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DARBOUX TRANSFORMATION FOR THE DISCRETE

SCHRÖDINGER EQUATION

TUNCAY AKTOSUN, ABDON E. CHOQUE-RIVERO, VASSILIS G. PAPANICOLAOU

Abstract. The discrete Schrödinger equation on a half-line lattice with the
Dirichlet boundary condition is considered when the potential is real valued,

is summable, and has a finite first moment. The Darboux transformation

formulas are derived from first principles showing how the potential and the
wave function change when a bound state is added to or removed from the

discrete spectrum of the corresponding Schrödinger operator without changing

the continuous spectrum. This is done by explicitly evaluating the change in
the spectral density when a bound state is added or removed and also by

determining how the continuous part of the spectral density changes. The

theory presented is illustrated with some explicit examples.

1. Introduction

Our goal in this article is to analyze the Darboux transformation for the dis-
crete Schrödinger equation on the half-line lattice with the Dirichlet boundary
condition. In the Darboux transformation, the continuous part of the correspond-
ing Schrödinger operator is unchanged and only the discrete part of the spectrum
is changed by adding or removing a finite number of discrete eigenvalues to the
spectrum. We can view the process of adding or removing discrete eigenvalues as
changing the “unperturbed” potential and the “unperturbed” wavefunction into
the “perturbed” potential and the “perturbed” wavefunction, respectively. Hence,
our goal is to present the Darboux transformation formulas at the potential level
and at the wavefunction level, by expressing the change in the potential and in the
wavefunction in terms of quantities related to the perturbation and the unperturbed
quantities.

The Darboux transformation was termed to honor the work of French mathe-
matician Gaston Darboux [9], and it is useful for various reasons. For example, it
allows us to produce explicit solutions to differential or difference equations by per-
turbing an already known explicit solution. As another example, we can mention
that Darboux transformations for certain nonlinear partial differential equations or
nonlinear partial differential-difference equations yield so-called soliton solutions,
which have important applications [16] in wave propagation of electromagnetic
waves and surface water waves. We refer the reader to the existing literature
[5, 10, 16, 17, 18] on the wide applications of Darboux transformation, and in our
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paper we concentrate on the mathematical aspects of the Darboux transformation
for the Schrödinger equation on the half-line lattice with the Dirichlet boundary
condition.

On the half-line lattice the discrete Schrödinger equation is given by

− ψn+1 + 2ψn − ψn−1 + Vnψn = λψn, n ≥ 1, (1.1)

where λ is the spectral parameter, n is the spacial independent variable taking
positive integer values, and the subscripts are used to denote the dependence on n.
Thus, ψn denotes the value of the wavefunction at n and Vn denotes the value of
the potential at n. The point n = 0 corresponds to the boundary. We remark that
(1.1) is the analog of the half-line Schrödinger equation

− ψ′′ + V (x)ψ = λψ, x > 0, (1.2)

where λ is the spectral parameter, the prime denotes the x-derivative, ψ is the
wavefunction, and V (x) is the potential. The point x = 0 corresponds to the
boundary. In analogy to (1.2), we can use (1.1) to describe [19] the behavior of a
quantum mechanical particle on a half-line lattice (such as a crystal) experiencing
the force at each lattice point n resulting from the potential value Vn.

In order to determine the spectrum of the corresponding Schrödinger operator
related to (1.1) and to identify a square-summable solution in n as an eigenfunction,
we must impose a boundary condition on square-summable wavefunctions at n = 0.
In applications related to quantum mechanics, it is appropriate to use the Dirichlet
boundary condition at x = 0 for (1.2), i.e.

ψ(0) = 0,

and hence we impose the Dirichlet boundary condition at n = 0 for (1.1), i.e.

ψ0 = 0. (1.3)

The spectrum of the corresponding operator for (1.2) is well understood when the
potential V (x) is real valued and satisfies the so-called L1

1-condition [5, 10, 11] given
by ∫ ∞

0

dx (1 + x) |V (x)| < +∞. (1.4)

Similarly, we assume that Vn is real valued and satisfies the analog of (1.4) given
by

∞∑
n=1

(1 + n) |Vn| < +∞. (1.5)

Clearly, (1.5) is equivalent to
∞∑
n=1

n |Vn| < +∞. (1.6)

The class of real-valued potentials V (x) satisfying (1.4) is usually known [5, 10, 11]
as the Faddeev class. Similarly, we refer to the set of real-valued potentials Vn
satisfying (1.5), or equivalently (1.6), as the Faddeev class. The existence of the
first moments in (1.4) and (1.5) assures that the number of discrete eigenvalues for
each of the corresponding Schrödinger operators is finite.

Our paper is organized as follows. In Section 2 we present the appropriate prelim-
inaries involving the Jost solution and the regular solution to (1.1); the Schrödinger
operator, the scattering states, the bound states, the Jost function, the scattering
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matrix, the phase shift, and the spectral density associated with (1.1) and (1.3);
the exceptional and generic cases that are related to λ = 0 and λ = 4 for the
Schrödinger operator; Levinson’s theorem; and the Gel’fand-Levitan procedure as-
sociated with (1.1) and (1.3). In Section 3 we present the Darboux transformation
formulas when a bound state is added to the spectrum of the Schrödinger opera-
tor. In Theorem 3.1 we prove that the matrix inverses appearing in the relevant
Darboux transformation formulas in Section 3 are well defined. In Section 4 we
present the Darboux transformation formulas when a bound state is removed from
the spectrum of the Schrödinger operator. In Theorem 4.1 we prove that the matrix
inverses appearing in the relevant Darboux transformation formulas in Section 4
are well defined. Finally, in Section 5 we present some illustrative examples for
better understanding of the results introduced and also make a contrast between
(1.1) and (1.2) for certain results [2] related to compactly-supported potentials.

The most relevant reference for our paper is [3], and in the current paper we use
the notation used in [3]. The results in [3] were presented under the assumption
that the potential is compactly supported, i.e. Vn = 0 for n > b for some positive
integer b. In Section 2 we present the corresponding results when Vn belongs to the
Faddeev class and does not necessarily have a compact support. Another relevant
reference for our paper is the classic work by Case and Kac [4]. Even though
[4] is more related to the Jacobi operator and not to the Schrödinger operator,
the treatment of the spectral density in [4] is useful. We remark that the Darboux
transformation results related to the Jacobi operators do not reduce to the Darboux
transformation results for the Schrödinger operator. Hence, in our paper we use
the Gel’fand-Levitan theory [4, 5, 12] and an appropriate formula for the spectral
density for the corresponding Schrödinger operator with bound states, and we derive
the Darboux transformation from first principles.

2. Preliminaries

In this section, associated with (1.1) and (1.3) we introduce various quantities
such as the Jost solution fn, the regular solution ϕn, the Jost function f0, the scat-
tering matrix S, and the spectral measure dρ. We also present the basic properties
of such quantities relevant to our analysis of Darboux transformations.

When the potential in (1.1) belongs to the Faddeev class, the Schrödinger op-
erator corresponding to (1.1) and to the Dirichlet boundary condition (1.3) is a
selfadjoint operator acting on the class of square-summable functions. The spec-
trum of the corresponding operator is well understood [3, 4, 7, 8, 13, 14, 15]. Let us
use R to denote the real axis (−∞,+∞). The continuous spectrum corresponds to
λ ∈ [0, 4], and the discrete spectrum consists of at most a finite number of discrete
eigenvalues in R \ [0, 4], i.e. λ ∈ (−∞, 0) ∪ (4,+∞). For each λ-value in the inter-
val (0, 4), there are two linearly independent solutions to (1.1). There is only one
linearly independent solution satisfying both (1.1) and (1.3), and such a solution is
usually identified as a physical solution. Let us assume that the discrete spectrum
consists of N eigenvalues given by {λs}Ns=1, where N = 0 corresponds to the ab-
sence of the discrete spectrum. When λ = λs, there is only one linearly independent
square-summable solution satisfying (1.1) and (1.3). For each of λ = 0 and λ = 4,
there exists one linearly independent solution satisfying (1.1) and (1.3), and such
a solution may be either bounded in n or it may grow as O(n) as n → +∞. For
λ = 0, one says that the exceptional case occurs if a solution satisfying (1.1) and



4 T. AKTOSUN, A. E. CHOQUE-RIVERO, V. G. PAPANICOLAOU EJDE-2019/112

(1.3) is bounded in n and that the generic case occurs if a solution satisfying (1.1)
and (1.3) is not bounded in n. Similarly, for λ = 4, the exceptional case occurs if a
solution satisfying (1.1) and (1.3) is bounded in n and that the generic case occurs
if a solution satisfying (1.1) and (1.3) is not bounded in n.

In quantum mechanics, it is customary to interpret the discrete spectrum as-
sociated with (1.1) and (1.3) as the bound states. Hence, the λs-values in the
discrete spectrum can be called the bound-state energies and the corresponding
square-summable solutions can be called bound-state wavefunctions. The solutions
to (1.1) when λ ∈ (0, 4) can be referred to as scattering solutions.

Associated with (1.1), instead of λ, it is convenient at times to use another
spectral parameter related to λ, usually denoted by z, given by

z := 1− λ

2
+

1

2

√
λ(λ− 4), (2.1)

where the square root is used to denote the principal branch of the complex square-
root function. Note that (2.1) yields

λ = 2− z − z−1. (2.2)

Let us use T for the unit circle |z| = 1 in the complex plane C, T+ for the upper

portion of T given by z = eiθ with θ ∈ (0, π), and T+ for the closure of T+ given
by z = eiθ with θ ∈ [0, π]. Under the transformation from λ ∈ C to z ∈ C, the real
interval λ ∈ (0, 4) is mapped to z ∈ T+, the real half line λ ∈ (−∞, 0) is mapped
to the real interval z ∈ (0, 1), the real interval λ ∈ (4,+∞) is mapped to the real
interval z ∈ (−1, 0), the point λ = 0 is mapped to z = 1, and the point λ = 4 is
mapped to z = −1. Using (2.2) it is convenient to write (1.1) as

ψn+1 + ψn−1 = (z + z−1 + Vn)ψn, n ≥ 1. (2.3)

Let us now consider certain particular solutions to (1.1). A relevant solution
to (1.1) or equivalently to (2.3) is the so-called regular solution ϕn satisfying the
initial conditions

ϕ0 = 0, ϕ1 = 1. (2.4)

From (2.3) and (2.4) it follows that ϕn remains unchanged if we replace z with z−1

in ϕn.
The result presented in the following theorem is already known and its proof

is omitted. A proof in our own notation can be obtained as in the proof of [3,
Theorem 2.6].

Theorem 2.1. Assume that the potential Vn belongs to the Faddeev class. Then,
for n ≥ 1 the regular solution ϕn to (1.1) with the initial values (2.4) is a polynomial
in λ of degree n− 1 and is given by

ϕn =

n−1∑
j=0

Bnjλ
j , (2.5)

where, for each fixed positive integer n, the set of coefficients {Bnj}n−1j=0 are real

valued and uniquely determined by the ordered set {V1, V2, . . . , Vn−1} of potential
values. In particular, we have

Bn(n−1) = (−1)n−1, Bn(n−2) = (−1)n−2
[
2(n− 1) +

n−1∑
j=1

Vj

]
.
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We remark that Theorem 2.1 holds even when the potential Vn does not belong
to the Faddeev class. If the potential values are allowed to be complex, then the
coefficients Bnj appearing in (2.5) are complex valued.

From (2.5) it is clear that the λ-domain of ϕn is the entire complex λ-plane.
With the help of (2.2), we can conclude that the z-domain of ϕn corresponds to
the punctured complex z-plane with the point z = 0 removed.

Another relevant solution to (1.1) or equivalently to (2.3) is the Jost solution fn
satisfying the asymptotic condition

fn = zn [1 + o(1)] , n→ +∞. (2.6)

On the unit circle z ∈ T we have z−1 = z∗, where we use an asterisk to denote
complex conjugation. Let us use fn(z) to denote the value of fn when z ∈ T+.
From (2.3) and (2.6) it follows that we have

fn(z−1) = fn(z∗) = fn(z)∗, z ∈ T+, (2.7)

and hence the domain of fn(z) can be extended from z ∈ T+ to z ∈ T by using
(2.7). We will see in Theorem 2.2 that, when the potential Vn belongs to the
Faddeev class, the domain of fn(z) can be extended from z ∈ T to the unit disc
|z| ≤ 1.

Let us define gn as the quantity fn but by replacing z by z−1 there, i.e.

gn(z) := fn(z−1), z ∈ T. (2.8)

From (2.8) it follows that the domain of gn(z) is originally given as z ∈ T and it
can be extended to |z| ≥ 1 when the potential Vn in (1.1) belongs to the Faddeev
class. With the help of (2.3) we see that gn is also a solution to (1.1), and from
(2.6) it follows that gn satisfies the asymptotic condition

gn = z−n [1 + o(1)] , n→ +∞. (2.9)

The quantity f0, which is obtained from the Jost solution fn with n = 0, is
known as the Jost function. Let us remark that the Jost solution fn is determined
by the potential Vn alone and is unaffected by the choice of the Dirichlet boundary
condition (1.3). On the other hand, the Dirichlet boundary condition (1.3) is used
when naming f0 as the Jost function. For a non-Dirichlet boundary condition
the Jost function is not defined as f0 and it corresponds to an appropriate linear
combination of f0 and f1. In this paper we do not deal with the Jost function in
the non-Dirichlet case.

The Jost function f0(z) is used to define the scattering matrix S as

S(z) :=
f0(z)∗

f0(z)
, z ∈ T. (2.10)

Even though S(z) is scalar valued, it is customary to refer to it as the scattering
matrix. With the help of (2.7) and (2.8) we see that we can write (2.10) in various
equivalent forms such as

S(z) =
g0(z)

f0(z)
=
f0(z−1)

f0(z)
, z ∈ T. (2.11)

Let us write the Jost function in the polar form as

f0(z) = |f0(z)| e−i φ(z), z ∈ T. (2.12)
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The real-valued quantity φ(z) appearing in (2.12) is usually called the phase shift.
Its domain consists of z ∈ T. Using (2.7) in (2.12) we see that the phase shift
satisfies

φ(z−1) = φ(z∗) = −φ(z), z ∈ T. (2.13)

From (2.10) we see that the scattering matrix can be expressed in terms of the
phase shift as

S(z) = e2i φ(z), z ∈ T. (2.14)

The relevant properties of the Jost solution fn and the Jost function f0 are
summarized in the following theorem.

Theorem 2.2. Assume that the potential Vn in (1.1) belongs to the Faddeev class.
Then:

(a) For each fixed n ≥ 0, the Jost solution fn satisfying (1.1) and (2.6) is analytic
in z in |z| < 1 and continuous in z in |z| ≤ 1. It has the representation

fn(z) =

∞∑
m=n

Knm z
m, |z| ≤ 1, (2.15)

where each double-indexed coefficient Knm is real valued and uniquely determined
by the potential values in the ordered set {Vm}∞m=n+1. In particular, we have

Knn = 1, Kn(n+1) =

∞∑
j=n+1

Vj , Kn(n+2) =
∑

n+1≤j<l≤+∞

Vj Vl. (2.16)

(b) The Jost function f0(z) is analytic in |z| < 1 and continuous in |z| ≤ 1. It has
the representation

f0(z) =

∞∑
m=0

K0m z
m, |z| ≤ 1, (2.17)

where each coefficient K0m is uniquely determined by the set {Vn}∞n=1 of potential
values. In particular, we have

K00 = 1, K01 =

∞∑
j=1

Vj , K02 =
∑

1≤j<l≤+∞

Vj Vl. (2.18)

(c) For each fixed n ≥ 0, the solution gn(z) satisfying (1.1) and (2.9) is analytic in
|z| > 1 and continuous in |z| ≥ 1. It has the representation

gn(z) =

∞∑
m=n

Knm z
−m, |z| ≥ 1.

(d) The solutions fn and gn are linearly independent when z ∈ T \ {−1, 1}. In
particular, the regular solution ϕn appearing in (2.4) can be expressed in terms of
fn and gn as

ϕn =
1

z − z−1
(g0fn − f0 gn) . (2.19)

Proof. It is enough to prove the analyticity in |z| < 1 and the continuity in |z| ≤
1 for fn(z). The remaining results in (a)-(c) can be obtained with the help of
[3, Proposition 2.4]. Note that (2.19) is the same as [3, (2.42)] and the linear
independence of fn and gn is established by using (2.6) and (2.9). Let us then
prove the aforementioned analyticity and continuity. In fact, for the analyticity
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in |z| < 1, it is enough to use the summability in (1.5) without the need for the
first moment of the potential. The first moment in (1.5) is needed to prove the
continuity at z = ±1. We can prove the analyticity by modifying the proof of [10,
Lemma 1] so that it is applicable to the discrete Schrödinger equation. We only
provide the key steps and let the reader work out the details. Letting

mn := z−nfn, (2.20)

from (2.6) we see that

mn = 1 + o(1), n→ +∞,
for each fixed z ∈ T. With the help of (2.3) and (2.20) we see that mn satisfies the
discrete equation given by

mn = 1 +
1

z − z−1
∞∑

j=n+1

(
z2(j−n) − 1

)
Vjmj . (2.21)

Note that (2.21) is the discrete analog of the second displayed formula on [10, p.
130]. Next we solve (2.21) iteratively by letting

mn(z) =

∞∑
p=0

m(p)
n (z), |z| < 1, (2.22)

where we have defined

m(0)
n (z) := 1, |z| < 1, (2.23)

m(p)
n (z) :=

1

z − z−1
∞∑

j=n+1

(
z2(j−n) − 1

)
Vjm

(p−1)
j (z), |z| < 1, p ≥ 1. (2.24)

Each iterate m
(p)
n (z) is analytic in |z| < 1, and the left-hand side of (2.22) is analytic

in |z| < 1 if we can show that the series on the right-hand side of (2.22) converges
uniformly in every compact subset of |z| < 1. When |z| ≤ 1, we have

|z2(j−n) − 1| ≤ 2, j ≥ n+ 1. (2.25)

Furthermore, from (1.5) we have

∞∑
j=n+1

|Vj | ≤
∞∑
j=1

|Vj | < +∞. (2.26)

The uniform convergence is established by using the estimates in (2.25) and (2.26).
Hence, mn(z) is analytic in |z| < 1 for each fixed nonnegative integer n. From
(2.20) it then follows that fn(z) is analytic in |z| < 1 for each fixed n ≥ 0. In
order to prove the continuity of mn(z) in |z| ≤ 1, we need to show that each iterate

m
(p)
n (z) is continuous in |z| ≤ 1 and that the series in (2.22) converges absolutely

in |z| ≤ 1. The factor z − z−1 appearing in the denominator of (2.24) becomes
troublesome at z = ±1. As a remedy, we use the identity

z2(j−n) − 1

z − z−1
= z

z2j−2n − 1

z2 − 1
= z

j−n−1∑
k=0

z2k, j ≥ n+ 1. (2.27)

From (2.27) it follows that for |z| ≤ 1 we have∣∣∣z2(j−n) − 1

z − z−1
∣∣∣ ≤ j − n, j ≥ n+ 1. (2.28)
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With the help of (1.5), (2.23), (2.24), and (2.28), one establishes the uniform con-
vergence in |z| ≤ 1 for the series on the right-hand side of (2.22). Furthermore,

with the help of (2.24) and (2.27) we establish the continuity of each iterate m
(p)
n (z)

in |z| ≤ 1. Then, it follows that mn(z) appearing on the left-hand side (2.22) is
continuous in |z| ≤ 1. Finally, from (2.20) it follows that fn(z) is continuous in
|z| ≤ 1 for each fixed value of n. �

Let us remark that, from (2.17) and (2.18) we see that the value of the Jost
function f0(z) at z = 0 is given by

f0(0) = 1. (2.29)

From the second equality of (2.16) it follows that

Vn = K(n−1)n −Kn(n+1), n ≥ 1.

The results in following theorem clarifies the generic and exceptional cases en-
countered at the endpoints of the continuous spectrum, i.e. at λ = 0 and λ = 4.

Theorem 2.3. Assume that the potential Vn in (1.1) belongs to the Faddeev class.
Let λ and z be the spectral parameters appearing in (1.1) and (2.1), respectively,
and let ϕn and fn be the corresponding regular solution and the Jost solution to
(1.1) appearing in (2.4) and (2.6), respectively. Let f0 be the corresponding Jost
function. Then:

(a) The Jost function f0(z) is nonzero when z ∈ T \ {−1, 1}.
(b) At λ = 0, or equivalently at z = 1, the regular solution ϕn either grows linearly
in n as n → +∞, which corresponds to the generic case, or it is bounded in n,
which corresponds to the exceptional case. Hence, λ = 0 never corresponds to a
bound state for (1.1) with the Dirichlet boundary condition (1.3). In the generic
case, f0 6= 0 at z = 1. In the exceptional case, f0 has a simple zero at z = 1.

(c) At λ = 4, or equivalently at z = −1, the regular solution ϕn generically grows
linearly in n as n → +∞, and in the exceptional case the regular solution ϕn is
bounded in n. Hence, λ = 4 never corresponds to a bound state for (1.1) with the
Dirichlet boundary condition (1.3). In the generic case we have f0 6= 0 at z = −1.
In the exceptional case, f0 has a simple zero at z = −1.

Proof. The proofs (b) and (c) can be obtained as in the proof of [3, Theorem 2.5].
The proof of (a) can be given as follows. Assume, on the contrary, that f0(z)
vanished at some point z = z0, where z0 is located on the unit circle T and z0 6= ±1.
From (2.7) and (2.8) it follows that f0(z0) = 0 implies that g0(z0) = 0. Using these
values in (2.19) we would then get ϕn ≡ 0 for any positive integer n when z = z0.
On the other hand, by the second equality in (2.4) we know that ϕ1 must be equal
to 1 when z = z0. This contradiction shows that f0 cannot vanish on the unit
circle, except perhaps at z = ±1. �

The following theorem shows that the Jost function f0(z) cannot vanish at any
z-value inside the unit circle when the imaginary part of that z-value is nonzero.

Theorem 2.4. Assume that the potential Vn appearing in (1.1) belongs to the
Faddeev class. Let z be the spectral parameter appearing in (2.1), fn(z) be the
corresponding Jost solution appearing in (2.15), and f0(z) be the corresponding
Jost function appearing in (2.17). Then, f0(z) 6= 0 for any z satisfying |z| < 1 with
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the imaginary part Im[z] is nonzero. The zeros of f0(z) in the interior of the unit
circle can only occur when z ∈ (−1, 0) ∪ (0, 1).

Proof. From (2.29) we see that f0(0) = 1, and hence it is enough to prove that
f0(z) 6= 0 when |z| < 1 with zI 6= 0, where we use the decomposition z := zR +
i zI, with zR and zI denoting the real and imaginary parts of z, respectively. For
simplicity, let us use fn to denote fn(z). Since fn satisfies (2.3) we have

fn+1 + fn−1 = (z + z−1 + Vn) fn, n ≥ 1. (2.30)

Taking the complex conjugate of both sides of (2.30) and using the fact that Vn is
real, we obtain

f∗n+1 + f∗n−1 =
[
z∗ + (z∗)−1 + Vn

]
f∗n, n ≥ 1. (2.31)

Let us multiply both sides of (2.30) with f∗n and multiply both sides of (2.31) with
fn and subtract the resulting equations side by side. This yields

f∗n fn+1 + f∗n fn−1 − f∗n+1 fn − f∗n−1 fn
= [z − z∗ + z−1 − (z∗)−1] |fn|2, n ≥ 1.

(2.32)

Note that

Im[z−1] = Im
[ 1

zR + i zI

]
=

−zI
z2R + z2I

. (2.33)

We have
z − z∗ + z−1 − (z∗)−1 = 2i Im[z] + 2i Im[z−1], (2.34)

and using (2.33) in (2.34) we obtain

z − z∗ + z−1 − (z∗)−1 = 2i zI − 2i
zI

z2R + z2I
,

or equivalently

z − z∗ + z−1 − (z∗)−1 = 2i zI
z2R + z2I − 1

z2R + z2I
. (2.35)

Let us take the summation over n on both sides of (2.32) and use (2.35) in the
resulting summation, which yields

∞∑
n=1

[
f∗n fn+1 − f∗n−1 fn

]
+

∞∑
n=1

[
f∗n fn−1 − f∗n+1 fn

]
= 2i zI

z2R + z2I − 1

z2R + z2I

∞∑
n=1

|fn|2.
(2.36)

When |z| < 1, the two series on the left-hand side of (2.36) are both telescoping,
and using (2.6) in (2.36) we obtain

− f∗0 f1 + f∗1 f0 = −2i zI
1− |z|2

|z|2
∞∑
n=1

|fn|2. (2.37)

When |z| < 1 with zI 6= 0, the right-hand side of (2.37) cannot vanish unless
fn(z) = 0 for n ≥ 1. However, because of (2.6) we cannot have fn(z) = 0 for
all n ≥ 1 at such a z-value. Thus, the right-hand side of (2.37) cannot be zero
for any z-value satisfying |z| < 1 with zI 6= 0. On the other hand, if we had
f0(z) = 0 for some z-value satisfying |z| < 1 with zI 6= 0, then we would also have
f0(z)∗ = 0 at the same z-value, and hence we would have the left-hand side of
(2.37) vanishing at that z-value. This contradiction proves that f0(z) 6= 0 for any
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z-value satisfying |z| < 1 with zI 6= 0. Since we have already seen that f0(0) 6= 0,
we conclude that the zeros of f0(z) in the interior of the unit circle can only occur
when z ∈ (−1, 0) ∪ (0, 1). �

In the next theorem, we summarize the facts relevant to the bound states of
(1.1) with the Dirichlet boundary condition (1.3). Recall that the bound states
correspond to the λ-values at which (1.1) has square-summable solutions satisfying
the boundary condition (1.3).

Theorem 2.5. Assume that the potential Vn in (1.1) belongs to the Faddeev class.
Let λ and z be the spectral parameters appearing in (1.1) and (2.1), respectively, and
let fn, ϕn, and f0 be the corresponding Jost solution appearing in (2.6), the regular
solution appearing in (2.4), and the Jost function appearing in (2.12), respectively.
Then:

(a) A bound state can only occur when λ ∈ (−∞, 0) or λ ∈ (4,+∞). Equivalently,
a bound state can only occur when z ∈ (−1, 0) or z ∈ (0, 1).

(b) At a bound state, ϕn and fn are both real valued for every n ≥ 1. At a bound
state, ϕn and fn are linearly dependent and each is square summable in n.

(c) At a bound state the Jost function f0 has a simple zero in λ and in z. At a
bound state the value of the Jost solution at n = 1 cannot vanish, i.e. f1 6= 0 at a
bound state.

(d) The number of bound states, denoted by N , is finite. In particular, we have
N = 0 when Vn ≡ 0.

Proof. The proofs for (a)-(c) can be obtained by slightly modifying the proof of
[3, Theorem 2.5] as follows. At a bound state, (1.1) must have a square-summable
solution satisfying the Dirichlet boundary condition (1.3). Note that (1.1) has two
linearly independent solutions, and only one of those two linearly independent so-
lutions can satisfy (1.3). We know from the first equality in (2.4) that the regular
solution ϕn appearing in (2.5) satisfies (1.3). Thus, any bound-state solution to
(1.1) must be linearly dependent on ϕn. Since the corresponding Schrödinger oper-
ator is selfadjoint, the bound states can only occur when the spectral parameter λ is
real. From (2.1) we know that the λ-values in the interval λ ∈ (0, 4) correspond to
the z-values on T+, the upper portion of the unit circle T. For such z-values, from
(2.6) and (2.9) we conclude that neither of the two linearly independent solutions
fn and gn can vanish as n→ +∞, where we recall that gn is the solution appearing
in (2.8). Furthermore, by (b) and (c) of Theorem 2.3 we know that neither λ = 0
nor λ = 4 can correspond to a bound state. Thus, the bound states can only occur
when λ ∈ (−∞, 0) or λ ∈ (4,+∞). Equivalently, with the help of (2.1) we conclude
that a bound state can only occur when z ∈ (−1, 0) or z ∈ (0, 1). This completes
the proof of (a). Let us now prove (b). From Theorem 2.1 we know that the coef-
ficients Bnj appearing in (2.5) are real valued, and hence (2.5) implies that at any
λ-value in the interval λ ∈ (−∞, 0) or λ ∈ (4,+∞) the corresponding ϕn is real val-
ued for every n ≥ 1. Similarly, we know from Theorem 2.2(a) that the coefficients
Knm appearing in (2.15) are real valued, and hence (2.15) implies that fn for every
n ≥ 1 is real valued at any z-value occurring in z ∈ (−1, 0) ∪ (0, 1). In the proof of
(a) we have already indicated the linear dependence of ϕn and fn and we have also
indicated that their square integrability follows from the definition of a bound-state
solution. Thus, the proof of (b) is complete. Let us now turn to the proof of (c).
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This follows by proceeding as in [3, (2.67)–(2.69)] and hence by concluding that
at a bound state the Jost function f0 must have a simple zero in λ and a simple
zero in z and that f1 cannot vanish at a bound state. This concludes the proof of
(c). Let us now prove (d). The finiteness of the number of bound states can be
proved as follows. From Theorem 2.2 we know that f0(z) is analytic in |z| < 1 and
continuous in |z| ≤ 1. From (2.29) we know that f0(0) = 1. Furthermore, from (a)
and (c) above we know that the bound states can only occur at the zeros of f0(z)
when z ∈ (−1, 0)∪ (0, 1) and such zeros are simple. Thus, the bound-state zeros of
f0(z) could only accumulate at z = ±1. On the other hand, Theorem 2.3 indicates
that f0(z) can at most have simple zeros at z = ±1. Thus, f0(z) is analytic in
z ∈ (−1, 1) with no accumulation points in z ∈ [−1, 1]. Consequently, the number
of bound-state zeros of f0(z) must be finite. �

For further elaborations on the finiteness of the number of bound states, we refer
the reader to [7, 8] and the references therein.

Let us assume that the bound states occur at λ = λs for s = 1, . . . , N . Let
us also assume that the corresponding zs-values are obtained via using (2.1), and
hence the bound states occur at z = zs for s = 1, . . . , N . From (2.2) we see that

λs = 2− zs − z−1s , s = 1, . . . , N. (2.38)

From Theorem 2.5(b) we know that ϕn(λs) is real valued and the quantity Cs
defined as

Cs :=
( ∞∑
n=1

ϕn(λs)
2
)−1/2

, s = 1, . . . , N, (2.39)

is a finite nonzero number. It is appropriate to refer to the positive number Cs as
the Gel’fand-Levitan norming constant at λ = λs. Thus, the quantity Csϕn(λs) is
a normalized bound-state solution to (1.1) at the bound state λ = λs. Similarly,
from Theorem 2.5(b) we know that fn(zs) is real valued and the quantity cs defined
as

cs :=
( ∞∑
n=1

fn(zs)
2
)−1/2

, s = 1, . . . , N, (2.40)

is a finite nonzero number. It is appropriate to refer to the positive number cs
as the Marchenko norming constant at z = zs. Thus, the quantity csfn(zs) is a
normalized bound-state solution to (1.1) at the bound state z = zs. We then get

C2
s [ϕn(λs)]

2
= c2s [fn(zs)]

2
, s = 1, . . . , N. (2.41)

Using the second equality of (2.4) in (2.41) we see that the Gel’fand-Levitan norm-
ing constant Cs and the Marchenko norming constant cs are related to each other
as

C2
s = c2s [f1(zs)]

2
, s = 1, . . . , N. (2.42)

Let us use a circle above a quantity to emphasize that it corresponds to the

trivial potential Vn ≡ 0 in (1.1). Hence, ϕ̊n denotes the regular solution, f̊n is the

Jost solution, g̊n is related to f̊n as in (2.8), f̊0 is the Jost function, and S̊ is the
scattering matrix. We have [3]

f̊n = zn, g̊n = z−n, ϕ̊n =
zn − z−n

z − z−1
, n ≥ 1,

f̊0(z) ≡ 1, g̊0(z) ≡ 1, S̊(z) ≡ 1.
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Let us use dρ to denote the spectral density corresponding to the Schrödinger
equation (1.1) with the Dirichlet boundary condition (1.3). The spectral density is
normalized, i.e. its integral over the real-λ axis is equal to one. Let us use dρ̊ to
denote the spectral density when the potential is zero. From [3, (4.1)] we have

dρ̊ =


0, λ < 0,

1

2π

√
λ(4− λ) dλ, 0 ≤ λ ≤ 4,

0, λ > 4.

(2.43)

From (2.43) we see that, when the potential is zero, the discrete part of the spectral
measure, i.e. the part corresponding to R \ [0, 4] is zero. Thus, the continuous part
of the spectral density in (2.43) has its integral over λ ∈ [0, 4] equal to one. Using
(2.2) in (2.43), we can express [3] the continuous part of dρ̊ in terms of z as

dρ̊ = − 1

2πi

(
z − z−1

)2 dz
z
, z ∈ T+,

where we recall that T+ denotes the closure of the upper portion of the unit circle
T.

In the absence of bound states, the spectral density dρ associated with (1.1) and
(1.3) is given by

dρ =


dρ̊

|f0(z)|2
, λ ∈ [0, 4],

0, λ ∈ R \ [0, 4],
(2.44)

where we recall that λ ∈ [0, 4] corresponds to z ∈ T+. Thus, the discrete part of the
spectral density dρ is zero and the continuous part of the spectral density is obtained
by dividing dρ̊ by the absolute square of the Jost function f0(z). When there are N
bound states at λ = λs with the corresponding Gel’fand-Levitan norming constants
Cs appearing in (2.39), one can evaluate the spectral density dρ as

dρ =


(

1−
∑N
s=1 C

2
s∏N

k=1 z
2
k

)
dρ̊

|f0(z)|2
, λ ∈ [0, 4],

∑N
s=1 C

2
s δ(λ− λs) dλ, λ ∈ R \ [0, 4],

(2.45)

where f0(z) is the corresponding Jost function and each zs corresponds to λs via

(2.38). We remark that λ ∈ [0, 4] in (2.45) corresponds to z ∈ T+. Note that, in
the absence of bound states, i.e. when N = 0, the spectral density given in (2.45)
reduces to the expression given in (2.44). In the evaluation of (2.45) we have used
the facts that∫

λ∈R
dρ = 1,

∫
λ∈R\[0,4]

dρ =

N∑
s=1

C2
s ,

∫
λ∈[0,4]

dρ = 1−
N∑
s=1

C2
s . (2.46)

With the help of (2.46) we see that the first line of (2.45) yields∫
λ∈[0,4]

dρ̊

|f0(z)|2
=

N∏
k=1

z2k.

In order to understand the Darboux transformation, we need to establish the
Gel’fand-Levitan formalism related to (1.1) and (1.3). Let Vn and Ṽn be the un-
perturbed and perturbed potentials, respectively. Let ϕn and ϕ̃n be the respective
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corresponding regular solutions, and let dρ and dρ̃ be the respective corresponding
spectral densities. From Theorem 2.1 it follows that the set {ϕj}nj=0 forms a basis
for polynomials in λ of degree n− 1, and hence we can write

ϕ̃n =

{
ϕn, n = 1,

ϕn +
∑n−1
m=1Anm ϕm, n ≥ 2,

(2.47)

where Anm are some double-indexed real coefficients to be determined. Let us
define the double-indexed real-valued scalars Gnm as

Gnm :=

∫
λ∈R

ϕn [dρ̃− dρ]ϕm. (2.48)

We already have [3, 4] the orthonormality∫
λ∈R

ϕn dρϕm = δnm, (2.49)

with δnm denoting the Kronecker delta. Proceeding as in [3, (4.13)–(4.17)] we
obtain the Gel’fand-Levitan system

Anm +Gnm +

n−1∑
j=1

AnjGjm = 0, 1 ≤ m < n. (2.50)

Analogous to [3, (2.84)], we obtain

Ṽn − Vn = A(n+1)n −An(n−1), n ≥ 1, (2.51)

with the understanding that A10 = 0.
For each integer n ≥ 2, let Gn−1 be the (n−1)×(n−1) matrix whose (k, l)-entry

is equal to Gkl evaluated as in (2.48), i.e.

Gn−1 :=


G11 G12 · · · G1(n−2) G1(n−1)
G21 G22 · · · G2(n−2) G2(n−1)

...
...

. . .
...

...
G(n−2)1 G(n−2)2 · · · G(n−2)(n−2) G(n−2)(n−1)
G(n−1)1 G(n−1)2 · · · G(n−1)(n−2) G(n−1)(n−1)

 . (2.52)

From (2.48) and (2.52) we see that Gn−1 is a real symmetric matrix. For each
integer n ≥ 2, we can write the Gel’fand-Levitan system (2.50) in the matrix form
as

(In−1 + Gn1)


An1
An2

...
An(n−2)
An(n−1)

 = −


Gn1
Gn2

...
Gn(n−2)
Gn(n−1)

 , (2.53)

where In−1 is the (n− 1)× (n− 1) identity matrix. Let gn−1 be the column vector
with (n− 1) components appearing on the right-hand side of (2.53), i.e.

gn−1 :=
[
Gn1 Gn2 · · · Gn(n−2) Gn(n−1)

]†
, (2.54)
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where the dagger denotes the matrix adjoint. Using (2.54) in (2.53) we obtain
An1
An2

...
An(n−2)
An(n−1)

 = −(In−1 + Gn−1)−1 gn−1. (2.55)

Thus, Anm can be explicitly expressed in terms of the coefficients of Gn−1 as

Anm = −1̂†m (In−1 + Gn−1)−1 gn−1, 1 ≤ m < n, (2.56)

where 1̂m is the column vector with (n− 1) components with all the entries being
zero except for the mth entry being one. Note that the right-hand side of (2.56)
contains a binomial form for a matrix inverse. Using [6, (15) on p. 12], the binomial
form in (2.56) can be expressed as a ratio of two determinants, yielding

Anm =

det

[
0 1̂†m

gn−1 (In−1 + Gn−1)

]
det[In−1 + Gn−1]

, 1 ≤ m < n, (2.57)

where the matrix in the numerator is a block matrix of size n× n. Using (2.57) in

(2.47) and (2.51) we obtain ϕ̃n and Ṽn in terms of the unperturbed quantities.
Let us refer to the data set {λs, Cs}Ns=1, which consists of all the bound-state

energies and the corresponding Gel’fand-Levitan norming constants given in (2.39),
as the bound-state data set. In general, the scattering matrix S(z) defined in (2.10)
and the bound-state data set are independent. This is because the domain of S(z)
consists of the unit circle z ∈ T and the bound-state energies correspond to the zs-
values inside the unit circle. Let us consider the case where the nontrivial potential
Vn is compactly supported, i.e. when Vn = 0 for n > b and Vb 6= 0 for some positive
integer b. Thus, we use b to signify the compact support of Vn given by {1, 2, . . . , b}.
For such potentials, it is known [3] that S(z) has a meromorphic extension from
z ∈ T to the region |z| < 1 and the zs-values correspond to the poles of S(z)
in |z| < 1. Furthermore, for such potentials the corresponding Cs-values can be
determined [3] in terms of certain residues evaluated at the zs-values. In general,
without a compact support, the values of zs and Cs cannot be determined from the
scattering matrix S(z). On the other hand, even without a compact support, when
the potential Vn belongs to the Faddeev class, the scattering matrix corresponding
(1.1) and (1.3) contains some information related to the number of bound states N .
This result is known as Levinson’s theorem, and mathematically it can be viewed
as an argument principle related to the integral of the logarithmic derivative of the
scattering matrix along the unit circle T in the complex z-plane.

In the next theorem, we present Levinson’s theorem associated with (1.1) and
(1.3). For this purpose it is appropriate to introduce the constants µ+ and µ− as

µ+ :=

{
1, f0(1) = 0,

0, f0(1) 6= 0,
(2.58)

µ− :=

{
1, f0(−1) = 0,

0, f0(−1) 6= 0,
(2.59)
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where we recall that f0(z) is the Jost function appearing in (2.12). Let us elaborate
on (2.58) and (2.59). From Theorem 2.3(b), we know that µ+ = 1 if we have the
exceptional case at z = 1 and we have µ+ = 0 if we have the generic case at z = 1.
Similarly, from (2.59) and Theorem 2.3(c) we conclude that µ− = 1 if we have the
exceptional case at z = −1 and we have µ− = 0 if we have the generic case at
z = −1.

Let ∆T acting on a function of z denote the change in that function when the
z-value moves along the unit circle T once in the counterclockwise direction in
the sense of the Cauchy principal value. By the sense of the Cauchy principal
value, we mean that in the evaluation of the change by using an integral along
T, we interpret the corresponding integral as a Cauchy principal value. In the
theorem given below, that amounts to integrating along the unit circle z = eiθ for
θ ∈ (0+, π− 0+)∪ (π+ 0+, 2π− 0+) because the only singularities for the integrand
may occur at z = 1 or z = −1.

Theorem 2.6. Assume that the potential Vn appearing in (1.1) belongs to the Fad-
deev class. Let f0(z) appearing in (2.12), S(z) appearing in (2.10), φ(z) appearing
in (2.12), and N appearing in (2.39) be the respective Jost function, the scattering
matrix, the phase shift, and the number of bound states corresponding to (1.1) and
(1.3). Let ∆T denote the change when the z-value moves along the unit circle T
once in the counterclockwise direction in the sense of the Cauchy principal value.
We then have the following:

(a) The change in the phase shift φ(z) when z moves along T in the counterclockwise
direction once is given by

∆T[φ(z)] = −π [2N + µ+ + µ−] , (2.60)

where µ+ and µ− are the constants defined in (2.58) and (2.59), respectively.

(b) The change in the phase shift φ(z) when z moves along T+ from z = 1 to
z = −1 is given by

∆T+ [φ(z)] = −π
[
N +

µ+

2
+
µ−
2

]
. (2.61)

(c) The change in the argument of S(z) when z moves along T+ from z = 1 to
z = −1 is given by

∆T+ [arg[S(z)]] = −π
[
2N + µ+ + µ−

]
. (2.62)

(d) The change in the argument of f0(z) when z moves along T+ from z = 1 to
z = −1 is given by

∆T+ [arg[f0(z)]] = π
[
N +

µ+

2
+
µ−
2

]
. (2.63)

Proof. From Theorem 2.2(b) we know that f0 is analytic in |z| < 1 and continuous
in |z| ≤ 1. Thus, f0 has no singularities in |z| ≤ 1. On the other hand, from
Theorem 2.4 and Theorem 2.5(c) we know that the only zeros of f0 in |z| < 1 occur
at the bound states, those zeros are simple and can only occur when z ∈ (−1, 0) or
z ∈ (0, 1), the number of such zeros is finite, and we use N to denote the nonnegative
integer specifying the number of bound states. From Theorem 2.3 we know that
the only zeros of f0 on z ∈ T may occur at z = ±1, such zeros are simple, and
the number of such zeros is equal to µ+ + µ−. Applying the argument principle to
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f0(z) along the unit circle, we see that the change in the argument of f0(z) as z
moves along the unit circle once in the counterclockwise direction is given by

∆T [arg[f0(z)]] = 2π
[
N +

µ+

2
+
µ−
2

]
, (2.64)

where we have used the fact that the contribution from a zero of f0(z) on z ∈ T is
half of the contribution from a zero in |z| < 1. Using (2.12) and (2.64) we obtain
(2.60). Using (2.13) in (2.60) we obtain (2.61). Using (2.14) in (2.61) we obtain
(2.62). Using (2.13) in (2.64) we have (2.63). �

3. Darboux transformation in adding a bound state

In this section we determine the effect of adding a bound state to the discrete
spectrum of the Schrödinger operator corresponding to (1.1) and (1.3). For clarity,
we use the notation Vn(N) for Vn to indicate that the Schrödinger operator contains
exactly N bound states occurring at λ = λs for s = 1, . . . , N . Hence, we order
the bound states by assuming that we start with the potential Vn(0) containing no
bound states. Then, we add one bound state at λ = λ1 with some Gel’fand-Levitan
norming constant and obtain the potential Vn(1). Next, we add one bound state
at λ = λ2 with some Gel’fand-Levitan norming constant and obtain the potential
Vn(2). Continuing in this manner we recursively add all the bound states with λ =
λs for s = 1, . . . , N and obtain the potential Vn(N). Note that (2.38) establishes a
one-to-one correspondence between λs and zs, and hence we can equivalently say
that the bound states of the potential Vn(N) occur at z = zs for s = 1, . . . , N . We
remark that the ordering of λs is completely arbitrary and that ordering does not
have to have λs in an ascending or descending order.

To the “unperturbed” potential Vn(N) let us add one bound state at λ = λN+1

with the Gel’fand-Levitan norming constant CN+1. We then get the “perturbed”
potential Vn(N + 1). Equivalently stated, we add one bound states at z = zN+1,
where zN+1 and λN+1 are related to each other via (2.38) and zN+1 ∈ (−1, 0)∪(0, 1).
The Jost function for the unperturbed problem is denoted by f0(z;N) and the Jost
function for the perturbed problem is denoted by f0(z;N + 1). In the analog of
adding a bound state for the Schrödinger equation (1.2), we can uniquely express
the perturbed Jost function in terms of the unperturbed Jost function by requiring
that the absolute value of the Jost function in the continuous spectrum remains
unchanged [5]. However, this is no longer the case for the discrete Schrödinger
equation. Let us elaborate on this matter. We would like f0(z;N + 1) to be
obtained from f0(z;N) via

f0(z;N + 1) =
(

1− z

zN+1

)
Q(z) f0(z;N), |z| ≤ 1, (3.1)

where Q(z) is analytic in |z| < 1, continuous in |z| ≤ 1, and satisfies Q(0) = 1.
The constraints on Q(z) are determined by the fact that both f0(z;N + 1) and
f0(z;N) must be analytic in |z| < 1, continuous in |z| ≤ 1, and take the value of
1 at z = 0, as required by Theorem 2.2(b). Furthermore, f0(z;N + 1) must have
a simple zero at z = zN+1 and f0(z;N) must be nonzero when z = zN+1. The
further requirement

|f0(z;N + 1)| = |f0(z;N)|, z ∈ T, (3.2)
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combined with the maximum modulus principle would yield(
1− z

zN+1

)
Q(z) ≡ 1, |z| ≤ 1. (3.3)

The result in (3.3) would follow from the fact that an analytic function in a bounded
domain must take its maximum modulus value somewhere on the boundary, and it
can be obtained as follows. The left-hand side of (3.3) is already equal to one at
the interior point z = 0 and hence (3.3) must hold for all z-values on the unit disk
|z| ≤ 1. On the other hand, (3.3) is not acceptable because it requires Q(z) to have
a pole at z = zN+1, contradicting the requirement that Q(z) is analytic in |z| < 1.
Thus, in adding a bound state, we must use (3.1) without requiring (3.2).

In establishing a Darboux transformation, the choice of Q(z) appearing in (3.1)
is not unique. We find it convenient to choose a particular Q(z) as

Q(z) =
1

1− zN+1z
, |z| ≤ 1. (3.4)

One could argue that the simplest choice Q(z) ≡ 1 would be a better choice than
the one given in (3.4). It turns out that the choice in (3.4) has a few important
advantages over other choices. For example, with the choice of Q(z) given in (3.4)
we obtain

|f0(z;N + 1)|2 =
1

z2N+1

|f0(z;N)|2, z ∈ T, (3.5)

which greatly simplifies evaluations involving the spectral density given in (2.45).
On the other hand, the choice Q(z) ≡ 1 yields

|f0(z;N + 1)|2 =
∣∣∣1− z

zN+1

∣∣∣2 |f0(z;N)|2, z ∈ T,

which hinders evaluations involving the spectral density. Another advantage of the
choice ofQ(z) given in (3.4) is that the pole ofQ(z) at z = 1/zN+1 can be considered
as a real-valued resonance for the discrete Schrödinger equation (1.1), where we
recall that zN+1 ∈ (−1, 0) ∪ (0, 1). Consider the special case of a compactly-
supported potential, where z = zN+1 is a real-valued resonance for Vn(N), i.e.
f0(z;N) has a simple zero at z = 1/zN+1. We may then be able to convert that
resonance into a bound state by adding a bound state to Vn(N) at z = zN+1 in
such a way that Vn(N + 1) contains a bound state. We refer the reader to [2]
for the analogous problem for (1.2) of converting a resonance into a bound state
without affecting the compact support property of the potentials. For the discrete
Schrödinger operator associated with (1.1) and (1.3), in some of the examples in
Section 5 we illustrate converting a resonance into a bound state and determine
how the compact-support property is impacted.

In our paper we exclusively use the choice in (3.4) in adding a bound state.
Hence, as seen from (3.1) and (3.4), the Darboux transformation formula for the
Jost function in adding one bound state at z = zN+1 with zN+1 ∈ (−1, 0) ∪ (0, 1)
yields

f0(z;N + 1) =

( 1− z
zN+1

1− zN+1 z

)
f0(z;N), |z| ≤ 1. (3.6)
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Let S(z;N) and S(z;N + 1) denote the scattering matrices for the unperturbed
and perturbed problems, respectively. From (2.11) we obtain

S(z;N) =
f0(z−1;N)

f0(z;N)
, S(z;N + 1) =

f0(z−1;N + 1)

f0(z;N + 1)
, z ∈ T. (3.7)

Using (3.6) in (3.7), after some simplification, we obtain the Darboux transforma-
tion for the scattering matrix as

S(z;N + 1) =
(1− zN+1 z

z − zN+1

)2
S(z;N), z ∈ T. (3.8)

One can directly verify that∣∣∣1− zN+1 z

z − zN+1

∣∣∣2 = 1, z ∈ T,

and hence, with the help of (2.14), we see that the Darboux transformation for the
phase shift is given by

φ(z;N + 1) = φ(z;N)− i

2
log
(1− zN+1 z

z − zN+1

)2
, z ∈ T. (3.9)

Next, let us determine the Darboux transformation for the spectral density. Let
dρ(λ;N) and dρ(λ;N+1) denote the unperturbed and perturbed spectral densities,
respectively. From (2.45) we see that

dρ(λ;N) =


(

1−
∑N
s=1 C

2
s∏N

k=1 z
2
k

)
dρ̊

|f0(z;N)|2
, λ ∈ [0, 4],∑N

s=1 C
2
s δ(λ− λs) dλ, λ ∈ R \ [0, 4],

(3.10)

dρ(λ;N + 1) =


(

1−
∑N+1
s=1 C2

s∏N+1
k=1 z

2
k

)
dρ̊

|f0(z;N + 1)|2
, λ ∈ [0, 4],∑N+1

s=1 C2
s δ(λ− λs) dλ, λ ∈ R \ [0, 4],

(3.11)

where we recall that λ ∈ [0, 4] corresponds to z ∈ T+. Using (3.5) in (3.11) we see
that

dρ(λ;N + 1) =


(

1−
∑N+1
s=1 C2

s∏N
k=1 z

2
k

)
dρ̊

|f0(z;N)|2
, λ ∈ [0, 4],∑N+1

s=1 C2
s δ(λ− λs) dλ, λ ∈ R \ [0, 4],

(3.12)

and hence from (3.10) and (3.12) we obtain the Darboux transformation for the
spectral density as

dρ(λ;N + 1)− dρ(λ;N) =

−
(

C2
N+1

1−
∑N
s=1 C

2
s

)
dρ(λ;N), λ ∈ [0, 4],

C2
N+1 δ(λ− λN+1) dλ, λ ∈ R \ [0, 4].

(3.13)

Our next goal is to determine the Darboux transformation formula for the reg-
ular solution. In other words, we would like to determine the relationship between
ϕn(λ;N) and ϕn(λ;N + 1), where the former is the regular solution for the unper-
turbed problem and the latter is the regular solution for the perturbed problem.

Let us now use the Gel’fand-Levitan procedure in the special case with Vn(N+1)

denoting Ṽn and Vn(N) denoting Vn. In that special case dρ and dρ̃ appearing in
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(2.47) correspond to dρ(λ;N) and dρ(λ;N + 1), respectively, appearing on the left-
hand side of (3.13). The unperturbed and perturbed regular solutions ϕn and ϕ̃n
appearing in (2.47) correspond to ϕn(λ;N) and ϕn(λ;N + 1), respectively. From
the second line of (3.10) we obtain∫

λ∈R\[0,4]
ϕn(λ;N) dρ(λ;N)ϕm(λ;N) =

N∑
s=1

C2
s ϕn(λs;N)ϕm(λs;N). (3.14)

With the help of (2.49) and (3.14) we obtain∫
λ∈[0,4]

ϕn(λ;N) dρ(λ;N)ϕm(λ;N) = δnm −
N∑
s=1

C2
s ϕn(λs;N)ϕm(λs;N), (3.15)

where we recall that δnm denotes the Kronecker delta. Using (3.13) in (2.48) we
obtain

Gnm =−
(

C2
N+1

1−
∑N
k=1 C

2
k

)∫
λ∈[0,4]

ϕn(λ;N) dρ(λ;N)ϕm(λ;N)

+ C2
N+1 ϕn(λN+1;N)ϕm(λN+1;N).

(3.16)

The integral in (3.16) is equal to the right-hand side of (3.15). Thus, from (3.15)
and (3.16) we obtain

Gnm

= −
(

C2
N+1

1−
∑N
k=1 C

2
k

)
δnm +

(
C2
N+1

1−
∑N
k=1 C

2
k

) N∑
s=1

C2
s ϕn(λs;N)ϕm(λs;N)

+ C2
N+1 ϕn(λN+1;N)ϕm(λN+1;N).

(3.17)

Having obtained Gnm as in (3.17) in terms of the unperturbed quantities related
to Vn(N), one can then use Gnm in (2.52), (2.54), and (2.55) and determine the
values of Anm. One then uses those values of Anm in (2.47) and in (2.51) in order
to determine ϕn(λ;N + 1) and Vn(N + 1), respectively.

Alternatively, in order to obtain ϕn(λ;N + 1) and Vn(N + 1), we can proceed as
follows. Let us write (3.17) in terms of the real-valued (N + 1)× (N + 1) diagonal
matrix EN and the real-valued column vector ξn with N + 1 entries as

Gnm = −
(

C2
N+1

1−
∑N
k=1 C

2
k

)
δnm + ξ†nEN ξm, (3.18)

where we have defined

EN := diag

{
C2

1 C
2
N+1

1−
∑N
k=1 C

2
k

,
C2

2 C
2
N+1

1−
∑N
k=1 C

2
k

, · · · ,
C2
N C

2
N+1

1−
∑N
k=1 C

2
k

, C2
N+1

}
, (3.19)

ξn :=
[
ϕn(λ1;N) ϕn(λ2;N) · · · ϕn(λN ;N) ϕn(λN+1;N)

]†
. (3.20)

We recall that the dagger in (3.20) can also be replaced by the matrix transpose
since the column vector ξn is real valued. From (3.18) we see that Gnm is separable
in n and m. Thus, we can solve the Gel’fand-Levitan system (2.50) explicitly by
seeking Anm in the form

Anm = β†n ξm, 1 ≤ m < n, (3.21)
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where the column vector βn has N + 1 components that are to be determined.
Using (3.18) and (3.21) in (2.50) we observe that β†n satisfies

β†n + ξ†nEN + β†n

(
−
(

C2
N+1

1−
∑N
k=1 C

2
k

)
IN+1 +

n−1∑
j=1

ξj ξ
†
j EN

)
= 0, (3.22)

where we recall that IN+1 denotes the (N + 1) × (N + 1) identity matrix. From
(3.22) we obtain

β†n = −ξ†nEN
(
IN+1 −

(
C2
N+1

1−
∑N
k=1 C

2
k

)
IN+1 +

n−1∑
j=1

ξj ξ
†
j EN

)−1
, n ≥ 2, (3.23)

which simplifies to

β†n = −ξ†n
((

1−
∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N +

n−1∑
j=1

ξj ξ
†
j

)−1
, n ≥ 2. (3.24)

From (3.21) and (3.24) we see that

Anm = −ξ†n
((

1−
∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N +

n−1∑
j=1

ξj ξ
†
j

)−1
ξm, 1 ≤ m < n. (3.25)

Hence, for n ≥ 2, from (2.51) and (3.25) we obtain the Darboux transformation at
the potential level as

Vn(N + 1)− Vn(N) =ξ†n

((
1−

∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N +

n−1∑
j=1

ξj ξ
†
j

)−1
ξn−1

− ξ†n+1

((
1−

∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N +

n∑
j=1

ξj ξ
†
j

)−1
ξn.

(3.26)

Since A10 = 0, for n = 1, instead of (3.26) we need to use

V1(N + 1)− V1(N) = −ξ†2
((

1−
∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N + ξ1 ξ

†
1

)−1
ξ1, (3.27)

which is obtained from (3.26) by replacing the first term on the right-hand side by

zero and by using n = 1 in the second term. Note that ξ1 ξ
†
1 appearing in (3.27) is

the (N + 1)× (N + 1) matrix with all entries being equal to one.
Let us remark that (3.25)–(3.27) contain some binomial forms for the inverse of

a matrix. Using [6, (15) on p. 12], such binomial forms can be expressed as ratios
of two determinants. For example, we can write the right-hand side of (3.25) as

Anm =
num

den
, (3.28)

where we have defined num as the determinant of the (N + 2) × (N + 2) block
matrix given by

num := det

 0 ξ†n

ξm

((
1−

∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N +

∑n−1
j=1 ξj ξ

†
j

) , (3.29)
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and we have defined den as the determinant of the (N + 1)× (N + 1) matrix given
by

den := det

[(
1−

∑N+1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
E−1N +

n−1∑
j=1

ξj ξ
†
j

]
. (3.30)

The following theorem shows that the matrix inverses appearing in (3.23)–(3.27)
are well defined and hence the Darboux transformation formulas at the potential
level given in (3.26) and (3.27) are valid.

Theorem 3.1. Assume that the potential Vn appearing in (1.1) belongs to the Fad-
deev class and that the discrete Schrödinger operator associated with (1.1) and (1.3)
has N bound states with the corresponding Gel’fand-Levitan norming constants Cs
defined in (2.39) for s = 1, . . . , N . Assume that an additional bound state is added
at λ = λN+1 with the Gel’fand-Levitan norming constant CN+1. Furthermore, as-

sume that
∑N+1
s=1 C2

s < 1. Then, the matrix inverse appearing in (3.25) exists for
any n ≥ 2.

Proof. From (3.19) we see that EN is a diagonal matrix with positive entries, and
hence E−1N is also a diagonal matrix with positive entries. Then, from (3.25) we
see that the matrix whose inverse needs to be established is given by the sum
of a diagonal matrix with positive entries and the matrix

∑n−1
j=1 ξξ

†. Let us now

consider the hermitian form for that sum with any nonzero vector v ∈ CN+1.
Because the first matrix in the summation is diagonal with positive entries, the
corresponding hermitian form is strictly positive. The following argument shows
that the hermitian form for the second matrix in the summation is nonnegative.
This is established by using

v†
n−1∑
j=1

ξj ξ
†
j v =

n−1∑
j=1

(
ξ†j v

)†(
ξ†j v

)
=

n−1∑
j=1

∣∣ξ†jv∣∣2, (3.31)

which shows that the right-hand side must be nonnegative. Thus, the hermitian
form with any nonzero vector v ∈ CN+1 associated with the matrix whose inverse
is used in (3.25) is positive, which proves that the matrix itself is positive and
hence is invertible. Thus, the right-hand side in (3.25) is well defined when we have∑N+1
s=1 C2

s < 1. �

Let us remark that the case
∑N+1
s=1 C2

s = 1 cannot happen, and hence it is not

considered in Theorem 3.1. This can be seen as follows. If we had
∑N+1
s=1 C2

s =
1, then (3.12) would imply that dρ(λ;N + 1) = 0 for λ ∈ [0, 4] and hence the
corresponding discrete Schrödinger operator, which is a selfadjoint operator, would
only have the discrete spectrum consisting of a finite number of eigenvalues and
no continuous spectrum. The absence of generalized eigenfunctions as a result of
the absence of the continuous spectrum and the presence of only a finite number
of eigenfunctions related to the discrete spectrum would be incompatible for the
selfadjoint discrete Schrödinger operator. From the spectral theory we know that
the eigenfunctions and the generalized eigenfunctions must form a complete set
acting as an orthogonal basis for the infinite-dimensional space of square-summable
functions on the half-line lattice, and this cannot be done by using only a finite
number of eigenfunctions.
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Let us now evaluate the Darboux transformation for the regular solution. Using
(3.21) in (2.47) we obtain

ϕn(λ;N + 1) =

{
ϕn(λ;N), n = 1,

ϕn(λ;N) + β†n
∑n−1
m=1 ξm ϕm(λ;N), n ≥ 2.

(3.32)

As the next proposition shows, the summation term in (3.32) can be written as
a linear combination of ϕn−1(λ;N) and ϕn(λ;N). Let us define the real-valued
column vector αn(λ) for n ≥ 1 with N + 1 components as

αn(λ) :=

[
ϕn(λ1;N)

λ− λ1
ϕn(λ2;N)

λ− λ2
· · · ϕn(λN ;N)

λ− λN
ϕn(λN+1;N)

λ− λN+1

]†
. (3.33)

Proposition 3.2. Assume that the potential Vn, also denoted by Vn(N), appearing
in (1.1) belongs to the Faddeev class and the discrete Schrödinger operator corre-
sponding to (1.1) and (1.3) has N bound states at λ = λs with s = 1, . . . , N . Let
ϕn, also denoted by ϕn(λ;N), be the corresponding regular solution appearing in
(2.4). Let ξn be the real-valued column vector in (3.20) with N+1 components. We
then have the following:

(a) The summation term in (3.32) can be simplified and we have

n−1∑
m=1

ξm ϕm(λ;N) = αn(λ)ϕn−1(λ;N)− αn−1(λ)ϕn(λ;N), n ≥ 2, (3.34)

where αn(λ) is the real-valued column vector defined in (3.33) with N + 1 compo-
nents.

(b) The (N + 1)× (N + 1) matrix consisting of the summation term in (3.24) can
be simplified and its (k, l)-entry for n ≥ 2 is given by( n−1∑

j=1

ξj ξ
†
j

)
kl

=


ϕn−1(λk;N)ϕn(λl;N)− ϕn(λk;N)ϕn−1(λl;N)

λk − λl
, k 6= l,

ϕn(λk;N) ϕ̇n−1(λk;N)− ϕn−1(λk;N) ϕ̇n(λk;N), k = l,

(3.35)

where the dot over a quantity denotes the λ-derivative of that quantity.

Proof. Since ϕn(λ;N) satisfies (1.1) we have

ϕm+1(λ;N) + ϕm−1(λ;N) = (2 + Vm − λ) ϕm(λ;N), m ≥ 1, (3.36)

ϕm+1(λs;N) + ϕm−1(λs;N) = (2 + Vm − λs) ϕm(λs;N), m ≥ 1. (3.37)

Let us multiply (3.36) by −ϕm(λs;N) and multiply (3.37) by ϕm(λ;N) and add the
resulting equations and then apply the summation over m from m = 1 to m = n−1.
After some simplifications and using the first equality in (2.4), we obtain

ϕn(λs;N)ϕn−1(λ;N)− ϕn−1(λs;N)ϕn(λ;N)

= (λ− λs)
n−1∑
m=1

ϕm(λs;N)ϕm(λ;N),
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or equivalently

n−1∑
m=1

ϕm(λs;N)ϕm(λ;N)

=
ϕn(λs;N)

λ− λs
ϕn−1(λ;N)− ϕn−1(λs;N)

λ− λs
ϕn(λ;N).

(3.38)

Note that (3.38) corresponds to the sth component of the vector relation given in
(3.34). Thus, the proof of (a) is complete. Let us now turn the proof of (b). From

(3.20) and the fact that ξj is real, we see that the (k, l)-entry of the matrix ξjξ
†
j is

given by (
ξjξ
†
j

)
kl

= ϕj(λk;N)ϕj(λl;N). (3.39)

From (3.38) and (3.39) we see that, when k 6= l, we have( n−1∑
m=1

ξm ξ
†
m

)
kl

=
ϕn(λk;N)

λl − λk
ϕn−1(λl;N)− ϕn−1(λk;N)

λl − λk
ϕn(λl;N), k 6= l,

yielding the first line of (3.35). When k = l, we can use the limit λ→ λs in (3.38),
which gives us

n−1∑
m=1

ϕm(λs;N)ϕm(λs;N) = ϕn(λs;N) ϕ̇n−1(λs;N)− ϕn−1(λs;N) ϕ̇n(λs;N),

yielding the second line of (3.35). �

Using (3.34) in (3.32) we obtain the Darboux transformation for the regular
solution as

ϕn(λ;N + 1)

=

{
ϕn(λ;N), n = 1,[
1− β†n αn−1(λ)

]
ϕn(λ;N) + β†n αn(λ)ϕn−1(λ;N), n ≥ 2,

(3.40)

where we recall that β†n is the real-valued row vector in (3.24), αn(λ) is the real-
valued column vector given in (3.33), and ξn is the real-valued column vector given
in (3.20).

Note that the results presented in this section remain valid when N = 0. In that

case we interpret the summation
∑N
k=1 C

2
k as zero in all the relevant formulas in

this section.

4. Darboux transformation in removing a bound state

In this section we determine the effect of removing a bound state from the discrete
spectrum of the Schrödinger operator corresponding to (1.1) and (1.3). For clarity,
we use the notation introduced in Section 3. We have the unperturbed potential
Vn(N) containing N bound states at λ = λs for s = 1, . . . , N . We then remove the
bound state at λ = λN with the Gel’fand-Levitan norming constant CN in order
to obtain the perturbed potential Vn(N − 1) containing N − 1 bound states. As in
Section 3, we know from (2.38) that there is a one-to-one correspondence between
λs and zs, and hence we can equivalently say that the bound states of the potential
Vn(N) occur at z = zs for s = 1, . . . , N , and we remove the bound state at z = zN .
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The Darboux transformation for the Jost function in going from f0(z;N) to
f0(z;N − 1) can be obtained via (3.6) as

f0(z;N − 1) =

(
1− zNz
1− z

zN

)
f0(z;N), |z| ≤ 1. (4.1)

Similarly, the Darboux transformation for the scattering matrix in going from
S(z;N) to S(z;N − 1) can be obtained via (3.8) as

S(z;N − 1) =
( z − zN

1− zNz

)2
S(z;N), z ∈ T.

With the help of (3.9) we see that the Darboux transformation for the phase shift
in going from φ(z;N) to φ(z;N − 1) can be obtained via (3.9) as

φ(z;N − 1) = φ(z;N) +
i

2
log
(1− zN z
z − zN

)2
, z ∈ T.

Let us now determine the Darboux transformation for the spectral density in
going from dρ(λ;N) to dρ(λ;N − 1). From (3.10) we see that

dρ(λ;N − 1) =


(

1−
∑N−1
s=1 C2

s∏N−1
k=1 z

2
k

)
dρ̊

|f0(z;N − 1)|2
, λ ∈ [0, 4],∑N−1

s=1 C2
s δ(λ− λs) dλ, λ ∈ R \ [0, 4].

(4.2)

On the other hand, from (3.5) we have

|f0(z;N − 1)|2 = z2N |f0(z;N)|2, z ∈ T. (4.3)

Using (4.3) in (4.2) we obtain

dρ(λ;N − 1) =


(

1−
∑N−1
s=1 C2

s∏N
k=1 z

2
k

)
dρ̊

|f0(z;N)|2
, λ ∈ [0, 4],∑N−1

s=1 C2
s δ(λ− λs) dλ, λ ∈ R \ [0, 4].

(4.4)

We recall that λ ∈ [0, 4] in (4.2) and (4.4) corresponds to z ∈ T+. Thus, from
(3.10) and (4.4) we obtain

dρ(λ;N − 1)− dρ(λ;N) =


(

C2
N

1−
∑N
s=1 C

2
s

)
dρ(λ;N), λ ∈ [0, 4],

−C2
N δ(λ− λN ) dλ, λ ∈ R \ [0, 4].

(4.5)

Next, we determine the Darboux transformation for the regular solution in going
from ϕn(λ;N) to ϕn(λ;N − 1). In the Gel’fand-Levitan formalism outlined in
(2.47)–(2.51), we have

ϕn(λ;N − 1) =

{
ϕn(λ;N), n = 1,

ϕn(λ;N) +
∑n−1
m=1Anm ϕm(λ;N), n ≥ 2,

Gnm :=

∫
λ∈R

ϕn(λ;N) [dρ(λ;N − 1)− dρ(λ;N)]ϕm(λ;N), (4.6)

where the constants Anm are to be determined from (2.50) by using (4.6) as input.
In this case, from (2.51) we obtain

Vn(N − 1)− Vn(N) = A(n+1)n −An(n−1), n ≥ 1,
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again with the understanding that A10 = 0. Using (4.5) in (4.6) we obtain

Gnm =

(
C2
N

1−
∑N
k=1 C

2
k

)∫
λ∈[0,4]

ϕn(λ;N) dρ(λ;N)ϕm(λ;N)

− C2
N ϕn(λN ;N)ϕm(λN ;N).

(4.7)

Using (3.15) in (4.7), after some simplification we obtain

Gnm =

(
C2
N

1−
∑N
k=1 C

2
k

)
δnm −

(
C2
N

1−
∑N
k=1 C

2
k

)N−1∑
s=1

C2
s ϕn(λs;N)ϕm(λs;N)

− C2
N

(
1−

∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
ϕn(λN ;N)ϕm(λN ;N).

(4.8)

Proceeding as in (3.18)–(3.20) we can write Gnm given in (4.8) as

Gnm =

(
C2
N

1−
∑N
k=1 C

2
k

)
δnm + θ†n FN θm, (4.9)

where FN is the N ×N diagonal matrix with real entries given by

FN := diag

{
−C2

1 C
2
N

1−
∑N
k=1 C

2
k

,
−C2

2 C
2
N

1−
∑N
k=1 C

2
k

, · · · ,

−C2
N−1 C

2
N

1−
∑N
k=1 C

2
k

,
−C2

N

(
1−

∑N−1
s=1 C2

s

)
1−

∑N
k=1 C

2
k

}
,

(4.10)

and θn is the column vector with N entries given by

θn :=
[
ϕn(λ1;N) ϕn(λ2;N) · · · ϕn(λN−1;N) ϕn(λN ;N)

]†
. (4.11)

Comparing (3.20) and (4.11) we observe that the first N entries of the column
vectors θn and ξn are identical and that ξn has an additional (N +1)st entry. As in
Section 3, the quantity Gnm given in (4.9) is separable in n and m, and hence the
Gel’fand-Levitan system (2.50) is explicitly solvable by using the analog of (3.21),
i.e. by letting

Anm = γ†n θm, 1 ≤ m < n, (4.12)

where the column vector γn has N components to be determined. Proceeding as
in (3.22)–(3.25) we determine γ†n as

γ†n = −θ†n
((

1−
∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N +

n−1∑
j=1

θj θ
†
j

)−1
. (4.13)

From (4.12) and (4.13) we see that

Anm = −θ†n
((

1−
∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N +

n−1∑
j=1

θj θ
†
j

)−1
θm, 1 ≤ m < n. (4.14)

The analogs of (3.28)–(3.30) also apply in this case. Since the right-hand side of
(4.12) is a binomial for a matrix inverse, we can write Anm given in (4.12) as the
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ratio of two determinants as

Anm =

det

 0 θ†n

θm

((
1−

∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N +

∑n−1
j=1 θj θ

†
j

)
det

[(
1−

∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N +

∑n−1
j=1 θj θ

†
j

] , 1 ≤ m < n. (4.15)

As in Proposition 3.2(b), for n ≥ 2 we can simplify the N × N matrix-valued

quantity
∑n−1
j=1 θjθ

†
j appearing in (4.13)–(4.15) and find that its (k, l)-entry is given

by ( n−1∑
j=1

θj θ
†
j

)
kl

=


ϕn−1(λk;N)ϕn(λl;N)− ϕn(λk;N)ϕn−1(λl;N)

λk − λl
, k 6= l,

ϕn(λk;N) ϕ̇n−1(λk;N)− ϕn−1(λk;N) ϕ̇n(λk;N), k = l.

(4.16)

Let us remark that the matrix in (3.35) has N + 1 rows and N + 1 columns, and
the matrix in (4.16) has N rows and N columns. If we delete the (N + 1)st row
and (N + 1)st column from the matrix in (3.35) we obtain the matrix in (4.16).

The analog of (3.26) in this case is obtained by using (4.14) in (2.51), and for
n ≥ 2 we obtain the Darboux transformation in going from Vn(N) to Vn(N − 1)
given by

Vn(N − 1)− Vn(N) =θ†n

((
1−

∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N +

n−1∑
j=1

θj θ
†
j

)−1
θn−1

− θ†n+1

((
1−

∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N +

n∑
j=1

θj θ
†
j

)−1
θn.

(4.17)

For n = 1, instead of (4.17) we use the analog of (3.27) and get

V1(N − 1)− V1(N) = −θ†2
((

1−
∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N + θ1 θ

†
1

)−1
θ1. (4.18)

The analog of (3.32) in this case is

ϕn(λ;N − 1) =

{
ϕn(λ;N), n = 1,

ϕn(λ;N) + γ†n
∑n−1
m=1 θm ϕm(λ;N), n ≥ 2,

and the analog of (3.40) in this case is

ϕn(λ;N − 1) =

{
ϕn(λ;N), n = 1,

[1− γ†n εn−1(λ)]ϕn(λ;N) + γ†n εn(λ)ϕn−1(λ;N), n ≥ 2,

where εn(λ) for n ≥ 1 is the column vector with N components and it is defined as

εn(λ) :=

[
ϕn(λ1;N)

λ− λ1
ϕn(λ2;N)

λ− λ2
· · · ϕn(λN−1;N)

λ− λN−1
ϕn(λN ;N)

λ− λN

]†
. (4.19)
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We remark that the column vector εn(λ) given in (4.19) has N components, and
the column vector αn(λ) given in (3.33) has N + 1 components. In fact, εn(λ) is
obtained from αn(λ) by omitting the last entry.

In the following theorem we present the analog of the result presented in Theo-
rem 3.1, i.e. we prove that the matrix inverse appearing in (4.14) is well defined and
hence the Darboux transformation formulas at the potential level given in (4.17)
and (4.18) are valid. Let us remark that the matrix in (3.25) whose inverse is
established in Theorem 3.1 consists of the sum of a diagonal matrix with positive
entries and a nonnegative hermitian matrix. In contrast, the matrix in (4.14) whose
inverse is established in the next theorem consists of the sum of a diagonal matrix
with negative entries and a nonnegative hermitian matrix.

Theorem 4.1. Assume that the potential Vn appearing in (1.1) belongs to the
Faddeev class and that the discrete Schrödinger operator associated with (1.1) and
(1.3) has N bound states with the corresponding Gel’fand-Levitan norming constants
Cs defined in (2.39) for s = 1, . . . , N . Assume that the bound state at λ = λN with
the Gel’fand-Levitan norming constant CN is removed from the discrete spectrum.

Furthermore, assume that
∑N
s=1 C

2
s < 1. Then, the matrix inverse appearing in

(4.14) exists for any n ≥ 2.

Proof. As a result of the assumption
∑N
s=1 C

2
s < 1, from (4.10) we observe that

each entry of the diagonal matrix FN given in (4.10) is negative and hence F−1N

is also a diagonal matrix with negative entries. We can write the matrix in (4.14)

whose inverse is to be established as −HN +
∑n−1
j=1 θj θ

†
j , where we have defined

HN := −
(

1−
∑N−1
s=1 C2

s

1−
∑N
k=1 C

2
k

)
F−1N . (4.20)

Using (4.10) in (4.20) we obtain

HN =

(
1−

∑N−1
s=1 C2

s

C2
N

)
diag

{ 1

C2
1

,
1

C2
2

, · · · , 1

C2
N−1

,
1

1−
∑N−1
k=1 C

2
k

}
. (4.21)

We let

εN :=
1−

∑N
s=1 C

2
s

C2
N

. (4.22)

and observe that εN is a positive number as a result of
∑N
s=1 C

2
s < 1. Note that

1−
∑N−1
k=1 C

2
k

C2
N

=
C2
N + 1−

∑N
k=1 C

2
k

C2
N

= 1 +
1−

∑N
s=1 C

2
s

C2
N

. (4.23)

With the help of (4.22) and (4.23) we write (4.21) as

HN = diag
{1 + εN

C2
1

,
1 + εN
C2

2

, · · · , 1 + εN
C2
N−1

,
1

C2
N

}
. (4.24)

Let v be a nonzero vector in CN given by

v =

 v1
...

vN+1

 . (4.25)
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The hermitian form of HN with the vector v given in (4.25) is obtained from (4.23)
as

v†HN v =
(1 + εN ) |v1|2

C2
1

+
(1 + εN ) |v2|2

C2
2

+ · · ·+ (1 + εN ) |vN−1|2

C2
N−1

+
|vN |2

C2
N

. (4.26)

Since εN > 0, from (4.26) we obtain

v†HN v ≥
|v1|2

C2
1

+
|v2|2

C2
2

+ · · ·+ |vN−1|
2

C2
N−1

+
|vN |2

C2
N

. (4.27)

We evaluate the hermitian form of
∑n−1
j=1 θj θ

†
j with the vector v given in (4.25) as

in (3.31) and obtain

v†
n−1∑
j=1

θj θ
†
jv =

n−1∑
j=1

|θ†jv|
2. (4.28)

From (4.28) we conclude that

v†
n−1∑
j=1

θj θ
†
jv <

∞∑
j=1

|θ†jv|
2, (4.29)

where we have used the fact that we cannot have θ†jv = 0 for all j ≥ n. Using

(4.11) and (4.25) we obtain

θ†j v = ϕj(λ1;N) v1 + ϕj(λ2;N) v2 + · · ·+ ϕj(λN ;N) vN , (4.30)

where we recall that each entry in (4.11) is real. From (4.30) we obtain

|θ†jv|
2 =

N∑
k=1

ϕj(λk;N)2 |vk|2 + 2
∑

1=k<l≤N

ϕj(λk;N)ϕj(λl;N) v∗k vl. (4.31)

Since the discrete Schrödinger operator associated with (1.1) and (1.3) is selfadjoint,
its eigenvectors corresponding to distinct eigenvalues are orthogonal and we have

∞∑
j=1

ϕj(λk;N)ϕj(λl;N) = 0, k 6= l. (4.32)

Thus, with the help of (4.32), from (4.31) we obtain

∞∑
j=1

|θ†j v|
2 =

N∑
k=1

( ∞∑
j=1

ϕj(λk;N)2
)
|vk|2. (4.33)

Using (2.39) in (4.33) we obtain

∞∑
j=1

|θ†jv|
2 =

N∑
k=1

|vk|2

C2
k

. (4.34)

Thus, from (4.29) and (4.34) we obtain

v†
n−1∑
j=1

θj θ
†
jv <

|v1|2

C2
1

+
|v2|2

C2
2

+ · · ·+ |vN |
2

C2
N

. (4.35)

Combining (4.27) and (4.35) we obtain

v†
(
−HN +

n−1∑
j=1

θj θ
†
j

)
v < 0. (4.36)
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From (4.36) we conclude that the matrix whose inverse appears in (4.14) is negative
and hence that matrix must be invertible. �

5. Some explicit examples

In this section we illustrate the results of the previous sections with some explicit
examples. We also make some contrasts between the Darboux transformation for
(1.1) and the Darboux transformation for (1.2) when the potentials are compactly
supported.

Let us consider the case where the potential Vn in (1.1) is nontrivial and com-
pactly supported, i.e. assume that Vn = 0 for n > b and Vb 6= 0 for some positive
integer b. The corresponding Jost function f0 appearing in (2.10) is then a polyno-
mial in z of degree 2b− 1 and, as [3, (2.50)] indicates, is given by

f0 = 1 + z

b∑
j=1

Vj + · · ·+ z2b−2
b−1∑
j=1

Vb Vj + z2b−1Vb. (5.1)

For a compactly-supported potential, the Marchenko norming constant cs defined
in (2.40) is obtained [3] from the residue of S/z at the bound-state value zs as

c2s = Res
[S
z
, zs

]
, s = 1, . . . , N, (5.2)

where S is the scattering matrix defined in (2.10). Consequently, the corresponding
Gel’fand-Levitan norming constant Cs can be obtained by using (2.42).

In some of the examples in this section, we illustrate that not every polyno-
mial in z of degree 2b − 1 necessarily corresponds to the Jost function f0 of a
compactly-supported potential vanishing for n > b. This is not surprising because
the coefficients in such a polynomial must agree with the coefficients given in (5.1).
There are b potential values that need to correspond to the (2b− 1) coefficients on
the right-hand side of (5.1). For example, when b = 2 from (5.1) we obtain

f0 = 1 + (V1 + V2)z + V1V2z
2 + V2z

3, (5.3)

and the same quantity must also have the form

f0 =
(

1− z

α1

)(
1− z

α2

)(
1− z

α3

)
, (5.4)

for some nonzero constants α1, α2, α3 satisfying

V1 + V2 = −
( 1

α1
+

1

α2
+

1

α3

)
,

V1V2 =
1

α1 α2
+

1

α1 α3
+

1

α2 α3
,

V2 = − 1

α1 α2 α3
.

(5.5)

In case the system (5.5) is inconsistent, the quantity given on the right-hand side
of (5.4) cannot be the Jost function of a compactly-supported potential.

For the half-line Schrödinger equation (1.2) with a compactly-supported poten-
tial V (x), the following property is known [2]. If we remove a bound state from
such a potential, then the transformed potential is also compactly supported and the
transformed potential is guaranteed to vanish outside the support of the original
potential. In some of the examples in this section, we illustrate that the afore-
mentioned support property does not necessarily hold for the discrete Schrödinger
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equation (1.1). We show that the property holds in one example but does not hold
in another example.

For the half-line Schrödinger equation (1.2) with a compactly-supported poten-
tial V (x), also the following second property holds [2]. If we add a bound state
to a compactly-supported potential, then the transformed potential is also com-
pactly supported (and the transformed potential is guaranteed to vanish outside
the support of the original potential) if and only if the two conditions specified in
[2, Theorem 3.5] are satisfied. The first condition is that the added bound-state
λs-value must come from an “eligible” resonance [2] and the second condition is
that the corresponding Gel’fand-Levitan norming constant Cs must have a specific
positive value. In some of the examples in this section, we illustrate that the afore-
mentioned support property does not necessarily hold for the discrete Schrödinger
equation (1.1). We show that the property holds in one example but does not hold
in another example.

In the next example, we add a bound state at z = z1 with the Gel’fand-Levitan
norming constant C1 to a compactly-supported potential with b = 1. The exam-
ple shows that the Darboux transformation on the compactly-supported potential
results in a compactly-supported potential if the values for z1 and C1 are chosen
appropriately.

Example 5.1. Consider the compactly-supported potential Vn with b = 1 and
hence Vn = 0 for n ≥ 2. Let us assume that 0 < |V1| ≤ 1. From (5.1) we see that
the Jost function is given by

f0 = 1 + V1z. (5.6)

Using (2.4) in (2.3), we obtain the corresponding regular solution ϕn as a function
of z as

ϕn =
zn − z−n

z − z−1
+ V1

zn−1 − z1−n

z − z−1
, n ≥ 1. (5.7)

Since the bound states correspond to the zeros of f0 when z ∈ (−1, 0)∪ (0, 1), from
(5.6) we see that there are no bound states and hence we have N = 0. Let us now
add one bound state at z = z1 with the Gel’fand-Levitan norming constant C1. Let
us choose z1 = −V1, and hence impose the further restriction 0 < |V1| < 1. Let us

use f̃0 and Ṽn to denote the corresponding Jost function and potential, respectively,
when the bound state is added. From (3.6) and (5.6) we see that

f̃0 = 1 +
z

V1
. (5.8)

Using (5.7) and z1 = −V1 in (3.20), we obtain

ξn = (−V1)1−n, n ≥ 1.

The quantity EN defined in (3.19) with N = 0 is given by E0 = C2
1 . Then, (3.27)

and (3.26) respectively yield

Ṽ1 = V1 +
C2

1

V1
, (5.9)

Ṽn =
−C2

1V
2n+1
1 (1− V 2

1 )2(C2
1 − 1 + V 2

1 )

C2
1V

6
1 − C2

1V
2n+2
1 (1 + V 2

1 )(C2
1 − 1 + V 2

1 ) + V 4n
1 (C2

1 − 1 + V 2
1 )2

, (5.10)

for n ≥ 2. From (5.10) we see that Ṽn is compactly supported if and only if we
have

C2
1 = 1− V 2

1 . (5.11)
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In fact, with the special choice of the Gel’fand-Levitan norming constant in (5.11),

from (5.9) we obtain Ṽ1 = 1/V1. In the presence of one bound state for the

compactly-supported potential Ṽn, the corresponding Gel’fand-Levitan norming
constant C1 can be evaluated with the help of (2.41), (5.2), (5.8), and the fact

that f̃1 = z, yielding the value of C2
1 given in (5.11).

In the following example, we illustrate that a polynomial in z of degree 2b−1 may
or may not correspond to the Jost function of a compactly-supported potential.

Example 5.2. Consider the Jost function

f0 = (1 + 2z)(1− 2z)
(

1− z√
5

)
. (5.12)

Comparing (5.12) with (5.3)–(5.5), we see that one solution to the corresponding
system (5.5) results in

b = 2, V1 = −
√

5, V2 =
4√
5
. (5.13)

From (5.12) we see that f0 has two zeros when z ∈ (−1, 0) ∪ (0, 1), and hence it
has two bound-state zeros given by z1 = −1/2 and z2 = 1/2. From (2.46) we see
that the corresponding Gel’fand-Levitan norming constants C1 and C2 must satisfy
0 < C2

1 + C2
2 ≤ 1. Corresponding to a compactly-supported potential we must [3]

have fn = zn for n ≥ b. Hence, in our example, corresponding to (5.12) we have
f2 = z2 and f3 = z3. Then, from (2.3) with n = 2 we obtain f1(z) = z + V2z

2.
With the help of (2.41), (2.42), and (5.2), we obtain

C2
1 =

3(12− 5
√

5)

76
= 0.032355, C2

2 =
3(12 + 5

√
5)

76
= 0.915013, (5.14)

where the bar over a digit indicates a round off. We note that (5.14) is compatible
with the constraint 0 < C2

1 + C2
2 ≤ 1. Thus, we have confirmed that z1 = −1/2

and z2 = 1/2 do indeed correspond to bound states of the compactly-supported
potential described in (5.13). In (5.4), if we choose αj = 1 for j = 1, 2, 3, then
the system in (5.5) becomes inconsistent and hence there are no values V1 and
V2 satisfying (5.5). Thus, the corresponding expression in (5.4) does not yield

a compactly-supported potential. On the other hand, if we let V1 = −
√

2 and
V2 = 1/

√
2 in (5.3), we obtain a solution to (5.5) with α1 = −1, α2 = 1, and

α3 =
√

2, and hence the Jost solution obtained from (5.4) does not contain any

zeros in z ∈ (−1, 0) ∪ (0, 1), yielding N = 0. Choosing V1 = −(7 +
√

10)/6 and

V2 = −(1 +
√

10)/2 in (5.3), we obtain a solution to (5.5) given by

α1 =
3

2(1 +
√

10)
= 0.36038, α2 =

2

1 +
√

2i
, α3 =

2

1−
√

2i
,

which indicates that the corresponding f0 in (5.4) has one bound state at z1 = α1

with the corresponding Gel’fand-Levitan norming constant C1, evaluated with the
help of (2.40), (2.42), and (5.2), as

C2
1 =

625 + 128
√

10

3489
= 0.295148.

We remark that it is impossible to have a compactly-supported potential with
b = 2 having three bound states. This can be seen as follows. Assume that for
some choice of V1 and V2 in (5.3) we had −1 < α1 < α2 < α3 < 1 for nonzero αj
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values. Using (5.4) in (2.10) and (5.2) we would get the corresponding Marchenko
norming constants as 

c21 =
(1− α2

1)(1− α1α2)(1− α1α3)

α4
1(α2 − α1)(α3 − α1)

,

c22 =
(1− α1α2)(1− α2

2)(1− α2α3)

α4
2(α1 − α2)(α3 − α2)

,

c23 =
(1− α1α3)(1− α2α3)(1− α2

3)

α4
3(α1 − α3)(α2 − α3)

.

(5.15)

From the three equations in (5.15) we see that we would have c21 > 0, c22 < 0,
c23 > 0, and hence it is impossible to have N = 3. From Example 5.1 we know that
0 ≤ N ≤ b when b = 1, and from (5.15) we know that 0 ≤ N ≤ b when b = 2.
From (5.1) it is clear that the number of zeros of f0(z) in z ∈ (−1, 0)∪ (0, 1) cannot
exceed 2b − 1. This naturally leads to the following question, which can perhaps
be answered with the help of a generalization of (5.15) from b = 2 to an arbitrary
positive integer b : For any given positive integer b, what is the maximal number
of bound states for the corresponding Schrödinger operator associated with (1.1)
and (1.4), if the potential Vn has a compact support with Vn = 0 for n > b? The
answer to this question turns out to be the integer b itself and a proof can be found
in [1].

The regular solution ϕn to (1.1) corresponding to (5.3) can be obtained recur-
sively with the help of (2.4). We have

ϕ1 = 1, ϕ2 = −λ+ 2 + V1, (5.16)

ϕ3 = λ2 − (4 + V1 + V2)λ+ 3 + 2V1 + 2V2 + V1V2, (5.17)

ϕ4 =− λ3 + (6 + V1 + V2)λ2

− (10 + 4V1 + 4V2 + V1V2)λ+ 4 + 3V1 + 4V2 + 2V1V2,
(5.18)

ϕ5 =λ4 − (8 + V1 + V2)λ3 + (21 + 6V1 + 6V2 + V1V2)λ2

− (20 + 10V1 + 11V2 + 4V1V2)λ+ 5 + 4V1 + 6V2 + 3V1V2.
(5.19)

In the next two examples, we show that if we remove a bound state from a
compactly-supported potential then the resulting potential may or may not be
compactly supported.

Example 5.3. Consider the compactly-supported potential Vn with b = 1 and
hence Vn = 0 for n ≥ 2. The corresponding Jost function is given by (5.6). Since
the bound states correspond to the zeros of f0 when z ∈ (−1, 0)∪ (0, 1), from (5.6)
we see that there exists one bound state if |V1| > 1. We assume that |V1| > 1 so
that we have exactly one bound state at z = z1, where z1 = −1/V1. From (2.10)
and (5.6) we see that the corresponding scattering matrix is given by

S(z) =
V1 + z

z + V1z2
, z ∈ T. (5.20)

In this case, the Jost solution satisfies fn = zn for n ≥ 1. In the presence of one
bound state, the corresponding Gel’fand-Levitan norming constant C1 is evaluated
with the help of (2.42), (5.2), (5.20), and f1 = z, yielding

C2
1 = V 2

1 − 1. (5.21)
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From (2.46) we see that we must have 0 < C2
1 ≤ 1 and hence we must use the

restriction 0 < |V1| ≤
√

2. Let us now remove the bound state with z1 = −1/V1.

The transformed Jost function f̃0 is obtained via (4.1) and is given by f̃0 = 1+z/V1.
In this case, using (4.11) and (5.7) we obtain

θn =
(
− 1

V1

)n−1
, n ≥ 1. (5.22)

Using (5.21) with N = 1, we obtain the quantity FN given in (4.10) as

F1 = 1− V 2
1 . (5.23)

Using (5.22) and (5.23) in (4.17) and (4.18) we obtain Ṽn = 0 for n ≥ 2 and

Ṽ1 = 1/V1.

Example 5.4. Consider the compactly-supported potential Vn described by (5.13)
in Example 5.2. We know from Example 5.2 that there are two bound states with
z1 = −1/2 and z2 = 1/2 with the respective corresponding Gel’fand-Levitan norm-
ing constants C1 and C2 as in (5.14). Hence, we have N = 2. We now demonstrate
that if we remove the bound state at z = z2 by using the Darboux transformation
formulas given in Section 4 then the transformed potential is no longer compactly
supported. From (2.38) we see that the values λ1 and λ2 corresponding z1 and z2,
respectively, are given by

z1 = −1

2
, λ1 =

9

2
, z2 =

1

2
, λ2 = −1

2
. (5.24)

Using (5.16)–(5.20) and (5.24) in (4.11) we obtain

θn =

(
1

2

)n−1 [(−1)n−1(5 + 2
√

5)

(5− 2
√

5)

]
, n ≥ 1. (5.25)

Using (5.14) with N = 2 in (4.10) we obtain

F2 =

[
− 9

10 0

0 − 15
16

(
9 + 4

√
5
)] . (5.26)

With the help of (5.14), (5.25), and (5.26), from (4.17) and (4.18) we can evaluate

the transformed potential Ṽn for all n ≥ 1. We list the first few values below and
mention that Ṽn is not compactly supported:

Ṽ1 =
5(3− 2

√
5)

16
, Ṽ2 =

1125 + 21826
√

5

119120
, Ṽ3 =

270(14781 + 6364
√

5)

15975481
,

Ṽ4 =
1080(231681 + 102364

√
5)

1284143281
, Ṽ5 =

4320(3691281 + 163364
√

5)

204372438481
.
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