EXISTENCE OF INFINITELY MANY SOLUTIONS FOR SINGULAR SEMILINEAR PROBLEMS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Abstract

In this article we prove the existence of infinitely many radial solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius $R>0, B_{R}$, centered at the origin in \mathbb{R}^{N} with $u=0$ on ∂B_{R} and $\lim _{r \rightarrow \infty} u(r)=0$ where $N>2, f$ is odd with $f<0$ on $(0, \beta), f>0$ on $(\beta, \infty), f$ is superlinear for large $u, f(u) \sim-1 /\left(|u|^{q-1} u\right)$ with $0<q<1$ for small u, and $0<K(r) \leq K_{1} / r^{\alpha}$ with $N+q(N-2)<\alpha<2(N-1)$ for large r.

1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta u+K(r) f(u)=0 \quad \text { in } \mathbb{R}^{N} \backslash B_{R}, \tag{1.1}\\
u=0 \quad \text { on } \partial B_{R} \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where B_{R} is the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} and $K(r)>0$. We assume that
(H1) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ is locally Lipschitz, f is odd, $f<0$ on $(0, \beta), f>0$ on (β, ∞),

$$
f(u)=-\frac{1}{|u|^{q-1} u}+g(u)
$$

with $0<q<1$ and $g(0)=0$.
(H2) there exists p with $p>1$ such that

$$
f(u)=|u|^{p-1} u+g_{1}(u), \quad \text { where } \lim _{u \rightarrow \infty} \frac{\left|g_{1}(u)\right|}{|u|^{p}}=0
$$

We let $F(u)=\int_{0}^{u} f(s) d s$. Since f is odd it follows that F is even and from (H1) it follows that F is bounded below by $-F_{0}<0, F$ has a unique positive zero, γ, with $0<\beta<\gamma$, and
(H3) $-F_{0}<F<0$ on $(0, \gamma)$, and $F>0$ on (γ, ∞).

[^0]Since we are interested in radial solutions of (1.1)-(1.3), we assume that $u(x)=$ $u(|x|)=u(r)$ where $x \in \mathbb{R}^{N}$ and $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ with $r>R>0$ so that u satisfies

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+K(r) f(u)=0 \quad \text { on }(R, \infty), \tag{1.4}\\
u(R)=0, \lim _{r \rightarrow \infty} u(r)=0 \tag{1.5}
\end{gather*}
$$

We also assume K is continuously differentiable and $K(r)>0$ on $[R, \infty)$. In addition, we assume there exist positive constants α and C_{1} such that
(H4) $0<K(r) \leq C_{1} / r^{\alpha}$ on $[R, \infty)$ where $\alpha>N+q(N-2)$,
(H5) $2(N-1)+\frac{r K^{\prime}}{K} \geq 0$.
We note that solutions of 1.4 - 1.5 will not be twice differentiable at any points where $u=0$ because of the singularity of f at $u=0$. Therefore multiplying 1.4 by r^{N-1} and integrating on (R, r) gives

$$
\begin{equation*}
r^{N-1} u^{\prime}=R^{N-1} u^{\prime}(R)-\int_{R}^{r} t^{N-1} K(t) f(u) d t \tag{1.6}
\end{equation*}
$$

So in this article by a solution of 1.4 we mean a $u \in C^{1}[R, \infty) \cap C^{0}[R, \infty)$ that satisfies (1.6). In this article we prove the following result.
Theorem 1.1. Let $N>2$ and assuming (H1)-(H5). Then there exist infinitely many radial functions $u \in C^{1}[R, \infty) \cap C^{0}[R, \infty)$ which satisfy (1.5)-1.6 on $[R, \infty)$.

A number of papers have been written on this and similar topics. Some have used sub/super solutions, degree theory, or critical point theory to prove existence of a positive solution [5, 6, 12, 13, 15]. Here we prove the existence of an infinite number of solutions as in (1, 2, 7, 8, 9, 10, 11, 14, 16.

In section two we prove the main lemmas for this paper. In particular, we show that if a particular parameter $a>0$ is sufficiently small then u_{a} stays positive on (R, ∞). And we also show that if a is sufficiently large then u_{a} has a large number of zeros on (R, ∞). We use these facts in section three to prove the main theorem.

2. Preliminaries

We begin by first making the substitution $t=r^{2-N}$ and letting $u(r)=v\left(r^{2-N}\right)$ in (1.4)- 1.5 . This gives

$$
\begin{gather*}
v^{\prime \prime}+h(t) f(v)=0 \quad \text { on }\left(0, R^{2-N}\right), \tag{2.1}\\
\lim _{t \rightarrow 0^{+}} v(t)=0, \quad v\left(R^{2-N}\right)=0, \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
h(t)=\frac{t^{-\frac{2(N-1)}{N-2}} K\left(t^{-\frac{1}{N-2}}\right)}{(N-2)^{2}} \tag{2.3}
\end{equation*}
$$

It follows from (H4) and (H5) that

$$
\begin{equation*}
h>0 \text { and } h^{\prime} \leq 0 \quad \text { on }\left(0, R^{2-N}\right] . \tag{2.4}
\end{equation*}
$$

We now consider the initial value problem

$$
\begin{gather*}
v_{a}^{\prime \prime}+h(t) f\left(v_{a}\right)=0 \quad \text { for } t>0 \tag{2.5}\\
\lim _{t \rightarrow 0^{+}} v_{a}(t)=0, \quad \lim _{t \rightarrow 0^{+}} v_{a}^{\prime}(t)=a>0 \tag{2.6}
\end{gather*}
$$

We attempt to find values of $a>0$ for which $v_{a}\left(R^{2-N}\right)=0$ for then $u_{a}(r)=$ $v_{a}\left(r^{2-N}\right)$ solves 1.5 - 1.6 .

Assuming there is a solution of (2.5)-(2.6) then integrating 2.5 on $(0, t)$ and using (2.6) gives

$$
\begin{equation*}
v_{a}^{\prime}(t)=a-\int_{0}^{t} h(x) f\left(v_{a}(x)\right) d x \tag{2.7}
\end{equation*}
$$

Integrating again gives

$$
\begin{equation*}
v_{a}(t)=a t-\int_{0}^{t} \int_{0}^{s} h(x) f\left(v_{a}(x)\right) d x d s \tag{2.8}
\end{equation*}
$$

Letting $v_{a}(t)=t y_{a}(t), 2.8$ becomes

$$
\begin{equation*}
y_{a}(t)=a-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f\left(x y_{a}(x)\right) d x d s \tag{2.9}
\end{equation*}
$$

We will show that there is a continuously differentiable solution of 2.9 (and thus of (2.8) on $[0, \epsilon]$ for some $\epsilon>0$.

Lemma 2.1. Let $N>2$ and assume (H1)-(H5) hold. Then there exists an $\epsilon>0$ and a unique solution of 2.8 on $[0, \epsilon]$.

Proof. Let $\epsilon>0$ and $a>0$. Also let

$$
\begin{equation*}
A=\left\{y \in C[0, \epsilon]: y(0)=a \text { and }\|y-a\|<\frac{a}{2}\right\} \tag{2.10}
\end{equation*}
$$

where $C[0, \epsilon]$ is the set of continuous functions on $[0, \epsilon]$ with the supremum norm, $\|\cdot\|$. Next using 2.9 we define $X: A \rightarrow C[0, \epsilon]$ by

$$
X y(t)= \begin{cases}a & \text { for } t=0 \tag{2.11}\\ a-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f(x y(x)) d x d s & \text { for } t>0\end{cases}
$$

Let

$$
\begin{equation*}
\tilde{\alpha}=\frac{2(N-1)-\alpha}{N-2} . \tag{2.12}
\end{equation*}
$$

By (H4) we have $K(r) \leq \frac{C_{1}}{r^{\alpha}}$ on $[R, \infty)$ then by 2.3 and 2.12 it follows that

$$
\begin{equation*}
h(t) \leq \frac{C_{2}}{t^{\tilde{\alpha}}} \quad \text { on }\left(0, R^{2-N}\right] \tag{2.13}
\end{equation*}
$$

where $C_{2}=\frac{C_{1}}{(N-2)^{2}}$. Then since $\alpha>N+q(N-2)$ (by (H4)) we see that

$$
\begin{equation*}
q+\tilde{\alpha}<1 \quad \text { and } \quad \int_{0}^{t} x^{-q} h(x) d x \leq C_{3} t^{1-q-\tilde{\alpha}} \quad \text { on }\left(0, R^{2-N}\right] \tag{2.14}
\end{equation*}
$$

where $C_{3}=\frac{C_{2}}{1-q-\tilde{\alpha}}$.
Assuming $0 \leq t \leq 1$ we let L be the Lipschitz constant for g on $[-2 a, 2 a]$ and let $y_{a} \in A$. Next using (2.11)-2.14) and (H1) we have

$$
\begin{aligned}
|X y(t)-a| & \leq \frac{1}{t} \int_{0}^{t} \int_{0}^{s}\left(x^{-q} h(x) y_{a}^{-q}(x)+h(x)\left|g\left(x y_{a}(x)\right)\right|\right) d x d s \\
& \leq \int_{0}^{t}\left(\frac{2}{a}\right)^{q} x^{-q} h(x) d x+\int_{0}^{t} 2 a L x h(x) d x \\
& \leq\left(\frac{2}{a}\right)^{q} C_{3} t^{1-q-\tilde{\alpha}}+\frac{2 a C_{2} L}{2-\tilde{\alpha}} t^{2-\tilde{\alpha}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\frac{2}{a}\right)^{q} C_{3} \epsilon^{1-q-\tilde{\alpha}}+\frac{2 a C_{2} L}{2-\tilde{\alpha}} \epsilon^{2-\tilde{\alpha}} \\
& <\frac{a}{2} \text { if } \epsilon \text { is sufficiently small. }
\end{aligned}
$$

Thus $X: A \rightarrow A$ if ϵ is sufficiently small. Suppose next that $y_{1}, y_{2} \in A$ and $0 \leq t \leq 1$. Then

$$
\begin{equation*}
X y_{1}-X y_{2}=-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left(f\left(x y_{1}(x)\right)-f\left(x y_{2}(x)\right) d x d s\right. \tag{2.15}
\end{equation*}
$$

and therefore by (H1),

$$
\begin{equation*}
\left|X y_{1}-X y_{2}\right| \leq \int_{0}^{t} x^{-q} h(x)\left|y_{1}^{-q}-y_{2}^{-q}\right| d x+\int_{0}^{t} 2 a \operatorname{Lxh}(x)\left|y_{1}-y_{2}\right| d x \tag{2.16}
\end{equation*}
$$

By the mean value theorem and the fact that $y_{1}, y_{2} \in A$ we see that

$$
\left|y_{1}^{-q}-y_{2}^{-q}\right| \leq q\left(\frac{2}{a}\right)^{q+1}\left|y_{1}-y_{2}\right| .
$$

Thus

$$
\begin{equation*}
\left|X y_{1}-X y_{2}\right| \leq\left\|y_{1}-y_{2}\right\| \int_{0}^{t}\left(\left(\frac{2}{a}\right)^{q+1} q x^{-q} h(x)+2 a L x h(x)\right) d x \tag{2.17}
\end{equation*}
$$

Since $x^{-q} h(x)$ and $x h(x)$ are integrable near $t=0$ (by (2.13)-(2.14)) then we see the integral term in 2.17) gets arbitrarily small as $t \rightarrow 0^{+}$and so there exists an $\epsilon>0$ and $0 \leq c<1$ such that for $0 \leq t \leq \epsilon$ and ϵ sufficiently small we have

$$
\left|X y_{1}-X y_{2}\right| \leq c\left\|y_{1}-y_{2}\right\| .
$$

Thus we see X is a contraction. Hence by the contraction mapping principle [3] there is a unique fixed point y_{a} of 2.11 and thus a solution $v_{a}(t)=t y_{a}(t)$ of 2.8 on $[0, \epsilon]$.

Lemma 2.2. Let $N>2$ and assume (H1)-(H5) hold. Then the solution v_{a} of (2.8) exists on $\left(0, R^{2-N}\right]$.

Proof. Consider

$$
\begin{equation*}
E_{a}=\frac{1}{2} \frac{v_{a}^{\prime 2}}{h}+F\left(v_{a}\right) \tag{2.18}
\end{equation*}
$$

Using (2.1) and (2.4) we see that

$$
\begin{equation*}
E_{a}^{\prime}=-\frac{v_{a}^{\prime 2} h^{\prime}}{h^{2}} \geq 0 \tag{2.19}
\end{equation*}
$$

From (2.6) we see $\lim _{t \rightarrow 0^{+}} E_{a}(t) \geq 0$ thus

$$
\begin{equation*}
E_{a}>0 \quad \text { for } t>0 \tag{2.20}
\end{equation*}
$$

Similarly it follows using (2.1) and (2.6) that

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2}+h F\left(v_{a}\right)=\frac{1}{2} a^{2}+\int_{0}^{t} h^{\prime}(x) F\left(v_{a}\right) d x \tag{2.21}
\end{equation*}
$$

Now for $t \geq \epsilon$ (where ϵ is from Lemma 2.1) we have

$$
\frac{1}{2} v_{a}^{\prime 2}+h F\left(v_{a}\right)=\frac{1}{2} v_{a}^{\prime 2}(\epsilon)+h(\epsilon) F\left(v_{a}(\epsilon)\right)+\int_{\epsilon}^{t} h^{\prime}(x) F\left(v_{a}\right) d x .
$$

Then since $F \geq-F_{0}$ by (H3) and $h^{\prime} \leq 0$ by 2.4 we see that

$$
\begin{aligned}
\frac{1}{2} v_{a}^{\prime 2}-h F_{0} & \leq \frac{1}{2} v_{a}^{\prime 2}+h F\left(v_{a}\right) \\
& =\frac{1}{2} v_{a}^{\prime 2}(\epsilon)+h(\epsilon) F\left(v_{a}(\epsilon)\right)+\int_{\epsilon}^{t} h^{\prime}(x) F\left(v_{a}\right) d x \\
& \leq \frac{1}{2} v_{a}^{\prime 2}(\epsilon)+h(\epsilon) F\left(v_{a}(\epsilon)\right)-F_{0}(h-h(\epsilon)) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2} \leq \frac{1}{2} v_{a}^{\prime 2}(\epsilon)+h(\epsilon)\left[F\left(v_{a}(\epsilon)\right)+F_{0}\right] \quad \text { for } t \geq \epsilon \tag{2.22}
\end{equation*}
$$

It follows from Lemma 2.1 that $v_{a}(\epsilon)$ and $v_{a}^{\prime}(\epsilon)$ are finite and so we see by 2.22 that v_{a} and v_{a}^{\prime} are uniformly bounded on $\left[\epsilon, R^{2-N}\right]$ from which it follows that v_{a} and v_{a}^{\prime} are defined on $\left[\epsilon, R^{2-N}\right]$. Combining this with Lemma 2.1 it follows that v_{a} and v_{a}^{\prime} are defined on all of $\left[0, R^{2-N}\right]$ for all $a>0$. This completes the proof.

Note that if v_{a} is a solution of (2.8) and there exists a $z_{a} \in\left(0, R^{2-N}\right]$ such that $v_{a}\left(z_{a}\right)=0$, then it follows from 2.20 that

$$
0<E_{a}\left(z_{a}\right)=\frac{1}{2} \frac{v_{a}^{\prime 2}\left(z_{a}\right)}{h\left(z_{a}\right)}
$$

and therefore $v_{a}^{\prime}\left(z_{a}\right) \neq 0$.
Lemma 2.3. Let $N>2$ and assume (H1)-(H5) hold. Suppose v_{a} solves (2.8). Then the functions $\left\{v_{a}\right\}$ vary continuously with $a>0$ on $\left[0, R^{2-N}\right]$.
Proof. Let $0<\underline{a}<\bar{a}$. We consider the set of solutions y_{a} of 2.9 such that $\left\|y_{a}-a\right\|<\frac{a}{2}$ and $0<\underline{a} \leq a \leq \bar{a}$. From 2.17) it follows that for all a with $\underline{a} \leq a \leq \bar{a}$ there is a common $\epsilon>0$ such that the corresponding mapping X_{a} from Lemma 2.1 is a contraction on $[0, \epsilon]$. Then for $0 \leq t \leq 1$ and for $\underline{a} \leq a_{1}<a_{2} \leq \bar{a}$ it follows from 2.8,

$$
y_{a_{1}}-y_{a_{2}}=a_{1}-a_{2}-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left[f\left(x y_{a_{1}}\right)-f\left(x y_{a_{2}}\right)\right] d x d s
$$

Estimating as we did in 2.17 we see

$$
\left|y_{a_{1}}-y_{a_{2}}\right| \leq\left|a_{1}-a_{2}\right|+\int_{0}^{t}\left(\left(\frac{2}{\underline{a}}\right)^{q+1} x^{-q} h(x)+2 \bar{a} L x h(x)\right)\left|y_{a_{1}}-y_{a_{2}}\right| d x
$$

Using the Gronwall inequality [5] we then obtain

$$
\left|y_{a_{1}}-y_{a_{2}}\right| \leq\left|a_{1}-a_{2}\right|\left(\left(\frac{2}{\underline{a}}\right)^{q+1} \frac{C_{2}}{1-\tilde{\alpha}-q} e^{t^{1-\tilde{\alpha}-q}}+2 \bar{a} L e^{t^{1-\tilde{\alpha}}}\right) \text { on }[0, \epsilon]
$$

and therefore

$$
\begin{equation*}
\left|v_{a_{1}}-v_{a_{2}}\right| \leq\left|a_{1}-a_{2}\right| t\left(\left(\frac{2}{\underline{a}}\right)^{q+1} \frac{C_{2}}{1-\tilde{\alpha}-q} e^{t^{1-\tilde{\alpha}-q}}+2 \bar{a} L e^{t^{1-\tilde{\alpha}}}\right) \quad \text { on }[0, \epsilon] . \tag{2.23}
\end{equation*}
$$

Thus we see the $\left\{v_{a}\right\}$ varies continuously on $[0, \epsilon]$ for all $a \in[\underline{a}, \bar{a}]$.
More generally now let $a^{*}>0$. We want to show that $v_{a} \rightarrow v_{a^{*}}$ uniformly on $\left[0, R^{2-N}\right]$ as $a \rightarrow a^{*}$. So suppose not. Then there exists an $\epsilon_{1}>0$, a sequence $x_{j} \in\left[0, R^{2-N}\right]$, and a subsequence $v_{a_{j}}$ such that

$$
\begin{equation*}
\left|v_{a_{j}}\left(x_{j}\right)-v_{a^{*}}\left(x_{j}\right)\right| \geq \epsilon_{1} \text { for all } j \tag{2.24}
\end{equation*}
$$

However it follows from comments at the beginning of the proof of this lemma that the $v_{a_{j}}$ and $v_{a_{j}}^{\prime}$ are uniformly bounded on $[0, \epsilon]$ for all a_{j} sufficiently close to a^{*} and then from 2.22 we see that the $v_{a_{j}}$ and $v_{a_{j}}^{\prime}$ are uniformly bounded on $\left[0, R^{2-N}\right]$ for all a_{j} sufficiently close to a^{*}. Then by the Arzela-Ascoli theorem there is a subsequence of the $v_{a_{j}}$, say $v_{a_{j_{k}}}$, such that $v_{a_{j_{k}}} \rightarrow v^{*}$ uniformly on $\left[0, R^{2-N}\right]$ which contradicts 2.24. This completes the proof.

Lemma 2.4. Let $N>2$ and assume (H1)-(H5) hold. Then v_{a} has only have a finite number of local extrema on $\left[0, R^{2-N}\right]$. In addition, $\left\|v_{a}\right\|=\max _{\left[0, R^{2-N}\right]}\left|v_{a}\right| \rightarrow$ ∞ as $a \rightarrow \infty$. Further, if v_{a} has a local maximum, M_{a}, with $v_{a}^{\prime}>0$ on $\left(0, M_{a}\right)$ then $v_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$.

Proof. First, if $M_{n} \in\left(0, R^{2-N}\right]$ were distinct local extrema for v_{a} then a subsequence (still labeled M_{n}) would converge to some $M^{*} \in\left[0, R^{2-N}\right]$ and it would follow that $v_{a}^{\prime}\left(M^{*}\right)=0$. Since $\lim _{t \rightarrow 0^{+}} v_{a}^{\prime}(t)=a>0$ then $M^{*}>0$. Also by the mean value theorem

$$
0=v_{a}^{\prime}\left(M_{k}\right)-v_{a}^{\prime}\left(M_{k+1}\right)=v_{a}^{\prime \prime}\left(c_{k}\right)\left(M_{k}-M_{k+1}\right)
$$

with c_{k} between M_{k} and M_{k+1} (and in particular $c_{k} \neq 0$) and thus $v_{a}^{\prime \prime}\left(c_{k}\right)=0$ so by (2.1) we see $f\left(v_{a}\left(c_{k}\right)\right)=0$. Since $M_{k} \rightarrow M^{*}$ then we also have $c_{k} \rightarrow M^{*}$ and thus $f\left(v_{a}\left(M^{*}\right)\right)=0$ so $v_{a}\left(M^{*}\right)=0$ or $\pm \beta$. This along with $v_{a}^{\prime}\left(M^{*}\right)=0$ implies by (H3) and 2.20 that $0<E\left(M^{*}\right)=F(\beta)<0$ or $0<E\left(M^{*}\right)=F(0)=0$ so in either case we get a contradiction. Thus v_{a} has only a finite number of extrema on $\left[0, R^{2-N}\right]$.

Next we show that

$$
\begin{equation*}
\left\|v_{a}\right\|=\max _{\left[0, R^{2-N}\right]}\left|v_{a}\right| \rightarrow \infty \quad \text { as } a \rightarrow \infty . \tag{2.25}
\end{equation*}
$$

We assume by the way of contradiction that $\left|v_{a}\right| \leq Q$ on $\left[0, R^{2-N}\right]$.
First we rewrite (2.1) as $\left(t v_{a}^{\prime}-v_{a}\right)^{\prime}=-t h(t) f\left(v_{a}\right)$ and so integrating on $(0, t)$ gives $t v_{a}^{\prime}-v_{a}=-\int_{0}^{t} x h(x) f\left(v_{a}\right) d x$. Thus $\left(\frac{v_{a}}{t}\right)^{\prime}=-\frac{1}{t^{2}} \int_{0}^{t} x h(x) f\left(v_{a}\right) d x$ and so

$$
\begin{equation*}
v_{a}=a t-t \int_{0}^{t} \frac{1}{t^{2}} \int_{0}^{s} x h(x) f\left(v_{a}\right) d x d s \tag{2.26}
\end{equation*}
$$

Case 1: $v_{a}>0$ on ($0, R^{2-N}$]. It follows from (H1) that $|g(v)| \leq C_{4}|v|^{p}+C_{5}$ for all v for some constants C_{4} and C_{5}. After rewriting and estimating 2.26) using (H1) and that $v_{a}>0$ gives

$$
\begin{align*}
a t & =v_{a}+t \int_{0}^{t} \frac{1}{s^{2}} \int_{0}^{s} x h(x) f\left(v_{a}\right) d x d s \\
& \leq v_{a}+t \int_{0}^{t} \frac{1}{s^{2}} \int_{0}^{s} x h(x) g\left(v_{a}\right) d x d s \tag{2.27}\\
& \leq Q+t \int_{0}^{t} \frac{1}{s^{2}} \int_{0}^{s} x h(x)\left(C_{4} Q^{p}+C_{5}\right) d x d s \\
& \leq Q+\frac{C_{2}\left(C_{4} Q^{p}+C_{5}\right)}{(1-\tilde{\alpha})(2-\tilde{\alpha})} t^{2-\tilde{\alpha}} .
\end{align*}
$$

Now let $t=R^{2-N}$ in 2.27) and we obtain

$$
\begin{equation*}
a R^{2-N} \leq Q+\frac{C_{2}\left(C_{4} Q^{p}+C_{5}\right)}{(1-\tilde{\alpha})(2-\tilde{\alpha})} R^{(2-N)(2-\tilde{\alpha})} \tag{2.28}
\end{equation*}
$$

which gives a contradiction because the right-hand side is bounded but the left-hand side goes to ∞ as $a \rightarrow \infty$. This completes Case 1 .
Case 2: There exists z_{a} with $0<z_{a}<R^{2-N}$ such that $v_{a}\left(z_{a}\right)=0$ and $v_{a}>0$ on $\left(0, z_{a}\right)$. In this case we see v_{a} has a local maximum, M_{a}, with $0<M_{a}<z_{a} \leq R^{2-N}$ and letting $t=M_{a}$ in 2.27 we obtain

$$
\begin{equation*}
a M_{a} \leq Q+\frac{C_{2}\left(C_{4} Q^{p}+C_{5}\right)}{(1-\tilde{\alpha})(2-\tilde{\alpha})} M_{a}^{2-\tilde{\alpha}} \leq Q+\frac{C_{2}\left(C_{4} Q^{p}+C_{5}\right)}{(1-\tilde{\alpha})(2-\tilde{\alpha})} R^{(2-N)(2-\tilde{\alpha})} \tag{2.29}
\end{equation*}
$$

If $M_{a} \geq d_{0}>0$ for all sufficiently large a then left-hand side of 2.29 goes to infinity as $a \rightarrow \infty$ but the right-hand side does not. Thus $\max _{\left[0, R^{2-N}\right]}\left|v_{a}\right| \geq$ $v_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$.

Thus the only case left to consider is if $M_{a} \rightarrow 0$ as $a \rightarrow \infty$. So by way of contradiction suppose that the $v_{a}\left(M_{a}\right)$ are bounded by some constant Q and that $M_{a} \rightarrow 0$ as $a \rightarrow \infty$. Then integrating 2.5 on $\left[t, M_{a}\right]$ gives

$$
v_{a}^{\prime}(t)=\int_{t}^{M_{a}} h(x) f\left(v_{a}(x)\right) d x \leq \int_{t}^{M_{a}} h(x) g\left(v_{a}(x)\right) d x
$$

Integrating on $\left[0, M_{a}\right]$ and using the Lipschitz constant L_{2} for $g(v)$ on $[0, Q]$ gives

$$
\begin{aligned}
v_{a}\left(M_{a}\right) & =\int_{0}^{M_{a}} \int_{t}^{M_{a}} h(x) f\left(v_{a}(x)\right) d x d t \\
& \leq \int_{0}^{M_{a}} \int_{t}^{M_{a}} h(x) g\left(v_{a}(x)\right) d x d t \\
& \leq L_{2} v_{a}\left(M_{a}\right) \int_{0}^{M_{a}} \int_{t}^{M_{a}} h(x) d x d t
\end{aligned}
$$

Then using 2.13) and that $v_{a}\left(M_{a}\right)>0$ we obtain

$$
\begin{equation*}
1 \leq L_{2} \int_{0}^{M_{a}} \int_{t}^{M_{a}} h(x) d x d t \leq \frac{L_{2} C_{2}}{2-\tilde{\alpha}} M_{a}^{2-\tilde{\alpha}} \tag{2.30}
\end{equation*}
$$

Thus since $\tilde{\alpha}<1$ (by 2.14) then the right-hand side of 2.30 goes to zero (since we are assuming $M_{a} \rightarrow 0$) but the left-hand side does not. Thus we obtain a contradiction and so in Case 2 we see as well that $\max _{\left[0, R^{2-N}\right]}\left|v_{a}\right| \geq v_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$.

Thus in all cases we see that $\left\|v_{a}\right\|=\max _{\left[0, R^{2-N}\right]}\left|v_{a}\right| \rightarrow \infty$ as $a \rightarrow \infty$. This completes the proof.

Lemma 2.5. Let $N>2$ and assume (H1)-(H5) hold. Then if $a>0$ is sufficiently large then v_{a} has a local maximum, M_{a}, with $v_{a}^{\prime}>0$ on $\left(0, M_{a}\right)$. In addition, $M_{a} \rightarrow 0$ as $a \rightarrow \infty$.

Proof. We first define t_{a} as the smallest value of t (if one exists) such that $v_{a}\left(t_{a}\right)=\beta$ and $0<v_{a}<\beta$. We see then that $f\left(v_{a}\right) \leq 0$ on $\left(0, t_{a}\right)$ and thus $v_{a}^{\prime \prime} \geq 0$ on $\left(0, t_{a}\right)$. It then follows that $v_{a} \geq a t$ here. Thus we see v_{a} gets larger than β on $\left[0, R^{2-N}\right]$ if a is sufficiently large. Then letting $t=t_{a}$ in this inequality we see $\beta \geq a t_{a}$ and therefore

$$
\begin{equation*}
t_{a} \rightarrow 0 \quad \text { as } a \rightarrow \infty \tag{2.31}
\end{equation*}
$$

Next we show v_{a} has a local maximum if a is sufficiently large. So suppose not. Then v_{a} is increasing on $\left[0, R^{2-N}\right]$ for sufficiently large a and since $v_{a}(0)=0$ it also follows that $v_{a}>0$ on $\left(0, R^{2-N}\right]$. From 2.25 we see that $v_{a}\left(R^{2-N}\right)=\max _{\left[0, R^{2-N}\right]}\left|v_{a}\right| \rightarrow$ ∞ as $a \rightarrow \infty$. Then from 2.5 it follows that $v_{a}^{\prime \prime} \leq 0$ on $\left[t_{a}, R^{2-N}\right]$ thus v_{a} is concave down here and therefore

$$
\begin{equation*}
v_{a}\left(\frac{t_{a}+R^{2-N}}{2}\right) \geq \frac{v_{a}\left(R^{2-N}\right)+\beta}{2} \rightarrow \infty \quad \text { as } a \rightarrow \infty . \tag{2.32}
\end{equation*}
$$

Now let

$$
\begin{equation*}
A_{a}=\min _{\left[\frac{t_{a}+R^{2}-N}{2}, R^{2-N}\right]} \frac{h(t) f\left(v_{a}\right)}{v_{a}} . \tag{2.33}
\end{equation*}
$$

Since $h(t)>0$ is continuous on $\left[\frac{1}{2} R^{2-N}, R^{2-N}\right] \supset\left[\frac{t_{a}+R^{2-N}}{2}, R^{2-N}\right]$ it follows that $h(t)$ is bounded from below by a positive constant on $\left[\frac{1}{2} R^{2-N}, R^{2-N}\right]$. Also from (H1) we see that $f(v)$ is superlinear and so by $2.32-2.33$) and the fact that v_{a} is increasing on $\left[\frac{t_{a}+R^{2-N}}{2}, R^{2-N}\right]$ we see $\frac{f\left(v_{a}\right)}{v_{a}} \rightarrow \infty$ uniformly for $t \in\left[\frac{t_{a}+R^{2-N}}{2}, R^{2-N}\right]$. Thus

$$
\begin{equation*}
\lim _{a \rightarrow \infty} A_{a}=\infty \tag{2.34}
\end{equation*}
$$

Next we apply the Sturm comparison theorem [4]. We consider

$$
\begin{equation*}
v_{a}^{\prime \prime}+\left(\frac{h(t) f\left(v_{a}\right)}{v_{a}}\right) v_{a}=0 \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime \prime}+A_{a} z=0 \tag{2.36}
\end{equation*}
$$

where

$$
v_{a}\left(\frac{t_{a}+R^{2-N}}{2}\right)=z\left(\frac{t_{a}+R^{2-N}}{2}\right)>\beta, \quad v_{a}^{\prime}\left(\frac{t_{a}+R^{2-N}}{2}\right)=z^{\prime}\left(\frac{t_{a}+R^{2-N}}{2}\right)>0
$$

By way of contradiction we assume now that $v_{a}>0$ on $\left(0, R^{2-N}\right]$. Since $z^{\prime \prime}+A_{a} z=$ 0 and $z \not \equiv 0$ then we know z is a linear combination of $\sin \left(\sqrt{A_{a}} t\right)$ and $\cos \left(\sqrt{A_{a}} t\right)$. In particular, any interval of length $\frac{\pi}{\sqrt{A_{a}}}$ contains a zero of $z(t)$. Thus there exists a $z_{0}>0$ with $z\left(z_{0}\right)=0, z(t)>0$ on $\left[\frac{t_{a}+R^{2-N}}{2}, z_{0}\right)$, and

$$
\frac{t_{a}+R^{2-N}}{2}<z_{0}<\frac{t_{a}+R^{2-N}}{2}+\frac{\pi}{\sqrt{A_{a}}}
$$

Since $\frac{1}{\sqrt{A_{a}}} \rightarrow 0$ by 2.34 and $t_{a} \rightarrow 0$ by 2.31) as $a \rightarrow \infty$ it follows that $z_{0}<R^{2-N}$ if a is sufficiently large. Now multiplying (2.35) by $z, 2.36$ by v_{a}, and subtracting gives

$$
\begin{equation*}
\left(v_{a}^{\prime} z-v_{a} z^{\prime}\right)^{\prime}+\left(\frac{h(t) f\left(v_{a}\right)}{v_{a}}-A_{a}\right) v_{a} z=0 \tag{2.37}
\end{equation*}
$$

By assumption $\left(\frac{h(t) f\left(v_{a}\right)}{v_{a}}-A_{a}\right) v_{a} z \geq 0$ on $\left[\frac{t_{a}+R^{2-N}}{2}, z_{0}\right]$ and so $\left(v_{a}^{\prime} z-v_{a} z^{\prime}\right)^{\prime} \leq 0$ on $\left[\frac{t_{a}+R^{2-N}}{2}, z_{0}\right]$. Integrating on $\left[\frac{t_{a}+R^{2-N}}{2}, t\right]$ with $t \leq z_{0}$ gives

$$
\begin{equation*}
v_{a}^{\prime} z-v_{a} z^{\prime} \leq 0 \quad \text { on }\left[\frac{t_{a}+R^{2-N}}{2}, z_{0}\right] \tag{2.38}
\end{equation*}
$$

which implies $\left(\frac{z}{v_{a}}\right)^{\prime} \geq 0$ on $\left[\frac{t_{a}+R^{2-N}}{2}, z_{0}\right]$ and so after integrating we obtain $v_{a} \leq z$ on $\left[\frac{t_{a}+R^{2-N}}{2}, z_{0}\right]$. In particular, $v_{a}\left(z_{0}\right) \leq z\left(z_{0}\right)=0$ which contradicts that $v_{a}>0$ on ($\left.0, R^{2-N}\right]$. Therefore if a is sufficiently large then our assumption that v_{a} is
increasing is false and so v_{a} has a positive local maximum, M_{a}, with $t_{a}<M_{a}<$ R^{2-N} and v_{a} increasing on $\left[0, M_{a}\right)$. It then follows as in the proof of Lemma 2.3 that

$$
\begin{equation*}
v_{a}\left(M_{a}\right) \rightarrow \infty \quad \text { as } a \rightarrow \infty \tag{2.39}
\end{equation*}
$$

Next we show $M_{a} \rightarrow 0$ as $a \rightarrow \infty$. Using 2.39 and the fact that $v_{a}^{\prime \prime} \leq 0$ on $\left[\frac{t_{a}+M_{a}}{2}, M_{a}\right]$ gives

$$
\begin{equation*}
v_{a}\left(\frac{t_{a}+M_{a}}{2}\right) \geq \frac{v_{a}\left(M_{a}\right)+\beta}{2} \rightarrow \infty \text { as } a \rightarrow \infty \tag{2.40}
\end{equation*}
$$

Thus we see $v_{a} \rightarrow \infty$ uniformly on $\left[\frac{t_{a}+M_{a}}{2}, M_{a}\right]$.
Next notice from (H1) and (H3) that

$$
\begin{equation*}
f(v) \geq c_{0} v^{p} \quad \text { for } v \geq \gamma \text { for some } c_{0}>0 \tag{2.41}
\end{equation*}
$$

Thus

$$
\begin{equation*}
v^{\prime \prime}+c_{0} h(t) v^{p} \leq v^{\prime \prime}+h(t) f(v)=0 \quad \text { when } v \geq \gamma \tag{2.42}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\left(\frac{v^{\prime}}{v^{p}}\right)^{\prime}+c_{0} h(t) \leq 0 \quad \text { when } v \geq \gamma \tag{2.43}
\end{equation*}
$$

Integrating this on $\left[t, M_{a}\right]$ then integrating on $\left[\frac{t_{a}+M_{a}}{2}, M_{a}\right]$ and estimating gives

$$
\begin{equation*}
c_{0} \int_{\frac{t_{a}+M_{a}}{2}}^{M_{a}} \int_{t}^{M_{a}} h(x) d x d t \leq \frac{1}{(p-1) v^{p-1}\left(\frac{t_{a}+M_{a}}{2}\right)} . \tag{2.44}
\end{equation*}
$$

From 2.39- 2.40 and since $p>1$ (by (H1)) the right-hand side of 2.44) goes to 0 as $a \rightarrow \infty$. Also since $t_{a} \rightarrow 0$ as $a \rightarrow \infty$ by (2.31) it follows that

$$
\begin{equation*}
M_{a} \rightarrow 0 \quad \text { as } a \rightarrow \infty \tag{2.45}
\end{equation*}
$$

This completes the proof.

Lemma 2.6. Let $N>2$ and assume (H1)-(H5) hold. Let n be a positive integer. If $a>0$ is sufficiently large then v_{a} has n zeros on $\left(0, R^{2-N}\right]$ such that $0<z_{1, a}<$ $z_{2, a}<\cdots<z_{n, a}$ and $z_{n, a} \rightarrow 0$ as $a \rightarrow \infty$.

Proof. Since $E_{a}(t)$ is nondecreasing we have

$$
\begin{equation*}
\frac{1}{2} \frac{v_{a}^{\prime 2}}{h}+F\left(v_{a}\right)=E_{a}(t) \geq E_{a}\left(M_{a}\right)=F\left(v_{a}\left(M_{a}\right)\right) \tag{2.46}
\end{equation*}
$$

Now we have $v_{a}>0$ and $v_{a}^{\prime}<0$ on $\left(M_{a}, t\right)$ for t close to M_{a}. We notice now that v_{a} cannot have a positive local minimum, m_{a}, on $\left(M_{a}, R^{2-N}\right)$ with v_{a} decreasing on $\left(M_{a}, m_{a}\right)$ for at such a point we would have $0<v_{a}\left(m_{a}\right)<v_{a}\left(M_{a}\right)$ and since E_{a} is nondecreasing it follows that $F\left(v_{a}\left(m_{a}\right)\right)=E\left(m_{a}\right) \geq E\left(M_{a}\right)=F\left(v_{a}\left(M_{a}\right)\right)>0$ and so $v_{a}\left(m_{a}\right)>\gamma$ but F is increasing (by (H1)-(H3)) for $v>\gamma$ and thus $F\left(v_{a}\left(m_{a}\right)\right)<$ $F\left(v_{a}\left(M_{a}\right)\right.$. Hence we get a contradiction.

Thus we see either v_{a} is decreasing and positive on $\left[M_{a}, R^{2-N}\right]$ or v_{a} has a zero on $\left[M_{a}, R^{2-N}\right]$. Let us suppose the former. Then rewriting 2.46 and integrating
on $\left(M_{a}, R^{2-N}\right)$ gives

$$
\begin{align*}
& \int_{0}^{v_{a}\left(M_{a}\right)} \frac{1}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F(s)}} d s \\
& \geq \int_{v_{a}\left(R^{2-N}\right)}^{v_{a}\left(M_{a}\right)} \frac{1}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F(s)}} d s \\
& =\int_{M_{a}}^{R^{2-N}} \frac{-v_{a}^{\prime}(t)}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F\left(v_{a}(t)\right)}} d t \tag{2.47}\\
& \geq \int_{M_{a}}^{R^{2-N}} \sqrt{h} d t .
\end{align*}
$$

Since f is superlinear and $v_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$ (by Lemma 2.5) it follows that the left-hand side of 2.47 goes to 0 as $a \rightarrow \infty$ but the right-hand side of 2.47) does not and so we obtain a contradiction. Therefore if a is sufficiently large then v_{a} has a zero, z_{a}, on $\left(M_{a}, z_{a}\right)$. Now rewriting 2.46) and integrating on $\left(M_{a}, z_{a}\right)$ we obtain

$$
\begin{equation*}
\int_{0}^{v_{a}\left(M_{a}\right)} \frac{1}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F(t)}} d t \geq \int_{M_{a}}^{z_{a}} \sqrt{h} d t \tag{2.48}
\end{equation*}
$$

And again the left-hand side goes to 0 as $a \rightarrow \infty$ so therefore must the right-hand side and since we know $M_{a} \rightarrow 0$ from Lemma 2.5 it follows that $z_{a} \rightarrow 0$ as well when $a \rightarrow \infty$.

Repeating this process it follows that given any positive integer n if a is sufficiently large then v_{a} will have n zeros, $0<z_{1}<z_{2}<\cdots<z_{n-1}<z_{n}<R^{2-N}$, and $z_{n} \rightarrow 0$ as $a \rightarrow \infty$. This completes the proof.

3. Proof of Theorem 1.1

Let

$$
S_{n}=\left\{a>0: v_{a} \text { has exactly } n \text { zeros on }\left(0, R^{2-N}\right)\right\}
$$

Then S_{n} is nonempty for some smallest value of n, say n_{0}, by Lemma 2.5 and S_{n} is bounded above by Lemma 2.6. Therefore we let

$$
a_{n_{0}}=\sup S_{n_{0}} .
$$

We claim that $v_{a_{n_{0}}}$ has exactly n_{0} zeros on $\left(0, R^{2-N}\right)$ and $v_{a_{0}}\left(R^{2-N}\right)=0$.
First, if $v_{a_{n_{0}}}$ has an $\left(n_{0}+1\right)$ st zero on $\left(0, R^{2-N}\right)$ then by the continuous dependence on initial parameters of the $\left\{v_{a}\right\}$ (Lemma 2.3) and since $v_{a_{n_{0}}}^{\prime}(z) \neq 0$ at each zero, z, of $v_{a_{n_{0}}}$ (by the note after Lemma 2.2) it follows that v_{a} will have an $\left(n_{0}+1\right)$ st zero on $\left(0, R^{2-N}\right)$ for a slightly smaller than $a_{n_{0}}$ contradicting the definition of $S_{n_{0}}$. Similarly, if $v_{a_{n_{0}}}$ has fewer than n_{0} zeros on $\left(0, R^{2-N}\right)$ then so would v_{a} for a slightly larger than $a_{n_{0}}$ contradicting the definition of supremum. Thus $v_{a_{n_{0}}}$ must have exactly n_{0} zeros on $\left(0, R^{2-N}\right)$. Similarly it follows that $v_{a_{n_{0}}}\left(R^{2-N}\right)=0$ for if $v_{a_{n_{0}}}\left(R^{2-N}\right)>0$ then by continuous dependence $v_{a}\left(R^{2-N}\right)>0$ for a slightly smaller than $a_{n_{0}}$ contradicting the definition of $S_{n_{0}}$ and if $v_{a_{n_{0}}}\left(R^{2-N}\right)<0$ then $v_{a}\left(R^{2-N}\right)<0$ for a slightly larger than $a_{n_{0}}$ contradicting the definition of supremum. Thus $v_{a_{n_{0}}}\left(R^{2-N}\right)=0$.

Now for a slightly larger than $a_{n_{0}}$, due to continuous dependence and that $v_{a}^{\prime}(z) \neq 0$ at each zero of v_{a} then v_{a} will have exactly $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$
and therefore $S_{n_{0}+1}$ will be nonempty. Again by Lemma 2.6 it follows that $S_{n_{0}+1}$ will be bounded above thus we can define

$$
a_{n_{0}+1}=\sup S_{n_{0}+1}
$$

and similarly we show that $v_{a_{n_{0}+1}}$ has exactly $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$ and $v_{a_{n_{0}+1}}\left(R^{2-N}\right)=0$. Continuing in this way we can obtain an infinite number of solutions of (1.4)- 1.5 , one with any number, n, of zeros on $\left(0, R^{2-N}\right)$ for $n \geq n_{0}$. This completes the proof of the main theorem.

References

[1] H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[2] H. Berestycki, P. L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
[3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[4] G. Birkhoff, G. C. Rota; Ordinary differential equations, Ginn and Company, 1962.
[5] F. Bauer, J. Noel; The qualitative theory of differential equations: an introduction, Dover, 1969.
[6] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[7] M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, Boundary Value Problems, 198-207, 2014.
[8] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, Journal of Partial Differential Equations, Volume 30, No. 4, 1-17, 2017.
[9] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, No. 181, 1-14, 2018.
[10] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, Journal of Mathematical Analysis and Applications, 446, 591-604, 2017.
[11] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[12] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electronic Journal of Differential Equations, No. 133, 1-10, 2017.
[13] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, 434, No. 2, 1597-1611, 2016.
[14] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[15] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990
[16] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[17] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

Email address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domain; semilinear; singular; superlinear; radial solution. (C) 2019 Texas State University.

 Submitted March 9, 2018. Published September 23, 2019.

