t1, t2] of (0, T ], we have[ ∫
K

uφ dx
]t2
t1

+

∫ t2

t1

∫
K

{
− uφt +

N∑
i=1

| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi
· ∂φ
∂xi

}
dx dt = 0, (2.4)

for any locally bounded tested function φ ∈Wloc(ΩT ) ∩W 1,2
loc (0, T ;W 1,2

0 (K)).

We can write (ii) in a way that is technically more convenient and involves the
discrete time derivative. This can be accomplished by using the Friedrichs mollifier
of a function (see [2] for more details). Then, we obtain the following result.

Lemma 2.3. If u is a solution of (1.1) in the sense of Definition 2.2, then for
every subset K of Ω, and for any h < t1 ≤ t2 < T − h, the∫ t2

t1

∫
K

[
uh,tϕ+

N∑
i=1

(
| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi

)
h
· ∂ϕ
∂xi

]
dx dt = 0 (2.5)

holds for any locally bounded test function ϕ ∈Wloc(ΩT ) ∩W 1,2
loc (0, T ;W 1,2

0 (K)).

Proof. As in [2], we introduce the regularization operator

I−hf = f−h(x, t) = h−1

∫ t

t−h

∫
|x−y|≤h

f(y, τ)ρh(x− y) dy dτ. (2.6)
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Consider equation (2.4) with

φ = I−h(ϕχ), ϕ ∈Wloc(ΩT ) ∩W 1,2
loc (0, T ;W 1,2

0 (K)).

Since

−
∫ t2

t1

∫
K

u
∂I−h(ϕχ)

∂t
dx dt =

∫ t2

t1

∫
K

uh,tϕχdx dt,

it follows that∫ t2

t1

∫
K

[
uh,tϕχ+

N∑
i=1

(
| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi

)
h
· ∂(ϕχ)

∂xi

]
dx dt = 0.

Passing here from χ ∈ C∞0 (t1, t2) to characteristic function of the segment [t1, t2],
we obtain the desired relation (2.5). �

2.4. Regularity result. To obtain the interior continuity of the solutions by means
of intrinsic scaling, we need to consider a geometry that accommodates the degen-
eracy of the anisotropic parabolic equation (1.1). For this purpose let (x0, t0) be an
interior point of the space time domain ΩT , by translation and to simplify, assume
(x0, t0) = (0, 0). Also, let 0 < R < 1, be sufficiently small such that the cylinder

Q(R2, R) = KR × (−R2, 0) := {x : max
1≤i≤N

|xi| < R} × (−R2, 0)

is a subset of ΩT , and define

µ+ = ess supQ(R2,R) u, µ− = ess infQ(R2,R) u, ω = ess oscQ(R2,R) u = µ+ − µ−.

Let a0 = (ω/2λ)2−p− be a positive real number, for some λ > 1 to be chosen later.
We construct the cylinder

Q(a0R
p+ , R) = KR × (−a0R

p+ , 0).

Under the assumption

R
2−p+

2−p− <
ω

2λ
, (2.7)

the inclusion Q(a0R
p+ , R) ⊂ Q(R2, R) holds, and consequently we have

ess oscQ(a0Rp
+ ,R) u ≤ ω.

Remark 2.4. If (2.7) does not hold, then the essential oscillation ω approaches
zero when the radius R goes to zero, and then there is nothing to prove.

To begin our approach, inside Q(a0R
p+ , R) consider subcylinders of small size

constructed as follows

(0, t∗) +Q(θRp
+

, R), θ =
(ω

2

)2−p−
.

These are contained in Q(a0R
p+ , R) if

(2p
−−2 − 2λ(p−−2))

Rp
+

ωp−−2
< t∗ < 0.

For a given ν0 ∈ (0, 1), to be determined in terms of the data and ω, either

|{(x, t) ∈ (0, t∗) +Q(θRp
+

, R) : u(x, t) < µ− +
ω

2
}| ≤ ν0|Q(θRp

+

, R)| (2.8)



6 H. EL BAHJA EJDE-2019/104

or, noting that µ+ − ω
2 = µ− + ω

2 , and∣∣{(x, t) ∈ (0, t∗) +Q(θRp
+

, R) : u(x, t) > µ+ − ω

2

}∣∣
≤ (1− ν0)|Q(θRp

+

, R)|.
(2.9)

The analysis of this alternative leads to the following result.

Proposition 2.5. Assume that p < N , then there exist positive numbers ν0, σ ∈
(0, 1), depending on the data and ω, such that

ess oscQ(θ(R8 )p+ ,R8 ) u ≤ σω. (2.10)

An immediate consequence is the following result.

Theorem 2.6. Under the assumption that p < N , any locally bounded weak solu-
tion of (1.1) is locally continuous in ΩT .

Remark 2.7. Local continuity of the weak solutions in the elliptic case of our
equation is also established for p < N (see [14, 21]). This assumption is necessary to
apply (2.2). Moreover, the Hölder-continuity of the weak solutions for the isotropic
case of our equation is established for p ∈ ( 2N

N+2 ,∞).

Remark 2.8. The proof of Theorem 2.6 follows from a slight modification of the
arguments in Proposition 9 in [13]. From (2.10) one defines recursively a sequence
Qn of nested and shrinking cylinders and a sequence ωn converging to zero, such
that

ess oscQn u ≤ ωn.
This is enough to obtain the continuity of u but we are unable to derive a modulus
since the constant σ appearing in Proposition 2.5 depends on the oscillation of ω.

3. Local energy and logarithmic estimates

Let τ and ρ be small such that Q(τ, ρ) ⊂ ΩT , in addition let ξ be a piecewise
smooth cutoff function in Q(τ, ρ) such that

ξ ∈ [0, 1], | ∂ξ
∂xi
| <∞ ∀i = 1, . . . , N, and ξ(x, t) = 0 for x outside Kρ.

Proposition 3.1. Let u be a local weak solution of (1.1) in ΩT , then there exists a
positive constant C such that, for every cylinder Q(τ, ρ) ⊂ ΩT and for every k ∈ R,
we have

sup
−τ<t<0

∫
Kρ

(u− k)2
±ξ

p+(x, t) dx+

N∑
i=1

∫ 0

−τ

∫
Kρ

| ∂
∂xi

(u− k)±|pi(x,t)ξp
+

dx dt

≤
∫
Kρ

(u− k)2
±ξ

p+(x,−τ) dx+ p+

∫ 0

−τ

∫
Kρ

(u− k)2
±ξ

p+−1ξt dx dt

+ C

N∑
i=1

∫ 0

−τ

∫
Kρ

(u− k)
pi(x,t)
± | ∂ξ

∂xi
|pi(x,t) dx dt.

(3.1)

Proof. In the weak formulation (2.5) we take the test function ϕ = ±(uh−k)±ξ
p+ ,

where

(uh − k)− = (k − uh)+ = max{k − u, 0},
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and uh are regularizations of the form (2.3). Then integrate over (−τ, t), t ∈ (−τ, 0),
and use Lemma 2.1. Now we estimating the various terms separately. The first
term gives∫ t

−τ

∫
Kρ

uh,tϕdx dt

=

∫ t

−τ

∫
Kρ

uh,t(±(uh − k)±ξ
p+) dx dt

→ −p
+

2

∫ t

−τ

∫
Kρ

(u− k)2
±ξ

p+−1ξt dx dt+
1

2

∫
Kρ

(u− k)2
±ξ

p+(x, t) dx

− 1

2

∫
Kρ

(u− k)2
±ξ

p+(x,−τ) dx, h→ 0 .

For the remaining term, when h→ 0, we obtain

N∑
i=1

∫ t

−τ

∫
Kρ

| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi

[ ∂
∂xi

(±(u− k)±)xip
+

± p+(u− k)±ξ
p+−1 ∂ξ

∂xi

]
dx dt

≥
N∑
i=1

∫ t

−τ

∫
Kρ

| ∂
∂xi

(u− k)±|pi(x,t)ξp
+

dx dt

− p+
N∑
i=1

∫ t

−τ

∫
Kρ

| ∂
∂xi

(u− k)±|pi(x,t)−1(u− k)±ξ
p+−1| ∂ξ

∂xi
| dx dt

≥ 1

2

N∑
i=1

∫ t

−τ

∫
Kρ

| ∂
∂xi

(u− k)±|pi(x,t)ξp
+

dx dt

− C
N∑
i=1

∫ t

−τ

∫
Kρ

(u− k)
pi(x,t)
± | ∂ξ

∂xi
|pi(x,t) dx dt.

Here we used Young’s inequality, and the fact that 0 ≤ ξ ≤ 1 and pi(x,t)
pi(x,t)−1 ≥

p+

p+−1

imply that ξ
pi(x,t)(p

+−1)

pi(x,t)−1 ≤ ξp+ , ∀i = 1, . . . , N . Hence, since t ∈ (−τ, 0) is arbitrary,
we can combine both estimates to obtain (3.1). �

Now, introduce the logarithmic function

ψ±(u) = ψ(H±k , (u− k)±, c) =
(

ln
( H±k
H±k − (u− k)± + c

))
+
,

where H±k = ess supQ(τ,ρ) |(u − k)±| and 0 < c < H±k . In the cylinder Q(τ, ρ), we

take a cutoff function satisfying ξ ∈ [0, 1], | ∂ξ∂xi | < ∞ for i = 1, . . . , N and ξ is

independent of t ∈ (−τ, 0).

Proposition 3.2. Let u be a local weak solution of (1.1) in ΩT , then there exists
a positive constant C such that for every cylinder Q(τ, ρ) ⊂ ΩT and for every level
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k ∈ R,

ess sup−τ<t<0

∫
Kρ×{t}

[ψ±(u)]2ξp
+

dx

≤
∫
Kρ×{−τ}

[ψ±(u)]2ξp
+

dx

+ C

N∑
i=1

∫ 0

−τ

∫
Kρ

ψ±(u)[(ψ±)′(u)]2−pi(x,t)| ∂ξ
∂xi
|pi(x,t) dx dt.

(3.2)

Proof. In (2.5) we take the test function ϕ = 2ψ±(uh)[(ψ±)′(u)]ξp
+

, and by direct
computation we obtain

(ψ±(u))′′ = {(ψ±(u))′}2.

Therefore, we estimate the various terms separately, integrate in time over (−τ, t)
for t ∈ (−τ, 0), and use Lemma 2.1. The first term gives∫ t

−τ

∫
Kρ

uh,t
{

2ψ±(uh)[(ψ±)′(uh)]ξp
+}

dx dt

=

∫ t

−τ

∫
Kρ

(ψ±(uh)2)tξ
p+ dx dt

→
∫
Kρ×{t}

[ψ±(u)]2ξp
+

dx−
∫
Kρ×{−τ}

[ψ±(u)]2ξp
+

dx.

(3.3)

as h→ 0. For the remaining term, we first let h→ 0, to obtain

N∑
i=1

∫ t

−τ

∫
Kρ

| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi
· ∂ϕ
∂xi

dx dt

=

N∑
i=1

∫ t

−τ

∫
Kρ

| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi

[
2
∂u

∂xi
[(ψ±)′(u)]2ξp

+

+ 2
∂u

∂xi
ψ±(u)[(ψ±)′(u)]2ξp

+]
dx dt

+

N∑
i=1

∫ t

−τ

∫
Kρ

| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi
2p+ψ±(u)[(ψ±)′(uh)]ξp

+−1 ∂ξ

∂xi
dx dt

≥
N∑
i=1

∫ t

−τ

∫
Kρ

| ∂u
∂xi
|pi(x,t)2[(ψ±)′(u)]2(1 + ψ±(u)− ψ±(u))ξp

+

dx dt

− C
N∑
i=1

∫ t

−τ

∫
Kρ

ψ±(u)[(ψ±)′(u)]2−pi(x,t)| ∂ξ
∂xi
|pi(x,t) dx dt

≥ −C
N∑
i=1

∫ t

−τ

∫
Kρ

ψ±(u)[(ψ±)′(u)]2−pi(x,t)| ∂ξ
∂xi
|pi(x,t) dx dt.

Hence, since t ∈ (−τ, 0) is arbitrary, we can combine both estimates to obtain
(3.2). �
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4. Continuity of the weak solutions

In this section we analyze the alternative and prove Proposition 2.5. Assume that
(2.8) is satisfied. The following lemma determines the number ν0 and guarantees
that the solution u is above a smaller level within a smaller cylinder.

Lemma 4.1. There exists ν0 ∈ (0, 1), depending on the data and ω, such that if
(2.8) holds then

u(x, t) > µ− +
ω

4
a.e. in (0, t∗) +Q(θ(

R

2
)p

+

,
R

2
). (4.1)

Proof. Up to translation we can assume that (0, t∗) = (0, 0). We define two de-
creasing sequences of positive numbers

Rn =
R

2
+

R

2n+1
, kn = µ− +

ω

4
+

ω

2n+2
, n = 0, 1, . . .

We construct the family of nested and shrinking cylinders Q(θRp
+

n , Rn), and let

0 ≤ ξn(x, t) ≤ 1 be piecewise smooth functions in Q(θRp
+

n , Rn) such that

ξn = 1 in Q(θRp
+

n+1, Rn+1), ξn = 0 on ∂pQ(θRp
+

n , Rn),

|∂ξn
∂xi
| ≤ 2

(n+1)p+

p
+
i

R
p+

p
+
i

, 0 < (ξn)t ≤
2p

+(n+1)

θRp+
, ∀i = 1, . . . , N.

Now, by using the energy inequality (3.1) for the functions (u− kn)− we obtain

sup
−θRp

+
n <t<0

∫
KRn

(u− kn)2
−ξ

p+

n (x, t) dx

+

N∑
i=1

∫ 0

−θRp
+
n

∫
KRn

| ∂
∂xi

(u− kn)−|p
−
i ξp

+

n dx dt

≤ C
(∫ 0

−θRp
+
n

∫
KRn

(u− kn)2
−ξ

p+−1
n (ξn)t dx dt

+

N∑
i=1

∫ 0

−θRp
+
n

∫
KRn

(u− kn)
pi(x,t)
− |∂ξn

∂xi
|pi(x,t) dx dt

+

∫ 0

−θRp
+
n

∫
KRn

χ((u− kn)− > 0) dx dt
)

≤ C 2p
+(n+1)

Rp+

(1

θ

∫ 0

−θRp
+
n

∫
KRn

(u− kn)2
− dx dt

+

N∑
i=1

∫ 0

−θRp
+
n

∫
KRn

(u− kn)
pi(x,t)
− dx dt

+

∫ 0

−θRp
+
n

∫
KRn

χ((u− kn)− > 0) dx dt
)

≤ C 2p
+(n+1)

Rp+

(
(
ω

2
)p

−
+ (

ω

2
)p

+

+ 1
)∫ 0

−θRp
+
n

∫
KRn

χ((u− kn)− > 0) dx dt
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≤ C 2p
+(n+2)

Rp+

(
(
ω

2
)p

+

+ 1
)∫ 0

−θRp
+
n

∫
KRn

χ((u− kn)− > 0) dx dt

By means of (2.7), this implies

sup
−θRp

+
n <t<0

∫
KRn

(u− kn)2
−ξ

p+

n (x, t) dx

+

N∑
i=1

∫ 0

−θRp
+
n

∫
KRn

| ∂
∂xi

(u− kn)−|p
−
i ξp

+

n dx dt

≤ C 2p
+(n+2)

Rp+
(
ω

2
)p

+

∫ 0

−θRp
+
n

∫
KRn

χ((u− kn)− > 0) dx dt,

where χE denotes the characteristic function of the set E. Using the fact that
(u− kn)− = 0 or

(u− kn)− = (µ− − u) +
ω

4
+

ω

2n+2
≤ ω

2
, (4.2)

we obtain

(u− kn)2
− ≥ θ(u− kn)p

−

− . (4.3)

Then the above estimates reads

sup
−θRp

+
n <t<0

∫
KRn

(u− kn)p
−

− ξp
+

n (x, t) dx

+
1

θ

N∑
i=1

∫ 0

−θRp
+
n

∫
KRn

∣∣ ∂
∂xi

(u− kn)−
∣∣p−i ξp+n dx dt

≤ C 2p
+(n+2)

Rp+
(
ω

2
)p

+ 1

θ

∫ 0

−θRp
+
n

∫
KRn

χ((u− kn)− > 0) dx dt,

(4.4)

Let us now consider the change of variable t̃ = t
θ and define the functions

ũ(·, t̃) = u(·, t), ξ̃n(·, t̃) = ξn(·, t).

Then, for

An =

∫ 0

−Rp
+
n

∫
KRn

χ((ũ− kn)− > 0) dx dt̃,

inequality (4.4) becomes

sup
−Rp

+
n <t̃<0

∫
KRn

(ũ− kn)p
−

− ξ̃n
p+

(x, t̃) dx

+

N∑
i=1

∫ 0

−Rp
+
n

∫
KRn

∣∣ ∂
∂xi

(ũ− kn)−
∣∣p−i ξ̃np+ dx dt̃

≤ C 2p
+(n+2)

Rp+
(
ω

2
)p

+

An.

(4.5)

From the definition of kn, we have( ω

2n+3

)p
An+1 = |kn − kn+1|pAn+1 ≤

∫ 0

−Rp
+
n

∫
KRn

(ũ− kn)p−ξ̃n
β
dx dt̃.
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Now we use Hölder’s inequality with exponents N
N−p and N

p to obtain

( ω

2n+3

)p
An+1 ≤ C

∫ 0

−Rp
+
n

(∫
KRn

(
(ũ− kn)−ξ̃n

β/p)p∗
dx
)p/p∗

dt̃Ap/Nn ,

where p∗ is defined in (2.1). So, by the anisotropic Sobolev inequality (2.2), we
have( ω

2n+3

)p
An+1 ≤ C

∫ 0

−Rp
+
n

N∏
i=1

{∫
KRn

| ∂
∂xi

[(ũ− kn)−ξ̃n
β/p

]|p
−
i dx

} p

Np
−
i dt̃Ap/Nn

≤ C
N∏
i=1

{∫ 0

−Rp
+
n

∫
KRn

| ∂
∂xi

(ũ− kn)−|p
−
i ξ̃n

βp
−
i
p dx dt̃

+

∫ 0

−Rp
+
n

∫
KRn

(ũ− kn)
p−i
−
∣∣∂ξ̃n
∂xi

∣∣p−i dx dt̃} p

Np
−
i Ap/Nn .

Since 0 ≤ ξn(x, t) ≤ 1, we choose β such that p+ ≤ βp−i
p , for i = 1, 2, . . . , N .

Therefore, using (4.5) we obtain( ω

2n+3

)p
An+1 ≤ C

2p
+(n+2)

Rp+
(ω

2

)p+
A

1+ p
N

n . (4.6)

A direct calculation leads to

|Q(Rp
+

n , Rn)|1+ p
N

|Q(Rp
+

n+1, Rn+1)|
≤ 2P

++NRp(1+ p
N ). (4.7)

Next, if we define

Xn =
An

Q(Rp
+

n , Rn)
,

we obtain the recursive relation

Xn+1 ≤ C4np
+

(
ω

2
)p

+−pX
1+ p

N
n .

Thus, [12, Lemma 4.1 in Chapter I] implies that if

X0 ≤
[
C(
ω

2
)p

+−p]−N/p4−p+(Np )2 = ν0, (4.8)

then

Xn → 0. (4.9)

But (4.8) is nothing but the assumption (2.8). Hence, the result easily follows from
(4.9). �

Now consider the time level −t̂ = t∗ − θ(R2 )p
+

, then from the conclusion of
Lemma 4.1, we have

u(x,−t̂) > µ− +
ω

4
a.e. for x ∈ KR

2
.

We will use this time level as an initial condition to bring the information up to
t = 0, and therefore to obtain an analogous inequality in a in a smaller cylinder.
The first step in this direction is given by the following lemma.
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Lemma 4.2. For every ν1 ∈ (0, 1), there exists a positive integer s1 depending on
the data and ω, such that

|{x ∈ KR/4 : u(x, t) < µ− +
ω

2s1
}| ≤ ν1|KR/4|, ∀t ∈ (−t̂, 0). (4.10)

Proof. Consider the cylinder Q(t̂, R/2) and write the logarithmic estimate (3.2)
over this cylinder, for the function (u− k)−, with

k = µ− +
ω

4
and c =

ω

2n+2
,

where n is to be chosen later. We define H−k such that

k − u ≤ H−k = ess supQ(t̂,R2 ) |(u− µ
− − ω

4
)−| ≤

ω

4
. (4.11)

Assuming H−k ≤
ω
8 (else the result is trivial). Then the logarithmic function ψ− is

well defined and satisfies the inequality

ψ− ≤ n ln(2) since
H−k

H−k + u− k + c
≤

ω
4

c
= 2n, (4.12)

and, for u 6= −k + c,

0 ≤ (ψ−)′ ≤ 1

H−k + u− k + c
≤ 1

c
, (4.13)

and

|(ψ−)′(u)|2−p
−

= (H−k + u− k + c)p
−−2 ≤ (

ω

2
)p

−−2. (4.14)

For t = −t̂, by Lemma 4.1, we have u(x,−t̂) > k, and therefore

[ψ−(u)](x,−t̂) = 0 for x ∈ KR
2
.

To obtain the estimate, we choose a cutoff function 0 < ξ(x) ≤ 1, defined on KR
2

,

such that

ξ = 1 in KR
2

and | ∂ξ
∂xi
| ≤ (

8

R
)
p+

p
+
i , for i = 1, 2, . . . , N.

Gathering these estimates in (3.2), and using that

t̂ ≤
( ω

2λ
)2−p−

Rp
+

, (4.15)

we arrive at

ess sup−t̂<t<0

∫
KR

2
×{t}

[ψ−(u)]2ξp
+

dx

≤ C
N∑
i=1

∫ 0

−t̂

∫
KR

2

ψ−(u)[(ψ−)′(u)]2−pi(x,t)| ∂ξ
∂xi
|pi(x,t) dx dt

≤ C n ln(2)(
ω

2
)p

−−2(
8

R
)p

+

t̂|KR/4|

≤ C n(
ω

2
)p

−−2(
8

R
)p

+( ω
2λ
)2−p−

Rp
+

|KR/4|

≤ Cn2λ(p−−2)|KR/4|.

(4.16)
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The left hand side of (4.16) is estimated from below integrating over the smaller
set

S = {x ∈ KR/4, u(x, t) < µ− +
ω

2n+2
} ⊂ KR

2
, t ∈ (−t̂, 0).

On such set, ξ = 1 and ψ− ≥ ((n− 1) ln(2)), because

H−k
H−k + u− k + ω

2n+2

≥
ω
4

ω
4 + u− k + ω

2n+2

=
ω
4

u− µ− + ω
2n+2

≥
ω
4

2n+2
= 2n−1.

Putting this in (4.16), we obtain that for all t ∈ (−t̂, 0),

|S| ≤ C n

(n− 1)2
2λ(p−−2)|KR/4|.

The proof is complete once we choose s1 = n+ 2 with n > 1 + 2C
ν1

2λ(p−−2). �

The conclusion of Lemma 4.2 will be employed to deduce that, within the cylinder
Q(t̂, R8 ), the set where u is away from its infimum is arbitrarily small.

Lemma 4.3. There exists 1 < s2 ∈ N, depending on the data and ω, such that

u(x, t) > µ− +
ω

2s2+1
a.e. (x, t) ∈ Q(t̂,

R

8
). (4.17)

Proof. Define two decreasing sequences of positive numbers

Rn =
R

8
+

R

2n+3
, kn = µ− +

ω

2s2+1
+

ω

2s2+1+n
, n = 0, 1, . . . .

We construct the family of nested and shrinking cylinders Q(t̂, Rn), and letting
0 ≤ ξn(x) ≤ 1 be piecewise smooth functions in KRn that equal one on KRn+1

and

|∂ξn
∂xi
| ≤ 2(n+4)p+/p+i

Rp
+/p+i

for i = 1, . . . , N.

Lemma 4.1 implies that (u−kn)−(x,−t̂) = 0 in KRn . Now, since (u−kn)− ≤ ω/2s2 ,

by using (4.15) and letting s2 > λ+ p+

p−−2 we obtain

(u− kn)2
− ≥

t̂

(R2 )p+
(u− kn)p

−

− .

Therefore, with these choices, and by applying the local energy inequalities (3.1)
on the functions (u− kn)−, we obtain

t̂

(R2 )p+
sup
−t̂<t<0

∫
KRn×{t}

(u− kn)p
−

− ξp
+

n dx

+

N∑
i=1

∫ 0

−t̂

∫
KRn

| ∂
∂xi

(u− kn)−|p
−
i ξp

+

n dx dt

≤ C
( N∑
i=1

∫ 0

−t̂

∫
KRn

(u− kn)
p+i
− |

∂ξn
∂xi
|p

+
i dx dt

+

∫ 0

−t̂

∫
KRn

χ((u− kn)− > 0) dx dt
)

≤ C 2np
+

Rp+
(
ω

2s2
)p

+

∫ 0

−t̂

∫
KRn

χ((u− kn)− > 0) dx dt.

(4.18)
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We divide by t̂

(R2 )p+
, and introduce the change of variable t̃ = t(R2 )p

+

/t̂. As in the

proof of Lemma 4.1, we arrive at( ω

2s2+2+n

)p
An+1 ≤ C

2np
+

Rp+
( ω

2s2

)p+
A

1+ p
N

n , (4.19)

where

An =

∫ 0

−(R2 )p+

∫
KRn

χ((ũ− kn)− > 0) dx dt̃.

Here we have considered ũ(x, t̄) = u(x, t). Next, we define the numbers

Xn =
An

Q((R2 )p+ , Rn)
.

Dividing (4.19) by Q((R2 )p
+

, Rn+1), we obtain the recursive relation

Xn+1 ≤ C4np
+

(
ω

2s2
)p

+−pX
1+ p

N
n .

Therefore, [12, Lemma 4.1 in Chapter I] implies that if

X0 ≤
[
C(

ω

2s2
)p

+−p]−N/p4−p+(Np )2 = ν1, (4.20)

then

Xn → 0. (4.21)

By applying Lemma 4.2 with s1 := s2 we obtain easily (4.20). Hence, the result
easily follows from (4.21). �

As an immediate consequence we obtain the reduction of the oscillation of u.

Corollary 4.4. There exists a constant σ0 ∈ (0, 1), depending only on the data
and ω, such that if (2.8) holds then

ess oscQ(θ(R/8)p+ ,R/8) u ≤ σ0ω. (4.22)

Proof. The proof follows since Q(θ(R8 )p
+

, R8 ) ⊂ Q(t̂, R8 ), where we have σ0 = 1 −
1

2s2+1 . �

Assume that (2.8) does not hold, then (2.9) holds. Even in this case, we are able
to deduce a result analogous to Corollary 4.4.

Lemma 4.5. Assume that (2.9) holds, then there exists a time level

t0 ∈ [t∗ − θRp
+

, t∗ − ν0

2
θRp

+

], (4.23)

such that

|{x ∈ KR, u(x, t0) > µ+ − ω

2
}| ≤

( 1− ν0

1− ν0
2

)
|KR|. (4.24)

Proof. In fact, if (4.24) does not hold, then also (2.9) does not hold. �

This lemma shows that at the time level t0, the portion of the cube KR where
u(x) is close to its supremum is small. The next lemma claims that this indeed

occurs for all time levels near the top of the cylinder (0, t∗) +Q(θRp
+

, R).
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Lemma 4.6. There exists 1 < s3 ∈ N, depending on the data and ω, such that, for

all t ∈ [t∗ − ν0
2 θR

p+ , t∗],

|{x ∈ KR : u(x, t) > µ+ − ω

2s3
}| ≤ (1−

(ν0

2

)2
)|KR|. (4.25)

Proof. Consider the cylinder KR × (t0, t
∗), and the level k = µ+ − ω

2 . Then we
define

u− k ≤ H+
k = ess supKR×(t0,t∗) |(u− µ+ +

ω

2
)+| ≤

ω

2
. (4.26)

Assuming that H+
k > ω

4 (otherwise there is nothing to prove). Select n ∈ N big
enough so that

0 < c =
ω

2n+1
< H+

k .

Then the logarithmic function ψ+ is well defined and satisfies the inequalities

ψ+ ≤ n ln(2) since
H+
k

H+
k − u+ k + c

≤
ω
4

c
= 2n, (4.27)

and, for u 6= k + c,

0 ≤ (ψ+)′ ≤ 1

H+
k − u+ k + c

≤ 1

c
, (4.28)

and

|(ψ+)′(u)|2−p
−

= (H+
k − u+ k + c)p

−−2 ≤ (
ω

2
)p

−−2. (4.29)

In the logarithmic inequality (3.2) applied to the function (u − k)+, let x 7→ ξ(x)
be a smooth cutoff function defined in KR such that for some π ∈ (0, 1)

0 ≤ ξ ≤ 1 in KR, ξ = 1 on K(1−π)R,

| ∂ξ
∂xi
| ≤ (πR)

− p
+

p
+
i , for i = 1, . . . , N.

Gathering these estimates in (3.2), using Lemma 4.5 and that

t∗ − t ≤ θRp
+

, (4.30)

we arrive at

ess supt0<t<t∗

∫
KR×{t}

[ψ+(u)]2ξp
+

dx ≤
∫
KR×{t0}

[ψ+(u)]2ξp
+

dx

+ C

N∑
i=1

∫ t∗

t0

∫
KR

ψ+(u)[(ψ+)′(u)]2−pi(x,t)| ∂ξ
∂xi
|pi(x,t) dx dt

≤ n2(ln 2)2
( 1− ν0

1− ν0
2

)
|KR|+ Cn ln(2)(

ω

2
)p

−−2(πR)−p
+

(t∗ − t0)|KR|

≤ n2(ln 2)2
( 1− ν0

1− ν0
2

)
|KR|+ Cn ln(2)(

ω

2
)p

−−2(πR)−p
+

θRp
+

|KR|

≤ n2(ln 2)2
( 1− ν0

1− ν0
2

)
|KR|+ C

n

πp+
|KR|.

(4.31)

The left hand side is estimated below by integrating over the smaller set

S = {x ∈ K(1−π)R : u(x, t) > µ+ − ω

2n+1
} ⊂ KR.
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On such set, ξ = 1 and ψ+ ≥ (n− 1) ln 2, because

H+
k

H+
k − u+ k + c

≥
ω
2

ω
2 − u+ k + ω

2n+1

≥
ω
2
ω
2n
≥ 2n−1,

since one has −u+ µ+ < ω/2n. Therefore for all t ∈ (t0, t
∗),

|S| ≤
{( n

n− 1

)2( 1− ν0

1− ν0
2

)
+

C

nπp+
}
|KR|.

Consequently, for all t ∈ (t0, t
∗),

|{x ∈ KR : u(x, t) > µ+ − ω

2n+1
}|

≤ |S|+Nπ|KR|

≤
{( n

n− 1

)2( 1− ν0

1− ν0
2

)
+

c

nπp+
+Nπ

}
|KR|.

(4.32)

The proof will be complete once we choose π so small that Nπ ≤ 3
8ν

2
0 , then n so

large that

C

nπp+
≤ 3

8
ν2

0 and
( n

n− 1

)2 ≤ (1− ν0

2
)(1 + ν0) < 1,

and finally take s3 = n+ 1. �

Recalling that t0 ∈ [t∗−θRp+ , t∗− ν0
2 θR

p+ ] and choosing λ so that 2(λ−1)(p−−2) ≥
2, the previous lemma immediately implies the following lemma.

Lemma 4.7. There exists 1 < s3 ∈ N, depending on the data and ω, such that for

all t ∈ (−a02 R
p+ , 0),

|{x ∈ KR, u(x, t) > µ+ − ω

2s3
}| ≤ (1− (

ν0

2
)2)|KR|. (4.33)

From Lemma 4.7 we deduce that within the cylinder Q(a0R
p+ , R), the set where

u is close to its supremum is arbitrarily small.

Lemma 4.8. For every v1 ∈ (0, 1), there exists s3 ≤ λ ∈ N depending on the data
and ω, such that

|{(x, t) ∈ Q(
a0

2
Rp

+

, R) : u(x, t) > µ+ − ω

2λ
}| ≤ ν1|Q(

a0

2
Rp

+

, R)|. (4.34)

Proof. Consider the cylinder Q(a0R
p+ , 2R) and the level k = µ+− ω

2s , for s3 ≤ s ≤
λ, consider also the local energy estimates (3.1) for the functions (u − k)+, where

0 ≤ ξ(x, t) ≤ 1 is a smooth cutoff function defined in Q(a0R
p+ , 2R) and satisfying

ξ = 1 in Q(
a0

2
Rp

+

, R), ξ = 0 on ∂pQ(a0R
p+ , 2R),

| ∂ξ
∂xi
| ≤ 1

Rp
+/p+i

for i = 1, . . . , N, 0 < ξt ≤
2

a0Rp
+ .
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Neglecting the first term on the left hand side of (3.1), and using the indicated
choices, we obtain

N∑
i=1

∫∫
Q(

a0
2 R

p+ ,R)

| ∂
∂xi

(u− k)+|p
−
dx dt

≤ C
( N∑
i=1

∫∫
Q(a0Rp

+ ,2R)

(u− k)
p+i
+ |

∂ξ

∂xi
|p

+
i

+

∫∫
Q(a0Rp

+ ,2R)

(u− k)2
+ξt dx dt

+

∫∫
Q(a0Rp

+ ,2R)

χ((u− k)+ > 0) dx dt
)

≤ C
( 1

Rp+

N∑
i=1

∫∫
Q(

a0
2 R

p+ ,R)

(u− k)
p+i
+ dx dt

+
1

a0Rp
+

∫∫
Q(

a0
2 R

p+ ,R)

(u− k)2
+ dx dt

+

∫∫
Q(

a0
2 R

p+ ,R)

χ((u− k)+ > 0) dx dt
)

≤ C
( 1

Rp+
( ω

2s
)p+

+
1

Rp+
( ω

2λ
)p−−2( ω

2s
)2

+ 1
)
|Q(

a0

2
Rp

+

, R)|

≤ C

Rp+
( ω

2s
)p+ |Q(

a0

2
Rp

+

, R)|.

(4.35)

Here, we used (2.7) and the fact that s ≤ λ.
Next, for each s ≤ λ, introduce the two complimentary sets

As(t) = {x ∈ KR : u(x, t) > µ+ − ω

2s
},

KR −As(t) = {x ∈ KR : u(x, t) ≤ µ+ − ω

2s
},

and let

As =

∫ 0

−a0Rp+/2
As(t) dt.

Now, consider the doubly truncated function such that for all t ∈ (−a02 R
p+ , 0)

vs =


0 for u(x, t) < µ+ − ω

2s ,

u− (µ+ − ω
2s ) for µ+ − ω

2s ≤ u(x, t) ≤ µ+ − ω
2s+1 ,

ω
2s+1 for µ+ − ω

2s+1 ≤ u(x, t).

(4.36)

By construction vs vanishes on KR−As(t). Selecting two points x = (x1, . . . , xN , t)
in As and y = (y1, . . . , yN , t) in KR−As(t), we construct a polygonal joining x and
y with sides parallel to the coordinate axes, for example PN = x and

PN−1 = (x1, . . . , xN−1, yN ), PN−2 = (x1, . . . , yN−1, yN ), . . . ,

P1 = (x1, y2, . . . , yN ), P0 = (y1, . . . , yN ).

By elementary computations, we have

vs(x, t) = [vs(PN , t)− vs(PN−1, t)] + · · ·+ [vs(P1, t)− vs(P0, t)]
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=

∫ xN

yN

∂

∂xN
vs(x1, . . . , xN−1, ζ, t) dζ

+

∫ xN−1

yN−1

∂

∂xN−1
vs(x1, . . . , xN−2, ζ, yN , t) dζ + ....

+

∫ x1

y1

∂

∂x1
vs(ζ, y2, . . . , yN , t) dζ

≤
N∑
i=1

∫ R

−R
| ∂
∂xi

vs(x1, . . . , ζ, . . . , yN , t)| dζ.

Integrate in dx over As(t) and in dy over KR−As(t), and take into account Lemma
4.7 to obtain (ν0

2

)2|KR|
∫
KR

vsdx ≤ 2R|KR|
N∑
i=1

∫
KR

|∂vs
∂xi
|dx.

Therefore, by the definitions of As(t) and vs, we have

ω

2s+1
|As+1(t)| ≤ C R

ν2
0

N∑
i=1

∫
As(t)−As+1(t)

| ∂u
∂xi
|dx.

Integrating for t ∈ (−a02 R
p+ , 0), and using (4.35) we conclude that

ω

2s+1
|As+1| ≤

C R

ν2
0

N∑
i=1

∫∫
As−As+1

| ∂u
∂xi
| dx dt

≤ CR

ν2
0

N∑
i=1

∫∫
As

| ∂u
∂xi
|p

−
dx dt)1/p− |As −As+1|

p−−1

p−

≤ C

ν2
0

( ω
2s
)p+/p− |Q(

a0

2
Rp

+

, R)|1/p
−
|As −As+1|

p−−1

p− .

(4.37)

If s is large enough so that
(
ω
2s

) p+
p− 2s+1

ω < 1, from (4.37) we obtain

|As+1| ≤
C

ν2
0

|Q(
a0

2
Rp

+

, R)|1/p
−
|As −As+1|

p−−1

p− , (4.38)

for all s3 ≤ s ≤ λ. According to the previous energy estimates we obtain, for
s = s3, s3 + 1, . . . , λ− 1,

|As+1|
p−

p−−1 ≤ C(ν0)
−2p−

p−−1 |Q(
a0

2
Rp

+

, R)|
1

p−−1 |As −As+1|,

and we then add these inequalities for s = s3, s3 + 1, . . . , λ− 1.
Since µ+ − ω

2s+1 ≤ µ+ − ω
2λ

, and As+1 ≥ Aλ, we have

λ−1∑
s=s3

A
p−

p−−1

s+1 ≥ (λ− s3)A
p−

p−−1

λ .

Also note that
∑λ−1
s=s3
|As − As+1| ≤ |Q(a02 R

p+ , R)|. Collecting these results, we
arrive at

Aλ ≤
C

(λ− s3)
p−−1

p−

(ν0)−2|Q(
a0

2
Rp

+

, R)|.
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The proof is complete once we choose s3 < λ ∈ N sufficiently large so that

C

(λ− s3)
p−−1

p−

(ν0)−2 ≤ ν1.

�

Lemma 4.9. The number v1 ∈ (0, 1) can be chosen (and consequently λ), such
that

u(x, t) ≤ µ+ − ω

2λ+1
a.e. (x, t) ∈ Q

(a0

2
(
R

2
)p

+

, R
)
. (4.39)

Proof. Define two decreasing sequences of positive numbers

Rn =
R

2
+

R

2n+1
, kn = µ+ − ω

2λ+1
− ω

2λ+1+n
, n = 0, 1, . . . .

Now, consider the local energy estimates (3.1) for the functions (u − kn)+ over

the constructed family of nested and shrinking cylinders Q(a02 R
p+

n , Rn), where 0 ≤
ξn(x, t) ≤ 1 are smooth functions defined in Q(a02 R

p+

n , Rn) such that

ξn = 1 in Q(
a0

2
Rp

+

n+1, Rn+1), ξn = 0 on ∂pQ(
a0

2
Rp

+

n , Rn),

|∂ξn
∂xi
| ≤ (

2n+1

R
)
p+

p
+
i for i = 1, . . . , N, 0 < (ξn)t ≤

2p
+(n+1)

a0
2 R

p+
.

Since (u− kn)2
+ ≥ a0(u− kn)p

−

+ , we obtain

a0 ess sup− a02 R
p+
n <t<0

∫
KRn×{t}

(u− kn)p
−

+ ξp
+

n dx

+

N∑
i=1

∫ 0

− a02 R
p+
n

∫
KRn

∣∣ ∂
∂xi

(u− kn)+

∣∣p−i ξp+n dx dt

≤ C 2p
+(n+1)

Rp+

( 1

a0

∫ 0

− a02 R
p+
n

∫
KRn

(u− kn)2
+ dx dt

+

N∑
i=1

∫ 0

− a02 R
p+
n

∫
KRn

(u− kn)
pi(x,t)
+ dx dt

+

∫ 0

− a02 R
p+
n

∫
KRn

χ((u− kn)+ > 0) dx dt
)

≤ C 2p
+(n+1)

Rp+
( ω

2λ
)p+ ∫ 0

− a02 R
p+
n

∫
KRn

χ((u− kn)+ > 0) dx dt.

We divide by a0 throughout the above inequality, and introduce the change of
variable t̃ = t

a0
2

. Using the same tools as in Lemma 4.1, we arrive at the inequality

( ω

2λ+2+n

)p
An+1 ≤ C

2np
+

Rp+
( ω

2λ
)p+

A
1+ p

N
n (4.40)

where

An =

∫ ∫
Q(Rp

+
n ,Rn)

χ((ũ− kn)+ > 0) dx dt̃,
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here we considered ũ(x, t̄) = u(x, t) and ξ̃n(x, t̃) = ξn(x, t). Next, if we denote
Xn = An

|Q(Rp
+
n ,Rn)|

, then we obtain

Xn+1 ≤ C4np
+( ω

2λ
)p+−p

X
1+ p

N
n .

Therefore, by using [12, Lemma 4.1 in Chapter I], the result is proved if we assume
that

X0 ≤
[
C
( ω

2λ
)p+−p]−N/p

4−p
+(Np )2 = ν1. (4.41)

For this value of ν1, Lemma 4.8 implies that X0 ≤ ν1. Hence, we can conclude that
Xn → 0 when n→ +∞ and the result follows. �

As an immediate consequence we obtain the reduction of the oscillation of u in
the second case.

Corollary 4.10. There exists a constant σ1 ∈ (0, 1), depending only on the data
and ω, such that if (2.9) holds then

ess oscQ(
a0
2 (R2 )p+ ,R2 ) u ≤ σ1ω. (4.42)

The proof of the above corollary follows by choosing σ1 = 1− 1
2λ+1 . Now, we are

able to prove Proposition 2.5, recalling the conclusions of Corollaries 4.4 and 4.10

and since θ(R8 )p
+ ≤ a0

2 (R2 )p
+

, we obtain that

ess oscQ(θ(R8 )p+ ,R8 ) u ≤ σω,

where σ = max{σ0, σ1}.
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