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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR

SINGULAR SEMILINEAR PROBLEMS ON EXTERIOR

DOMAINS

JOSEPH A. IAIA

Abstract. In this article we prove the existence of infinitely many radial

solutions of ∆u+K(r)f(u) = 0 on the exterior of the ball of radius R > 0, BR,

centered at the origin in RN with u = 0 on ∂BR and limr→∞ u(r) = 0 where
N > 2, f is odd with f < 0 on (0, β), f > 0 on (β,∞), f is superlinear for large

u, f(u) ∼ −1/(|u|q−1u) with 0 < q < 1 for small u, and 0 < K(r) ≤ K1/rα

with N + q(N − 2) < α < 2(N − 1) for large r.

1. Introduction

In this article we study radial solutions of

∆u+K(r)f(u) = 0 in RN\BR, (1.1)

u = 0 on ∂BR, (1.2)

u→ 0 as |x| → ∞ (1.3)

where BR is the ball of radius R > 0 centered at the origin in RN and K(r) > 0.
We assume that

(H1) f : R\{0} → R is locally Lipschitz, f is odd, f < 0 on (0, β), f > 0 on
(β,∞),

f(u) = − 1

|u|q−1u
+ g(u)

with 0 < q < 1 and g(0) = 0.
(H2) there exists p with p > 1 such that

f(u) = |u|p−1u+ g1(u), where lim
u→∞

|g1(u)|
|u|p

= 0.

We let F (u) =
∫ u
0
f(s) ds. Since f is odd it follows that F is even and from (H1) it

follows that F is bounded below by −F0 < 0, F has a unique positive zero, γ, with
0 < β < γ, and

(H3) −F0 < F < 0 on (0, γ), and F > 0 on (γ,∞).
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Since we are interested in radial solutions of (1.1)-(1.3), we assume that u(x) =

u(|x|) = u(r) where x ∈ RN and r = |x| =
√
x21 + · · ·+ x2N with r > R > 0 so that

u satisfies

u′′ +
N − 1

r
u′ +K(r)f(u) = 0 on (R,∞), (1.4)

u(R) = 0, lim
r→∞

u(r) = 0. (1.5)

We also assume K is continuously differentiable and K(r) > 0 on [R,∞). In
addition, we assume there exist positive constants α and C1 such that

(H4) 0 < K(r) ≤ C1/r
α on [R,∞) where α > N + q(N − 2),

(H5) 2(N − 1) + rK′

K ≥ 0.

We note that solutions of (1.4)-(1.5) will not be twice differentiable at any points
where u = 0 because of the singularity of f at u = 0. Therefore multiplying (1.4)
by rN−1 and integrating on (R, r) gives

rN−1u′ = RN−1u′(R)−
∫ r

R

tN−1K(t)f(u) dt. (1.6)

So in this article by a solution of (1.4) we mean a u ∈ C1[R,∞) ∩ C0[R,∞) that
satisfies (1.6). In this article we prove the following result.

Theorem 1.1. Let N > 2 and assuming (H1)–(H5). Then there exist infinitely
many radial functions u ∈ C1[R,∞)∩C0[R,∞) which satisfy (1.5)-(1.6) on [R,∞).

A number of papers have been written on this and similar topics. Some have
used sub/super solutions, degree theory, or critical point theory to prove existence
of a positive solution [5, 6, 12, 13, 15]. Here we prove the existence of an infinite
number of solutions as in [1, 2, 7, 8, 9, 10, 11, 14, 16].

In section two we prove the main lemmas for this paper. In particular, we show
that if a particular parameter a > 0 is sufficiently small then ua stays positive on
(R,∞). And we also show that if a is sufficiently large then ua has a large number
of zeros on (R,∞). We use these facts in section three to prove the main theorem.

2. Preliminaries

We begin by first making the substitution t = r2−N and letting u(r) = v(r2−N )
in (1.4)-(1.5). This gives

v′′ + h(t)f(v) = 0 on (0, R2−N ), (2.1)

lim
t→0+

v(t) = 0, v(R2−N ) = 0, (2.2)

where

h(t) =
t−

2(N−1)
N−2 K(t−

1
N−2 )

(N − 2)2
. (2.3)

It follows from (H4) and (H5) that

h > 0 and h′ ≤ 0 on (0, R2−N ]. (2.4)

We now consider the initial value problem

v′′a + h(t)f(va) = 0 for t > 0, (2.5)

lim
t→0+

va(t) = 0, lim
t→0+

v′a(t) = a > 0. (2.6)
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We attempt to find values of a > 0 for which va(R2−N ) = 0 for then ua(r) =
va(r2−N ) solves (1.5)-(1.6).

Assuming there is a solution of (2.5)-(2.6) then integrating (2.5) on (0, t) and
using (2.6) gives

v′a(t) = a−
∫ t

0

h(x)f(va(x)) dx. (2.7)

Integrating again gives

va(t) = at−
∫ t

0

∫ s

0

h(x)f(va(x)) dx ds. (2.8)

Letting va(t) = tya(t), (2.8) becomes

ya(t) = a− 1

t

∫ t

0

∫ s

0

h(x)f(xya(x)) dx ds. (2.9)

We will show that there is a continuously differentiable solution of (2.9) (and thus
of (2.8)) on [0, ε] for some ε > 0.

Lemma 2.1. Let N > 2 and assume (H1)–(H5) hold. Then there exists an ε > 0
and a unique solution of (2.8) on [0, ε].

Proof. Let ε > 0 and a > 0. Also let

A = {y ∈ C[0, ε] : y(0) = a and ‖y − a‖ < a

2
} (2.10)

where C[0, ε] is the set of continuous functions on [0, ε] with the supremum norm,
‖ · ‖. Next using (2.9) we define X : A→ C[0, ε] by

Xy(t) =

{
a for t = 0

a− 1
t

∫ t
0

∫ s
0
h(x)f(xy(x)) dx ds for t > 0.

(2.11)

Let

α̃ =
2(N − 1)− α

N − 2
. (2.12)

By (H4) we have K(r) ≤ C1

rα on [R,∞) then by (2.3) and (2.12) it follows that

h(t) ≤ C2

tα̃
on (0, R2−N ] (2.13)

where C2 = C1

(N−2)2 . Then since α > N + q(N − 2) (by (H4)) we see that

q + α̃ < 1 and

∫ t

0

x−qh(x) dx ≤ C3t
1−q−α̃ on (0, R2−N ] (2.14)

where C3 = C2

1−q−α̃ .

Assuming 0 ≤ t ≤ 1 we let L be the Lipschitz constant for g on [−2a, 2a] and let
ya ∈ A. Next using (2.11)-(2.14) and (H1) we have

|Xy(t)− a| ≤ 1

t

∫ t

0

∫ s

0

(
x−qh(x)y−qa (x) + h(x)|g(xya(x))|

)
dx ds

≤
∫ t

0

(2

a

)q
x−qh(x) dx+

∫ t

0

2aLxh(x) dx

≤
(2

a

)q
C3t

1−q−α̃ +
2aC2L

2− α̃
t2−α̃
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≤
(2

a

)q
C3ε

1−q−α̃ +
2aC2L

2− α̃
ε2−α̃

<
a

2
if ε is sufficiently small.

Thus X : A → A if ε is sufficiently small. Suppose next that y1, y2 ∈ A and
0 ≤ t ≤ 1. Then

Xy1 −Xy2 = −1

t

∫ t

0

∫ s

0

h(x) (f(xy1(x))− f(xy2(x)) dx ds (2.15)

and therefore by (H1),

|Xy1 −Xy2| ≤
∫ t

0

x−qh(x)|y−q1 − y
−q
2 | dx+

∫ t

0

2aLxh(x)|y1 − y2| dx. (2.16)

By the mean value theorem and the fact that y1, y2 ∈ A we see that

|y−q1 − y
−q
2 | ≤ q

(2

a

)q+1|y1 − y2|.

Thus

|Xy1 −Xy2| ≤ ‖y1 − y2‖
∫ t

0

((2

a

)q+1
qx−qh(x) + 2aLxh(x)

)
dx. (2.17)

Since x−qh(x) and xh(x) are integrable near t = 0 (by (2.13)-(2.14)) then we see
the integral term in (2.17) gets arbitrarily small as t → 0+ and so there exists an
ε > 0 and 0 ≤ c < 1 such that for 0 ≤ t ≤ ε and ε sufficiently small we have

|Xy1 −Xy2| ≤ c‖y1 − y2‖.

Thus we see X is a contraction. Hence by the contraction mapping principle [3]
there is a unique fixed point ya of (2.11) and thus a solution va(t) = tya(t) of (2.8)
on [0, ε]. �

Lemma 2.2. Let N > 2 and assume (H1)–(H5) hold. Then the solution va of
(2.8) exists on (0, R2−N ].

Proof. Consider

Ea =
1

2

v′2a
h

+ F (va). (2.18)

Using (2.1) and (2.4) we see that

E′a = −v
′2
a h
′

h2
≥ 0. (2.19)

From (2.6) we see limt→0+ Ea(t) ≥ 0 thus

Ea > 0 for t > 0. (2.20)

Similarly it follows using (2.1) and (2.6) that

1

2
v′2a + hF (va) =

1

2
a2 +

∫ t

0

h′(x)F (va) dx. (2.21)

Now for t ≥ ε (where ε is from Lemma 2.1) we have

1

2
v′2a + hF (va) =

1

2
v′2a (ε) + h(ε)F (va(ε)) +

∫ t

ε

h′(x)F (va) dx.
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Then since F ≥ −F0 by (H3) and h′ ≤ 0 by (2.4) we see that

1

2
v′2a − hF0 ≤

1

2
v′2a + hF (va)

=
1

2
v′2a (ε) + h(ε)F (va(ε)) +

∫ t

ε

h′(x)F (va) dx

≤ 1

2
v′2a (ε) + h(ε)F (va(ε))− F0(h− h(ε)).

Thus
1

2
v′2a ≤

1

2
v′2a (ε) + h(ε)[F (va(ε)) + F0] for t ≥ ε. (2.22)

It follows from Lemma 2.1 that va(ε) and v′a(ε) are finite and so we see by (2.22)
that va and v′a are uniformly bounded on [ε, R2−N ] from which it follows that va
and v′a are defined on [ε, R2−N ]. Combining this with Lemma 2.1 it follows that va
and v′a are defined on all of [0, R2−N ] for all a > 0. This completes the proof. �

Note that if va is a solution of (2.8) and there exists a za ∈ (0, R2−N ] such that
va(za) = 0, then it follows from (2.20) that

0 < Ea(za) =
1

2

v′2a (za)

h(za)

and therefore v′a(za) 6= 0.

Lemma 2.3. Let N > 2 and assume (H1)–(H5) hold. Suppose va solves (2.8).
Then the functions {va} vary continuously with a > 0 on [0, R2−N ].

Proof. Let 0 < a < a. We consider the set of solutions ya of (2.9) such that
‖ya − a‖ < a

2 and 0 < a ≤ a ≤ a. From (2.17) it follows that for all a with
a ≤ a ≤ a there is a common ε > 0 such that the corresponding mapping Xa from
Lemma 2.1 is a contraction on [0, ε]. Then for 0 ≤ t ≤ 1 and for a ≤ a1 < a2 ≤ a
it follows from (2.8),

ya1 − ya2 = a1 − a2 −
1

t

∫ t

0

∫ s

0

h(x)[f(xya1)− f(xya2)] dx ds.

Estimating as we did in (2.17) we see

|ya1 − ya2 | ≤ |a1 − a2|+
∫ t

0

((2

a

)q+1

x−qh(x) + 2aLxh(x)
)
|ya1 − ya2 | dx.

Using the Gronwall inequality [5] we then obtain

|ya1 − ya2 | ≤ |a1 − a2|
((2

a

)q+1 C2

1− α̃− q
et

1−α̃−q
+ 2aLet

1−α̃
)

on [0, ε]

and therefore

|va1 − va2 | ≤ |a1 − a2|t
((2

a

)q+1 C2

1− α̃− q
et

1−α̃−q
+ 2aLet

1−α̃
)

on [0, ε]. (2.23)

Thus we see the {va} varies continuously on [0, ε] for all a ∈ [a, a].
More generally now let a∗ > 0. We want to show that va → va∗ uniformly on

[0, R2−N ] as a → a∗. So suppose not. Then there exists an ε1 > 0, a sequence
xj ∈ [0, R2−N ], and a subsequence vaj such that

|vaj (xj)− va∗(xj)| ≥ ε1 for all j. (2.24)
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However it follows from comments at the beginning of the proof of this lemma that
the vaj and v′aj are uniformly bounded on [0, ε] for all aj sufficiently close to a∗ and

then from (2.22) we see that the vaj and v′aj are uniformly bounded on [0, R2−N ]
for all aj sufficiently close to a∗. Then by the Arzela-Ascoli theorem there is a
subsequence of the vaj , say vajk , such that vajk → v∗ uniformly on [0, R2−N ] which

contradicts (2.24). This completes the proof. �

Lemma 2.4. Let N > 2 and assume (H1)–(H5) hold. Then va has only have a
finite number of local extrema on [0, R2−N ]. In addition, ‖va‖ = max[0,R2−N ] |va| →
∞ as a → ∞. Further, if va has a local maximum, Ma, with v′a > 0 on (0,Ma)
then va(Ma)→∞ as a→∞.

Proof. First, if Mn ∈ (0, R2−N ] were distinct local extrema for va then a subse-
quence (still labeled Mn) would converge to some M∗ ∈ [0, R2−N ] and it would
follow that v′a(M∗) = 0. Since limt→0+ v

′
a(t) = a > 0 then M∗ > 0. Also by the

mean value theorem

0 = v′a(Mk)− v′a(Mk+1) = v′′a(ck)(Mk −Mk+1)

with ck between Mk and Mk+1 (and in particular ck 6= 0) and thus v′′a(ck) = 0 so
by (2.1) we see f(va(ck)) = 0. Since Mk → M∗ then we also have ck → M∗ and
thus f(va(M∗)) = 0 so va(M∗) = 0 or ± β. This along with v′a(M∗) = 0 implies
by (H3) and (2.20) that 0 < E(M∗) = F (β) < 0 or 0 < E(M∗) = F (0) = 0 so in
either case we get a contradiction. Thus va has only a finite number of extrema on
[0, R2−N ].

Next we show that

‖va‖ = max
[0,R2−N ]

|va| → ∞ as a→∞. (2.25)

We assume by the way of contradiction that |va| ≤ Q on [0, R2−N ].
First we rewrite (2.1) as (tv′a − va)′ = −th(t)f(va) and so integrating on (0, t)

gives tv′a − va = −
∫ t
0
xh(x)f(va) dx. Thus (vat )′ = − 1

t2

∫ t
0
xh(x)f(va) dx and so

va = at− t
∫ t

0

1

t2

∫ s

0

xh(x)f(va) dx ds (2.26)

Case 1: va > 0 on (0, R2−N ]. It follows from (H1) that |g(v)| ≤ C4|v|p +C5 for all
v for some constants C4 and C5. After rewriting and estimating (2.26) using (H1)
and that va > 0 gives

at = va + t

∫ t

0

1

s2

∫ s

0

xh(x)f(va) dx ds

≤ va + t

∫ t

0

1

s2

∫ s

0

xh(x)g(va) dx ds

≤ Q+ t

∫ t

0

1

s2

∫ s

0

xh(x)(C4Q
p + C5) dx ds

≤ Q+
C2(C4Q

p + C5)

(1− α̃)(2− α̃)
t2−α̃.

(2.27)
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Now let t = R2−N in (2.27) and we obtain

aR2−N ≤ Q+
C2(C4Q

p + C5)

(1− α̃)(2− α̃)
R(2−N)(2−α̃) (2.28)

which gives a contradiction because the right-hand side is bounded but the left-hand
side goes to ∞ as a→∞. This completes Case 1.

Case 2: There exists za with 0 < za < R2−N such that va(za) = 0 and va > 0 on
(0, za). In this case we see va has a local maximum, Ma, with 0 < Ma < za ≤ R2−N

and letting t = Ma in (2.27) we obtain

aMa ≤ Q+
C2(C4Q

p + C5)

(1− α̃)(2− α̃)
M2−α̃
a ≤ Q+

C2(C4Q
p + C5)

(1− α̃)(2− α̃)
R(2−N)(2−α̃). (2.29)

If Ma ≥ d0 > 0 for all sufficiently large a then left-hand side of (2.29) goes
to infinity as a → ∞ but the right-hand side does not. Thus max[0,R2−N ] |va| ≥
va(Ma)→∞ as a→∞.

Thus the only case left to consider is if Ma → 0 as a → ∞. So by way of
contradiction suppose that the va(Ma) are bounded by some constant Q and that
Ma → 0 as a→∞. Then integrating (2.5) on [t,Ma] gives

v′a(t) =

∫ Ma

t

h(x)f(va(x)) dx ≤
∫ Ma

t

h(x)g(va(x)) dx.

Integrating on [0,Ma] and using the Lipschitz constant L2 for g(v) on [0, Q] gives

va(Ma) =

∫ Ma

0

∫ Ma

t

h(x)f(va(x)) dx dt

≤
∫ Ma

0

∫ Ma

t

h(x)g(va(x)) dx dt

≤ L2va(Ma)

∫ Ma

0

∫ Ma

t

h(x) dx dt.

Then using (2.13) and that va(Ma) > 0 we obtain

1 ≤ L2

∫ Ma

0

∫ Ma

t

h(x) dx dt ≤ L2C2

2− α̃
M2−α̃
a . (2.30)

Thus since α̃ < 1 (by (2.14)) then the right-hand side of (2.30) goes to zero (since
we are assuming Ma → 0) but the left-hand side does not. Thus we obtain a
contradiction and so in Case 2 we see as well that max[0,R2−N ] |va| ≥ va(Ma)→∞
as a→∞.

Thus in all cases we see that ‖va‖ = max[0,R2−N ] |va| → ∞ as a → ∞. This
completes the proof. �

Lemma 2.5. Let N > 2 and assume (H1)–(H5) hold. Then if a > 0 is sufficiently
large then va has a local maximum, Ma, with v′a > 0 on (0,Ma). In addition,
Ma → 0 as a→∞.

Proof. We first define ta as the smallest value of t (if one exists) such that va(ta) = β
and 0 < va < β. We see then that f(va) ≤ 0 on (0, ta) and thus v′′a ≥ 0 on (0, ta).
It then follows that va ≥ at here. Thus we see va gets larger than β on [0, R2−N ]
if a is sufficiently large. Then letting t = ta in this inequality we see β ≥ ata and
therefore

ta → 0 as a→∞. (2.31)
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Next we show va has a local maximum if a is sufficiently large. So suppose not. Then
va is increasing on [0, R2−N ] for sufficiently large a and since va(0) = 0 it also follows
that va > 0 on (0, R2−N ]. From (2.25) we see that va(R2−N ) = max[0,R2−N ] |va| →
∞ as a → ∞. Then from (2.5) it follows that v′′a ≤ 0 on [ta, R

2−N ] thus va is
concave down here and therefore

va

( ta +R2−N

2

)
≥ va(R2−N ) + β

2
→∞ as a→∞. (2.32)

Now let

Aa = min
[ ta+R2−N

2 , R2−N ]

h(t)f(va)

va
. (2.33)

Since h(t) > 0 is continuous on [ 12R
2−N , R2−N ] ⊃ [ ta+R

2−N

2 , R2−N ] it follows that

h(t) is bounded from below by a positive constant on [12R
2−N , R2−N ]. Also from

(H1) we see that f(v) is superlinear and so by (2.32)-(2.33) and the fact that va is in-

creasing on [ ta+R
2−N

2 , R2−N ] we see f(va)
va
→∞ uniformly for t ∈ [ ta+R

2−N

2 , R2−N ].
Thus

lim
a→∞

Aa =∞. (2.34)

Next we apply the Sturm comparison theorem [4]. We consider

v′′a +
(h(t)f(va)

va

)
va = 0 (2.35)

and
z′′ +Aaz = 0 (2.36)

where

va

( ta +R2−N

2

)
= z
( ta +R2−N

2

)
> β, v′a

( ta +R2−N

2

)
= z′

( ta +R2−N

2

)
> 0.

By way of contradiction we assume now that va > 0 on (0, R2−N ]. Since z′′+Aaz =
0 and z 6≡ 0 then we know z is a linear combination of sin(

√
Aat) and cos(

√
Aat).

In particular, any interval of length π√
Aa

contains a zero of z(t). Thus there exists

a z0 > 0 with z(z0) = 0, z(t) > 0 on [ ta+R
2−N

2 , z0), and

ta +R2−N

2
< z0 <

ta +R2−N

2
+

π√
Aa

.

Since 1√
Aa
→ 0 by (2.34) and ta → 0 by (2.31) as a→∞ it follows that z0 < R2−N

if a is sufficiently large. Now multiplying (2.35) by z, (2.36) by va, and subtracting
gives

(v′az − vaz′)′ +
(h(t)f(va)

va
−Aa

)
vaz = 0. (2.37)

By assumption
(h(t)f(va)

va
−Aa

)
vaz ≥ 0 on [ ta+R

2−N

2 , z0] and so (v′az− vaz′)′ ≤ 0

on [ ta+R
2−N

2 , z0]. Integrating on [ ta+R
2−N

2 , t] with t ≤ z0 gives

v′az − vaz′ ≤ 0 on
[ ta +R2−N

2
, z0
]

(2.38)

which implies ( zva )′ ≥ 0 on [ ta+R
2−N

2 , z0] and so after integrating we obtain va ≤ z
on [ ta+R

2−N

2 , z0]. In particular, va(z0) ≤ z(z0) = 0 which contradicts that va > 0

on (0, R2−N ]. Therefore if a is sufficiently large then our assumption that va is
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increasing is false and so va has a positive local maximum, Ma, with ta < Ma <
R2−N and va increasing on [0,Ma). It then follows as in the proof of Lemma 2.3
that

va(Ma)→∞ as a→∞. (2.39)

Next we show Ma → 0 as a → ∞. Using (2.39) and the fact that v′′a ≤ 0 on
[ ta+Ma

2 ,Ma] gives

va

( ta +Ma

2

)
≥ va(Ma) + β

2
→∞ as a→∞. (2.40)

Thus we see va →∞ uniformly on [ ta+Ma

2 ,Ma].
Next notice from (H1) and (H3) that

f(v) ≥ c0vp for v ≥ γ for some c0 > 0. (2.41)

Thus

v′′ + c0h(t)vp ≤ v′′ + h(t)f(v) = 0 when v ≥ γ. (2.42)

It then follows that ( v′
vp

)′
+ c0h(t) ≤ 0 when v ≥ γ. (2.43)

Integrating this on [t,Ma] then integrating on [ ta+Ma

2 ,Ma] and estimating gives

c0

∫ Ma

ta+Ma
2

∫ Ma

t

h(x) dx dt ≤ 1

(p− 1)vp−1( ta+Ma

2 )
. (2.44)

From (2.39)-(2.40) and since p > 1 (by (H1)) the right-hand side of (2.44) goes to
0 as a→∞. Also since ta → 0 as a→∞ by (2.31) it follows that

Ma → 0 as a→∞. (2.45)

This completes the proof. �

Lemma 2.6. Let N > 2 and assume (H1)–(H5) hold. Let n be a positive integer.
If a > 0 is sufficiently large then va has n zeros on (0, R2−N ] such that 0 < z1,a <
z2,a < · · · < zn,a and zn,a → 0 as a→∞.

Proof. Since Ea(t) is nondecreasing we have

1

2

v′2a
h

+ F (va) = Ea(t) ≥ Ea(Ma) = F (va(Ma)). (2.46)

Now we have va > 0 and v′a < 0 on (Ma, t) for t close to Ma. We notice now that va
cannot have a positive local minimum, ma, on (Ma, R

2−N ) with va decreasing on
(Ma,ma) for at such a point we would have 0 < va(ma) < va(Ma) and since Ea is
nondecreasing it follows that F (va(ma)) = E(ma) ≥ E(Ma) = F (va(Ma)) > 0 and
so va(ma) > γ but F is increasing (by (H1)-(H3)) for v > γ and thus F (va(ma)) <
F (va(Ma). Hence we get a contradiction.

Thus we see either va is decreasing and positive on [Ma, R
2−N ] or va has a zero

on [Ma, R
2−N ]. Let us suppose the former. Then rewriting (2.46) and integrating
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on (Ma, R
2−N ) gives∫ va(Ma)

0

1√
2
√
F (va(Ma))− F (s)

ds

≥
∫ va(Ma)

va(R2−N )

1√
2
√
F (va(Ma))− F (s)

ds

=

∫ R2−N

Ma

−v′a(t)√
2
√
F (va(Ma))− F (va(t))

dt

≥
∫ R2−N

Ma

√
h dt.

(2.47)

Since f is superlinear and va(Ma)→∞ as a→∞ (by Lemma 2.5) it follows that
the left-hand side of (2.47) goes to 0 as a → ∞ but the right-hand side of (2.47)
does not and so we obtain a contradiction. Therefore if a is sufficiently large then
va has a zero, za, on (Ma, za). Now rewriting (2.46) and integrating on (Ma, za)
we obtain ∫ va(Ma)

0

1√
2
√
F (va(Ma))− F (t)

dt ≥
∫ za

Ma

√
h dt. (2.48)

And again the left-hand side goes to 0 as a→∞ so therefore must the right-hand
side and since we know Ma → 0 from Lemma 2.5 it follows that za → 0 as well
when a→∞.

Repeating this process it follows that given any positive integer n if a is suffi-
ciently large then va will have n zeros, 0 < z1 < z2 < · · · < zn−1 < zn < R2−N ,
and zn → 0 as a→∞. This completes the proof. �

3. Proof of Theorem 1.1

Let

Sn = {a > 0 : va has exactly n zeros on (0, R2−N )}.
Then Sn is nonempty for some smallest value of n, say n0, by Lemma 2.5 and Sn
is bounded above by Lemma 2.6. Therefore we let

an0 = supSn0 .

We claim that van0
has exactly n0 zeros on (0, R2−N ) and va0(R2−N ) = 0.

First, if van0
has an (n0 + 1)st zero on (0, R2−N ) then by the continuous de-

pendence on initial parameters of the {va} (Lemma 2.3) and since v′an0
(z) 6= 0 at

each zero, z, of van0
(by the note after Lemma 2.2) it follows that va will have an

(n0 +1)st zero on (0, R2−N ) for a slightly smaller than an0 contradicting the defini-
tion of Sn0

. Similarly, if van0
has fewer than n0 zeros on (0, R2−N ) then so would va

for a slightly larger than an0
contradicting the definition of supremum. Thus van0

must have exactly n0 zeros on (0, R2−N ). Similarly it follows that van0
(R2−N ) = 0

for if van0
(R2−N ) > 0 then by continuous dependence va(R2−N ) > 0 for a slightly

smaller than an0 contradicting the definition of Sn0 and if van0
(R2−N ) < 0 then

va(R2−N ) < 0 for a slightly larger than an0 contradicting the definition of supre-
mum. Thus van0

(R2−N ) = 0.
Now for a slightly larger than an0

, due to continuous dependence and that
v′a(z) 6= 0 at each zero of va then va will have exactly n0 + 1 zeros on (0, R2−N )
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and therefore Sn0+1 will be nonempty. Again by Lemma 2.6 it follows that Sn0+1

will be bounded above thus we can define

an0+1 = supSn0+1

and similarly we show that van0+1 has exactly n0 + 1 zeros on (0, R2−N ) and

van0+1(R2−N ) = 0. Continuing in this way we can obtain an infinite number of

solutions of (1.4)-(1.5), one with any number, n, of zeros on (0, R2−N ) for n ≥ n0.
This completes the proof of the main theorem.
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