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SLOW MOTION FOR ONE-DIMENSIONAL NONLINEAR

DAMPED HYPERBOLIC ALLEN-CAHN SYSTEMS

RAFFAELE FOLINO

Abstract. We consider a nonlinear damped hyperbolic reaction-diffusion sys-
tem in a bounded interval of the real line with homogeneous Neumann bound-

ary conditions and we study the metastable dynamics of the solutions. Using

an “energy approach” introduced by Bronsard and Kohn [11] to study slow
motion for Allen-Cahn equation and improved by Grant [25] in the study of

Cahn-Morral systems, we improve and extend to the case of systems the results

valid for the hyperbolic Allen-Cahn equation (see [18]).In particular, we study
the limiting behavior of the solutions as ε → 0+, where ε2 is the diffusion

coefficient, and we prove existence and persistence of metastable states for a

time Tε > exp(A/ε). Such metastable states have a transition layer structure
and the transition layers move with exponentially small velocity.

1. Introduction

The goal of this article is to study the metastable dynamics of the solutions to
the nonlinear damped hyperbolic Allen-Cahn system

τutt +G(u)ut = ε2uxx + f(u), x ∈ [a, b], t > 0, (1.1)

where u(x, t) ∈ Rm is a vector-valued function, G : Rm → Rm×m is a matrix valued
function of several variables, f : Rm → Rm is a vector field and ε, τ are positive
parameters. Precisely, we are interested in the limiting behavior of the solutions as
ε→ 0+, and we study existence and persistence of metastable states for (1.1).

System (1.1) is complemented with homogeneous Neumann boundary conditions

ux(a, t) = ux(b, t) = 0, ∀t > 0, (1.2)

and initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [a, b]. (1.3)

We assume that f , G are smooth functions with G a positive-definite matrix for all
u ∈ Rm, that is there exists a constant α > 0 such that

G(u)v · v ≥ α|v|2, ∀u,v ∈ Rm. (1.4)

Regarding f , we suppose that it is a gradient field and f(u) = −∇F (u) where
F ∈ C3(Rm,R) is a nonnegative function with a finite number (K ≥ 2) of zeros,
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namely

F (u) ≥ 0 ∀u ∈ Rm, and F (u) = 0⇐⇒ u ∈ {z1, . . . , zK}. (1.5)

Moreover, we assume that the Hessian ∇2F is positive definite at each zero of F :

∇2F (zj)v · v > 0 for j = 1, . . . ,K and v ∈ Rm\{0}. (1.6)

Therefore, z1, . . . , zK are global minimum points of F and stable stationary points
for system (1.1).

In the scalar case m = 1, system (1.1) becomes

τutt + g(u)ut = ε2uxx + f(u), (1.7)

with g a strictly positive smooth function and f = −F ′, where the potential F
is a nonnegative function with K zeros at z1, . . . , zK : F (zj) = F ′(zj) = 0 and
F ′′(zj) > 0 for any j = 1, . . . ,K. In the case K = 2, F is a double-well potential
with non-degenerate minima of same depth, and f is a bistable reaction term. The
simplest example is F (u) = 1

4 (u2 − 1)2, which has two minima in −1 and +1.
Equation (1.7) is a hyperbolic variation of the classic Allen-Cahn equation

ut = ε2uxx + f(u), (1.8)

that is a reaction-diffusion equation (of parabolic type), proposed in [3] to describe
the motion of antiphase boundaries in iron alloys. Reaction-diffusion equations
(of parabolic type) undergo the same criticisms of the linear diffusion equation,
mainly concerning lack of inertia and infinite speed of propagation of disturbances.
To avoid these unphysical properties, many authors proposed hyperbolic variations
of the classic reaction-diffusion equation, that enter in the framework of (1.7) for
different choices of g; for instance, for g(u) ≡ 1, we have a damped nonlinear
wave equation, that is the simplest hyperbolic modification of (1.8). A different
hyperbolic modification is obtained by substituting the classic Fick’s diffusion law
(or Fourier law) with a relaxation relation of Cattaneo-Maxwell type (see [14, 32,
33]); in this case, the damping coefficient is g(u) = 1− τf ′(u) and if f = −F ′ with
F a double-well potential with non-degenerate minima of same depth, we have
the Allen-Cahn equation with relaxation (see [18, 19]). Equation (1.7) has also
a probabilistic interpretation: in the case without reaction (f = 0), it describes
a correlated random walk (see Goldstein [24], Kac [34], Taylor [48] and Zauderer
[49]).

A complete list of papers devoted to equation (1.7) would be prohibitive; far from
being exhaustive, here we recall some works where the derivation of equation (1.7)
was studied in different contexts: Dunbar and Othmer [17], Hadeler [26], Holmes
[30], and Mendez et al. [40]. We also recall that existence and stability of traveling
fronts for equation (1.7) in the case of bistable reaction term is provided in [23] for
g ≡ 1, and in [38] for the Allen-Cahn equation with relaxation, i.e. g = 1− τf ′.

In analogy to the relaxation case of (1.7), let us consider the particular case of
(1.1) corresponding to the choice G(u) = Im − τ f ′(u), where f ′(u) is the Jacobian
of f evaluated at u. We call it the “one-field” equation of system

ut + vx = f(u),

τvt + ε2ux = −v,
(1.9)
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obtained after eliminating the v variable. Note that, for τ = 0, we formally obtain
the reaction-diffusion system

ut = ε2uxx + f(u). (1.10)

Some properties (long time behavior, invariance principles, Turing instabilities) of
systems of the form (1.9) with general reaction term f have been studied by Hillen
in [27, 28, 29].

The aim of this paper is twofold: first, we will extend to the case of systems the
slow motion results valid for the hyperbolic Allen-Cahn equation (1.7) (see [18]);
second, we will improve the energy approach used in [18] to obtain an exponentially
large lifetime of the metastable states.

Metastable dynamics is characterized by evolution so slow that (non-stationary)
solutions appear to be stable; metastability is a broad term describing the persis-
tence of unsteady structures for a very long time. For the Allen-Cahn model (1.8),
this phenomenon was firstly observed in [11, 12, 13, 22]. In particular, Bronsard
and Kohn [11] introduced an “energy approach”, based on the underlying varia-
tional structure of the equation, to study the metastable dynamics of the solutions.
We also recall the study of generation, persistence and annihilation of metastable
patterns performed in [16]. In this work, the author studied the persistence of the
metastable states by using a different approach, known as “dynamical approach”,
proposed by Carr-Pego [12] and Fusco-Hale [22]. In [6], the authors provide a vari-
ational counterpart of the dynamical results of [12, 22]. They justify and confirm,
from a variational point of view, the results of [12, 22] on the exponentially slow
motion of the metastable states.

The dynamical approach and the energy one can be adapted and extended to the
hyperbolic variation (1.7). In [19], by using the dynamical approach, the authors
show the existence of an “approximately invariant” N -dimensional manifoldM0 for
the hyperbolic Allen-Cahn equation: if the initial datum is in a tubular neighbor-
hood of M

0
, the solution remains in such neighborhood for an exponentially long

time. Moreover, for an exponentially long time, the solution is a function with N
transitions between −1 and +1 (the minima of F ) and the transition points move
with exponentially small velocity. On the other hand, in [18], by using the energy
approach, it is proved that if the initial datum u0 has a transition layer structure

and the L2-norm of the initial velocity u1 is bounded by Cε
k+1
2 , then in a time

scale of order ε−k nothing happens, and the solution maintains the same number
of transitions of its initial datum.

The phenomenon of metastability is present in a very large class of different
evolution PDEs. It is impossible to quote all the contributes, here we recall that
using a similar approach to [12, 22], slow motion results have been proved for the
Cahn-Hilliard equation in [1, 4, 5]. The energy approach is performed in [10] for
the classical Cahn-Hilliard equation and in [20] for its hyperbolic variation. We
also recall the study of metastability for scalar conservation laws [21, 36, 37, 39,
43, 45], convection-reaction-diffusion equation [46], general gradient systems [41],
high-order systems [35].

The aforementioned bibliography is confined to one-dimensional scalar models;
the papers [8, 9, 47] deal with the extension to the case of systems of the results
valid for the scalar reaction-diffusion equations. In particular, in [8] a system of
reaction-diffusion equations is considered in the whole real line, with the reaction
term f = −∇F and F satisfying (1.5)-(1.6); in [9] is considered the degenerate
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case, that is when F satisfies (1.5), but not the condition (1.6). Strani [47] studied
systems of the form (1.10) in a bounded interval, where f = −∇F and F satisfying
(1.5)-(1.6) with two distinct minima. On the other hand, Grant [25] extended to
Cahn-Morral systems the slow motion results of the Cahn-Hilliard equation, by
improving the energy approach of Bronsard and Kohn [11]. The improvement from
superpolynomial to exponential speed is made possible by incorporating some ideas
of Alikakos and McKinney [2] and some techniques of Sternberg [44]. In this paper
we use these ideas to improve and extend to the system (1.1) the results of [18].
The key point to apply the energy approach of Bronsard and Kohn in system (1.1)
is the presence of the modified energy functional

Eε[u,ut](t) :=
τ

2ε
‖ut(·, t)‖2

L2
+ Pε[u](t), (1.11)

where

‖ut(·, t)‖2
L2

:=

∫ b

a

|ut(x, t)|2dx,

Pε[u](t) :=

∫ b

a

[ε
2
|ux(x, t)|2 +

F (u(x, t))

ε

]
dx.

The modified energy functional defined in (1.11) is a nonincreasing function of
time t along the solutions of (1.1)–(1.2). Indeed, if u is a solution of (1.1) with
homogeneous Neumann boundary conditions (1.2), then

ε−1
∫ T

0

∫ b

a

G(u)ut · ut dx dt = Eε[u,ut](0)− Eε[u,ut](T ). (1.12)

The proof of (1.12) is in Appendix 5 (see Proposition 5.2). It follows that the
assumption on G implies the dissipative character of system (1.1). In particular,
using (1.4) and (1.12), we obtain

ε−1α

∫ T

0

∫ b

a

|ut|2 dx dt ≤ Eε[u,ut](0)− Eε[u,ut](T ). (1.13)

Note that the functional Pε is the modified energy functional for the parabolic case
(1.10) and we have a new term concerning the L2-norm of ut in the hyperbolic
case. As we will see in Section 2, inequality (1.13) is crucial in the use of the energy
approach, because it allows us to obtain an estimate on the time derivate of the
solution, by taking advantage of some properties of the energy functional Eε[u,ut].

Remark 1.1. Let us remark that G is a positive-definite matrix for all u ∈ Rm,
and the function F vanishes only on a finite number of points. As we already
mentioned, the assumption (1.4) is crucial in our proofs, because it implies the
dissipative character of the system (1.1) and we can obtain the estimate (1.13) on
the time derivative of the solution. In the case G ≡ 0 we have a nonlinear wave
equation of the form

τutt = ε2uxx + f(u),

which exhibits different dynamics (see [7, 31] and references therein, where the
authors studied the case when f = −∇F and the potential F vanishes on the unit
circle). We also underline that, in this paper, we consider the case of a bounded
interval of the real line, and we use the boundedness of the domain in an essential
way in some key estimates.
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The main result of this article can be sketched as follows. First, we remark that
every piecewise constant function v assuming values in {z1, . . . , zK} is a stationary
solution of (1.1) with ε = 0. When ε > 0 the function v is not a stationary solution
of (1.1); we consider an initial datum u0 ∈ H1([a, b])m that is close to v in L1 for ε
small (the precise assumptions on the initial data u0, u1 are (2.9), (2.10)), and we
prove that the solution maintains the same transition layer structure of its initial
datum for an exponentially large time, i.e. a time Tε = O (exp(A/ε)), as ε→ 0+.

The rest of this article is organized as follows. Section 2, the main section of the
paper, is devoted to the analysis of metastability, and it contains the main result,
Theorem 2.3. In Section 3 we construct an example of family of functions that has
a transition layer structure. These functions are metastable states for (1.1)-(1.2).
Section 4 contains the study of the motion of the transition layers; in particular, we
prove that they move with exponentially small velocity (see Theorem 4.1). Finally,
in Appendix 5 we study the well-posedness of the initial boundary value problem
(1.1)-(1.2)-(1.3) in the energy space H1([a, b])

m × L2(a, b)
m

.

2. Metastability

In this section we study metastability of solutions to the nonlinear damped hy-
perbolic Allen-Cahn system (1.1), where u ∈ Rm, with homogeneous Neumann
boundary conditions (1.2). Fix v : [a, b] → {z1, . . . , zK} having exactly N jumps
located at a < γ1 < γ2 < · · · < γN < b, and fix r so small that B(γi, r) ⊂ [a, b] for
any i and

B(γi, r) ∩B(γj , r) = ∅, for i 6= j.

Here and below B(γ, r) is the open ball of center γ and of radius r in the relevant
space. For j = 1, . . . ,K, denote by λj (respectively, Λj) the minimum (resp.
maximum) of the eigenvalues of ∇2F (zj). If λ = minj λj and Λ = maxj Λj , we
have for any j = 1, . . . ,K,

0 < λ|y|2 ≤ ∇2F (zj)y · y ≤ Λ|y|2, ∀y ∈ Rm. (2.1)

Let us consider the modified energy (1.11). In the scalar case m = 1, the minimum
energy to have a transition between the two equilibrium points −1 and +1 is the

positive constant c0 :=
∫ +1

−1

√
2F (s) ds. In general, for m ≥ 1, from Young’s

inequality and the positivity of the term τ
2ε‖ut‖

2
L2

, it follows that

Eε[u,ut](t) ≥ Pε[u](t) ≥
√

2

∫ b

a

√
F (u(x, t))|ux(x, t)|dx. (2.2)

This justifies the use of the modified energy (1.11); indeed, the right hand side of
inequality (2.2) is strictly positive and does not depend on ε. For (2.2), we assign
to the discontinuous function v the asymptotic energy

P0[v] :=

N∑
i=1

φ(v(γi − r),v(γi + r)),

where

φ(ξ1, ξ2) := inf
{
J [z] : z ∈ AC([a, b],Rm), z(a) = ξ1, z(b) = ξ2

}
,

J [z] :=
√

2

∫ b

a

√
F (z(s))|z′(s)|ds.
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It is easy to check that φ is a metric on Rm. Moreover, Young’s inequality and a
change of variable imply that

Pε[z; c, d] ≥ φ(z(c), z(d)),

for all a ≤ c < d ≤ b, where we use the notation Pε[z; c, d], when the integral
in (1.11) is over the interval [c, d] instead of [a, b]. From (2.2), it follows that
P0[v] is the minimum energy to have N transitions between the equilibrium points
z1, . . . , zK . Precisely, we can prove a lower bound on the energy, which allows us to
proof our main result. Such a result is purely variational in character and concerns
only the functional Pε; system (1.1) plays no role. The idea of the proof is the same
of [25, Lemma 2.1], we repeat it here for the convenience of the reader.

Proposition 2.1. Assume that F : Rm → R satisfies (1.5)-(1.6). Let v : [a, b] →
{z1, . . . , zK} be a function having exactly N jumps located at a < γ1 < γ2 < · · · <
γN < b and let A be a positive constant less than r

√
2λ. Then, there exist constants

C, δ > 0 (depending only on F,v and A) such that, for ε sufficiently small, if
‖u− v‖L1 ≤ δ, then

Pε[u] ≥ P0[v]− C exp(−A/ε). (2.3)

Proof. Let Q be a compact set of Rm containing F−1({0}) in its interior and ν :=
sup

{
‖∇3F (ζ)‖ : ζ ∈ Q

}
. Choose r̂ > 0 and ρ1 so small that A ≤ (r−r̂)

√
2λ−mνρ1

and that B(zj , ρ1) is contained in Q for each zj ∈ F−1({0}). Choose ρ2 so small
that

inf
{
φ(ξ1, ξ2) : ξ1 /∈ B(zj , ρ1), ξ2 ∈ B(zj , ρ2), zj ∈ F−1({0})

}
> sup

{
φ(zj , ξ2) : zj ∈ F−1({0}), ξ2 ∈ B(zj , ρ2)

}
,

and |zj − zl| > 2ρ2 if zj and zl are different zeros of F .
Now, let us focus our attention on B(γi, r), a neighborhood of one of the tran-

sition points of v. For convenience, let v+
i := v(γi + r) and v−i := v(γi − r). We

claim that there is some r+ ∈ (0, r̂) such that

|u(γi + r+)− v+
i | < ρ2.

Indeed, if |u− v| ≥ ρ2 throughout (γi, γi + r̂), then

‖u− v‖L1 ≥
∫ γi+r̂

γi

|u− v| ≥ r̂ρ2 > δ,

if δ < r̂ρ2, contrary to assumption on u. Similarly, there is some r− ∈ (0, r̂) such
that

|u(γi − r−)− v−i | < ρ2.

Next, following [25], consider the unique minimizer z : [γi+ r+, γi+ r]→ Rm of the
functional Pε[z; γi + r+, γi + r] subject to the boundary condition

z(γi + r+) = u(γi + r+).

If the range of z is not contained in B(v+
i , ρ1), then

Pε[z; γi + r+, γi + r] ≥ inf
{
φ(z(γi + r+), ξ) : ξ /∈ B(v+

i , ρ1)
}

≥ φ(z(γi + r+),v+
i ),

(2.4)

by the choice of r+ and ρ2. Suppose, on the other hand, that the range of z is
contained in B(v+

i , ρ1). Then, the Euler-Lagrange equation for z is

z′′(x) = ε−2∇F (z(x)), x ∈ (γi + r+, γi + r),
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z(γi + r+) = u(γi + r+), z′(γi + r) = 0.

Denoting by ψ(x) := |z(x)− v+
i |2, we have ψ′(x) = 2(z− v+

i ) · z′ and

ψ′′(x) = 2(z− v+
i ) · z′′ + 2|z′|2 ≥ 2

ε2
(z− v+

i ) · ∇F (z(x)).

Since |z(x)− v+
i | ≤ ρ1 for any x ∈ [γi + r+, γi + r], using Taylor’s expansion

∇F (z(x)) = ∇F (v+
i ) +∇2F (v+

i )(z(x)− v+
i ) +R = ∇2F (v+

i )(z(x)− v+
i ) +R,

where |R| ≤ mν|z− v+
i |2/2, we obtain

ψ′′(x) ≥ 2

ε2
∇2F (v+

i )(z(x)− v+
i ) · (z(x)− v+

i )− mν

ε2
|z(x)− v+

i |
3

≥ 2λ

ε2
|z(x)− v+

i |
2 − mνρ1

ε2
|z(x)− v+

i |
2

≥ µ2

ε2
ψ(x),

where µ = A/(r − r̂). Thus, ψ satisfies

ψ′′(x)− µ2

ε2
ψ(x) ≥ 0, x ∈ (γi + r+, γi + r),

ψ(γi + r+) = |u(γi + r+)− v+
i |

2, ψ′(γi + r) = 0.

We compare ψ with the solution ψ̂ of

ψ̂′′(x)− µ2

ε2
ψ̂(x) = 0, x ∈ (γi + r+, γi + r),

ψ̂(γi + r+) = |u(γi + r+)− v+
i |

2, ψ̂′(γi + r) = 0,

which can be explicitly calculated to be

ψ̂(x) =
|u(γi + r+)− v+

i |2

cosh
[
µ
ε (r − r+)

] cosh
[µ
ε

(x− (γi + r))
]
.

By the maximum principle, ψ(x) ≤ ψ̂(x) so, in particular,

ψ(γi + r) ≤ |u(γi + r+)− v+
i |2

cosh
[
µ
ε (r − r+)

] ≤ 2 exp(−A/ε)|u(γi + r+)− v+
i |

2.

Then, we have

|z(γi + r)− v+
i | ≤

√
2 exp(−A/2ε)ρ2. (2.5)

Now, by using Taylor’s expansion for F (z(x)) and (2.1), we obtain

F (z(x)) = F (v+
i ) +∇F (v+

i ) · (z(x)− v+
i )

+
1

2

(
∇2F (v+

i )(z(x)− v+
i )
)
· (z(x)− v+

i ) + o(|z(x)− v+
i |

2)

≤ |z(x)− v+
i |

2
(Λ

2
+
o(|z(x)− v+

i |2)

|z(x)− v+
i |2

)
.

Similarly, one has

F (z(x)) ≥ |z(x)− v+
i |

2
(λ

2
+
o(|z(x)− v+

i |2)

|z(x)− v+
i |2

)
.



8 R. FOLINO EJDE-2019/113

Therefore, since the range of z is contained in B(v+
i , ρ1), if ρ1 is sufficiently small,

then
1

4
λ|z(x)− v+

i |
2 ≤ F (z(x)) ≤ Λ|z(x)− v+

i |
2. (2.6)

Let us introduce the line segment

ẑ(y) := v+
i +

y − a
b− a

(
z(γi + r)− v+

i

)
, a ≤ y ≤ b.

We have ẑ(a) = v+
i , ẑ(b) = z(γi + r),

ẑ′(y) =
1

b− a
(z(γi + r)− v+

i ), |ẑ(y)− v+
i | ≤ |z(γi + r)− v+

i |,

for any y ∈ [a, b]. Using (2.5) and (2.6), we obtain

φ(v+
i , z(γi + r)) ≤

√
2

∫ b

a

√
F (ẑ(y))|ẑ′(y)|dy

≤
√

2Λ

b− a
|z(γi + r)− v+

i )|
∫ b

a

|ẑ(y)− v+
i |dy

≤
√

2Λ|z(γi + r)− v+
i )|2

≤ 2
√

2Λ ρ22 exp(−A/ε).

(2.7)

From (2.7) it follows that, for some constant C > 0,

Pε[z; γi + r+, γi + r] ≥ φ(z(γi + r+), z(γi + r))

≥ φ(z(γi + r+),v+
i )− φ(v+

i , z(γi + r))

≥ φ(z(γi + r+),v+
i )− C

2N
exp(−A/ε).

(2.8)

Combining (2.4) and (2.8), we get that the constrained minimizer z of the proposed
variational problem satisfies

Pε[z; γi + r+, γi + r] ≥ φ(z(γi + r+),v+
i )− C

2N
exp(−A/ε).

The restriction of u to [γ + r+, γ + r] is an admissible function, so it must satisfy
the same estimate

Pε[u; γi + r+, γi + r] ≥ Pε[z; γi + r+, γi + r]

≥ φ(u(γi + r+),v+
i )− C

2N
exp(−A/ε).

Considering the interval [γi − r, γi − r−], we obtain a similar estimate. Hence,

Pε[u; γi − r, γi + r] = Pε[u; γi − r, γi − r−] + Pε[u; γi − r−, γi + r+]

+ Pε[u; γi + r+, γi + r]

≥ φ(v−i ,u(γi − r−))− C

2N
exp(−A/ε)

+ φ(u(γi − r−),u(γi + r+))

+ φ(u(γi + r+),v+
i )− C

2N
exp(−A/ε)

≥ φ(v(γi − r),v(γi + r))− C

N
exp(−A/ε).
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These estimates hold for any i = 1, . . . , N . Assembling all of these estimates, we
have

Pε[u] ≥
N∑
i=1

Pε[u; γi − r, γi + r] ≥ P0[v]− C exp(−A/ε),

and the proof is complete. �

Let us stress that Proposition 2.1 extends and improves [18, Proposition 2.1].
The sharp estimate (2.3) is crucial in the proof of our main result. Thanks to
the equality (1.12) for the modified energy and the lower bound (2.3), we can use
the energy approach in the study of the nonlinear damped hyperbolic Allen-Cahn
system (1.1) with homogeneous Neumann boundary conditions (1.2) and initial
data (1.3). Let us proceed as in the scalar case m = 1.

Regarding the initial data (1.3), we assume that u0, u1 depend on ε and

lim
ε→0
‖uε0 − v‖

L1 = 0. (2.9)

In addition, we suppose that there exist constants A ∈ (0, r
√

2λ) and ε̂ > 0 such
that, for all ε ∈ (0, ε̂), at the time t = 0, the modified energy (1.11) satisfies

Eε[u
ε
0,u

ε
1] ≤ P0[v] + C exp(−A/ε), (2.10)

for some constant C > 0. The condition (2.9) fixes the number of transitions and
their relative positions as ε → 0. The condition (2.10) requires that the energy at
the time t = 0 exceeds at most C exp(−A/ε) the minimum possible to have these
N transitions. Using (1.13) and Proposition 2.1, we can prove the following result.

Proposition 2.2. Assume that G satisfies (1.4) and that f = −∇F with F sat-
isfying (1.5)-(1.6). Let uε be solution of (1.1)-(1.2)-(1.3) with initial data uε0, uε1
satisfying (2.9) and (2.10). Then, there exist positive constants ε0, C1, C2 > 0
(independent on ε) such that∫ C1ε

−1 exp(A/ε)

0

‖uεt‖2L2
dt ≤ C2ε exp(−A/ε), (2.11)

for all ε ∈ (0, ε0).

Proof. Let ε0 > 0 so small that for all ε ∈ (0, ε0), (2.10) holds and

‖uε0 − v‖
L1 ≤

1

2
δ, (2.12)

where δ is the constant of Proposition 2.1. Let Tε > 0. We claim that if∫ Tε

0

‖uεt‖L1dt ≤
1

2
δ, (2.13)

then there exists C2 > 0 such that

Eε[u
ε,uεt ](Tε) ≥ P0[v]− C2 exp(−A/ε). (2.14)

Indeed, Eε[u
ε,uεt ](Tε) ≥ Pε[uε](Tε) and inequality (2.14) follows from Proposition

2.1 if ‖uε(·, Tε) − v‖
L1 ≤ δ. By using triangle inequality, (2.12) and (2.13), we

obtain

‖uε(·, Tε)− v‖
L1 ≤ ‖uε(·, Tε)− uε0‖L1 + ‖uε0 − v‖

L1 ≤
∫ Tε

0

‖uεt‖L1 +
1

2
δ ≤ δ.
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Substituting (2.14) and (2.10) in (1.13), one has∫ Tε

0

‖uεt‖2L2
dt ≤ C2ε exp(−A/ε), (2.15)

It remains to prove that inequality (2.13) holds for Tε ≥ C1ε
−1 exp(A/ε). If∫ +∞

0

‖uεt‖L1dt ≤
1

2
δ,

there is nothing to prove. Otherwise, choose Tε such that∫ Tε

0

‖uεt‖L1dt =
1

2
δ.

Using Hölder’s inequality and (2.15), we infer

1

2
δ ≤ [Tε(b− a)]1/2

(∫ Tε

0

‖uεt‖2L2
dt
)1/2

≤
[
Tε(b− a)C2ε exp(−A/ε)

]1/2
.

It follows that there exists C1 > 0 such that

Tε ≥ C1ε
−1 exp(A/ε),

and the proof is complete. �

Now, we can prove our main result.

Theorem 2.3. Assume that G satisfies (1.4) and that f = −∇F with F satisfying
(1.5)-(1.6). Let uε be solution of (1.1)-(1.2)-(1.3) with initial data uε0, uε1 satisfying
(2.9) and (2.10). Then, for any s > 0

sup
0≤t≤s exp(A/ε)

‖uε(·, t)− v‖
L1 −−−→

ε→0
0. (2.16)

Proof. Fix s > 0. The triangle inequality gives

‖uε(·, t)− v‖
L1 ≤ ‖uε(·, t)− uε0‖L1 + ‖uε0 − v‖

L1 , (2.17)

for all t ∈ [0, s exp(A/ε)]. The last term of inequality (2.17) tends to 0 by assump-
tion (2.9), for the first one we have

sup
0≤t≤s exp(A/ε)

‖uε(·, t)− uε0‖L1 ≤
∫ s exp(A/ε)

0

‖uεt‖L1dt.

Taking ε so small that s ≤ C1ε
−1, we can apply Proposition 2.2 and deduce that∫ s exp(A/ε)

0

‖uεt‖L1dt ≤ [s exp(A/ε)(b− a)]1/2
(∫ s exp(A/ε)

0

‖uεt‖2L2
dt
)1/2

≤ [s exp(A/ε)(b− a)]1/2
[
C2ε exp(−A/ε)

]1/2
≤
√
C2(b− a)sε.

(2.18)

Combining (2.9), (2.17), (2.18) and by passing to the limit as ε → 0, we obtain
(2.16). �
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3. Example of transition layer structure

In this section we construct an example of functions satisfying assumptions (2.9)
and (2.10). Fix v : [a, b] → {z1, . . . , zK} having exactly N jumps located at a <
γ1 < γ2 < · · · < γN < b, we say that a family of functions uε has a transition layer
structure if

lim
ε→0
‖uε0 − v‖

L1 = 0 and Pε[u
ε] ≤ P0[v] + C exp(−A/ε). (3.1)

Then, in other words, the assumption (2.9) and (2.10) are equivalent to uε0 has a
transition layer structure and the L2-norm of uε1 is exponentially small. Indeed,
applying Proposition 2.1 on uε0, one obtains for ε sufficiently small

τ

∫ b

a

|uε1(x)|2dx ≤ Cε exp(−A/ε). (3.2)

Theorem 2.3, roughly speaking, says that if uε0 has a transition layer structure
and uε1 satisfies (3.2), then uε(·, t) maintains the transition layer structure for an
exponentially large time. Moreover, the time derivative ut satisfies (3.2) for an
exponentially large time.

Let us construct a family of functions having a transition layer structure. In the
scalar case m = 1, we can use the unique solution to the boundary value problem

ε2Φ′′ + f(Φ) = 0, Φ(0) = 0, Φ(x)→ ±1 as x→ ±∞,
and define the family uε0 as

uε0(x) := Φ
(
(x− γi)(−1)i+1

)
for x ∈ [γi−1/2, γi+1/2], i = 1, . . . , N,

where

γi+1/2 :=
γi + γi+1

2
, i = 1, . . . , N − 1, γ1/2 = a, γN+1/2 = b.

Note that uε0 is a H1 function with a piecewise continuous first derivative that
jumps at γi+1/2 for i = 1 . . . , N − 1, that uε0 has a transition layer structure and
that Φ(x) = w(x/ε), where w solves the Cauchy problem

w′ =
√

2F (w)

w(0) = 0.

In the simplest example F (w) = 1
4 (w2 − 1)2, we have w(x) = tanh(x/

√
2).

For m > 1, we focus the attention on a fixed transition point γi and we use again
the notation v+

i := v(γi + r) and v−i := v(γi− r). To construct a family uε0 having
a transition layer structure, we use the following result by Grant [25].

Lemma 3.1. Let F : Rm → R be a function satisfying (1.5)-(1.6). Then, for
any two zeros zi, zj of F , there is a Lipschitz continuous path ψij from zi to zj,
parametrized by a multiple of Euclidean arclength, such that φ(zi, zj) = J [ψij ].
Moreover, there exists a constant c > 0 such that

|ψij(w)− zi| ≥ c(w − a) for w ≈ a,
|ψij(w)− zj | ≥ c(b− w) for w ≈ b.

For the proof of the above result see [25, Lemma 3.2]. Denote by ψi : [a, b]→ Rm
the optimal path from v−i to v+

i as described in Lemma 3.1 and let σi be the
Euclidean arclength of ψi, that is |ψ′i(x)| = σi for all x ∈ [a, b]. Assume, without
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loss of generality, that the path do not pass through any zero of F (except at the
endpoints of the path) and consider the solution of the Cauchy problem

w′ = σ−1i
√

2F (ψi(w))

w(0) =
b− a

2
.

(3.3)

There exists a unique C1 solution w : R → (a, b) of (3.3), because
√
F and ψi are

Lipschitz continuous, and F satisfies (2.6). Indeed,√
F (ψi(w)) ≤ σi

√
Λ|w − a| for w ≈ a,√

F (ψi(w)) ≤ σi
√

Λ|w − b| for w ≈ b.

Then, we deduce that

lim
x→−∞

w(x) = a and lim
x→+∞

w(x) = b.

Now, we define uε0 := v outside of ∪Ni=1B(γi, r) and in B(γi, r) we use the solution
of (3.3). To construct a continuous function, let us define

uε0(x) := ψi
(
w((x− γi)/ε)

)
for x ∈ [γi − r + ε, γi + r − ε], (3.4)

and use a line segment to connect ψi
(
w(1−r/ε)

)
with v−i and ψi

(
w(r/ε−1)

)
with

v+
i . Hence, we have

uε0(x) :=

{
v−i + x−γi+r

ε

(
ψi
(
w(1− r/ε)

)
− v−i

)
, x ∈ (γi − r, γi − r + ε),

v+
i + γi+r−x

ε

(
ψi
(
w(r/ε− 1)

)
− v+

i

)
, x ∈ (γi + r − ε, γi + r).

(3.5)

By joining (3.4) and (3.5), we conclude the definition of uε0 in B(γi, r). Note that
uε0 is a piecewise continuously differentiable function and, for (3.4) one has

|(uε0)′(x)| = σi
ε
|w′((x− γi)/ε)| for [γi − r + ε, γi + r − ε].

Using this equality and (3.3), we deduce

1

2
ε2|(uε0)′|2 = F (uε0) in [γi − r + ε, γi + r − ε]. (3.6)

Now, let us show that the family of functions uε0 has a transition layer structure,
i.e. uε0 satisfies (3.1). The L1 requirement follows from the dominated convergence
theorem. Let us prove the energy requirement.

Proposition 3.2. Assume that F : Rm → R satisfies (1.5)-(1.6). Let v : [a, b] →
{z1, . . . , zK} be a function having exactly N jumps located at a < γ1 < γ2 < · · · <
γN < b and let uε0 be a function such that uε0 := v outside of ∪Ni=1B(γi, r) and uε0
satisfies (3.4), (3.5) in B(γi, r). For all A ∈

(
0, cσ−1r

√
2λ
)

(where c is the constant
introduced in Lemma 3.1 and σ := maxi σi), there exist constants ε0, C > 0 such
that, if ε ∈ (0, ε0), then

Pε[u
ε
0] ≤ P0[v] + C exp(−A/ε). (3.7)

Proof. By definition,

Pε[u
ε
0] =

N∑
i=1

Pε[u
ε
0; γi − r, γi + r].
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Then, we must estimate the energy functional in B(γi, r). For definitions (3.4) and
(3.5), we split

Pε[u
ε
0; γi − r, γi + r] := I1 + I2 + I3,

where

I1 :=

∫ γi−r+ε

γi−r

[ε
2
|(uε0)′(x)|2 +

F (uε0(x))

ε

]
dx,

I2 :=

∫ γi+r−ε

γi−r+ε

[ε
2
|(uε0)′(x)|2 +

F (uε0(x))

ε

]
dx,

I3 :=

∫ γi+r

γi+r−ε

[ε
2
|(uε0)′(x)|2 +

F (uε0(x))

ε

]
dx.

First, we estimate the term I2. By using (3.6) and changing variable y = w((x −
γi)/ε), we obtain

I2 =

∫ γi+r−ε

γi−r+ε

2F (uε0(x))

ε
dx =

√
2

∫ w(r/ε−1)

w(1−r/ε)

√
F (ψi(y))|ψ′i(y)|dy.

By definition ψi is an optimal path from v−i to v+
i and as a consequence

I2 ≤
√

2

∫ b

a

√
F (ψi(y))|ψ′i(y)|dy = φ(v−i ,v

+
i ). (3.8)

Next, we estimate I1. We have

I1 :=

∫ −r+ε
−r

[ 1

2ε
|ψi
(
w(1−r/ε)

)
−v−i |

2+
1

ε
F
(
v−i +

x+ r

ε

(
ψi
(
w(1−r/ε)

)
−v−i

))]
dx.

To estimate the latter term, for ε sufficiently small, we use (2.6) to obtain

F
(
v−i +

x+ r

ε

(
ψi
(
w(1− r/ε)

)
− v−i

))
≤ Λ|ψi

(
w(1− r/ε)

)
− v−i |

2.

Thanks to this bound and the Lipschitz continuity of ψi, one has

I1 ≤ C|w(1− r/ε)− a|2. (3.9)

Here and in what follows, C is a positive constant (independent on ε) whose value
may change from line to line. To estimate the right hand side of (3.9), let us use
Lemma 3.1 and (2.6). Since w(x) → a as x → −∞ and ψi(a) = v−i , there exists
x1 > 0 sufficiently large so that

w′(x) ≥ (σi
√

2)−1
√
λ|ψi(w(x))− v−i | ≥ c(σ

√
2)−1
√
λ(w(x)− a),

for all x ≤ −x1, where c > 0 is the constant introduced in Lemma 3.1. Using the
notation c1 := c(σ

√
2)−1
√
λ and multiplying by exp(−c1x), one has(

exp(−c1x)w(x)
)′ ≥ −ac1(exp(−c1x),

for all x ≤ −x1. By integrating the latter inequality, we infer

w(x)− a ≤ C exp(c1x), (3.10)

for all x ≤ −x1. If ε is so small that 1 − r/ε ≤ −x1, by substituting (3.10) into
(3.9), we obtain

I1 ≤ C exp(2c1(1− r/ε)) ≤ C exp(−2c1r/ε) ≤ C exp(−A/ε), (3.11)
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for all positive constant A ≤ 2c1r ≤ cσ−1r
√

2λ. In a similar way, we can obtain
the estimate for I3. For all A ∈

(
0, cσ−1r

√
2λ
)
, we have

I3 ≤ C|w(r/ε− 1)− b|2 ≤ C exp(−A/ε). (3.12)

Combining (3.8), (3.11) and (3.12), we deduce

Pε[u
ε
0; γi − r, γi + r] ≤ φ(v−i ,v

+
i ) + C exp(−A/ε),

and as a trivial consequence we have (3.7). �

Hence, we can conclude that if uε0 has a transition layer structure and the L2-
norm of uε1 is exponentially small (see (3.2)), then the solution of (1.1)-(1.2)-(1.3)
evolves very slowly in time and maintains the same transition layer structure of the
initial datum uε0 for an exponentially long time.

4. Layer dynamics

In this section we study the motion of the transition layers and we show that
Theorem 2.3 implies that the movement of the layers is extremely slow. To do this,
we adapt the strategy already used in [25, 18]. Before stating the main result of the
section, we need some definitions. If v : [a, b]→ Rm is a step function with jumps
at γ1, γ2, . . . , γN , then its interface I[v] is defined by

I[v] := {γ1, γ2, . . . , γN}.
For an arbitrary function u : [a, b] → Rm and an arbitrary closed subset D ⊂
Rm\F−1({0}), the interface ID[u] is defined by

ID[u] := u−1(D).

Finally, for any A,B ⊂ R the Hausdorff distance d(A,B) between A and B is
defined by

d(A,B) := max
{

sup
α∈A

d(α,B), sup
β∈B

d(β,A)
}
,

where d(β,A) := inf{|β − α| : α ∈ A}.
Now we can state the main result of this section.

Theorem 4.1. Assume that G satisfies (1.4) and that f = −∇F with F satisfying
(1.5)-(1.6). Let uε be solution of (1.1)-(1.2)-(1.3) with initial data uε0, uε1 satisfying
(2.9) and (2.10). Given δ1 ∈ (0, r) and a closed subset D ⊂ Rm\F−1({0}), set

Tε(δ1) = inf{t : d(ID[uε(·, t)], ID[uε0]) > δ1}.
There exists ε0 > 0 such that if ε ∈ (0, ε0) then

Tε(δ1) > exp(A/ε). (4.1)

To prove Theorem 4.1, we use the following result, that is, as Proposition 2.1,
purely variational in character and concerns only the functional Pε.

Lemma 4.2. Assume that F : Rm → R satisfies (1.5)-(1.6). Let v : [a, b] →
{z1, . . . , zK} be a function having exactly N jumps located at a < γ1 < γ2 < · · · <
γN < b. Given δ1 ∈ (0, r) and a closed subset D ⊂ Rm\F−1({0}), there exist
ε0, ρ > 0 such that for all functions uε : [a, b]→ Rm satisfying

‖uε − v‖
L1 <

1

2
ρ δ1, (4.2)

Pε[u
ε] ≤ P0[v] + 2N sup{φ(zj , ξ) : zj ∈ F−1({0}), ξ ∈ B(zj , ρ)}, (4.3)
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for all ε ∈ (0, ε0), we have

d(ID[uε], I[v]) <
1

2
δ1. (4.4)

Proof. Choose ρ > 0 small enough that

inf{φ(ξ1, ξ2) : zj ∈ F−1({0}), ξ1 ∈ K, ξ2 ∈ B(zj , ρ)}
> 4N sup{φ(zj , ξ2) : zj ∈ F−1({0}), ξ2 ∈ B(zj , ρ)}.

By reasoning as in Proposition 2.1, we obtain that for each i there exist

x−i ∈ (γi − δ1/2, γi) and x+i ∈ (γi, γi + δ1/2)

such that

|uε(x−i )− v(x−i )| < ρ and |uε(x+i )− v(x+i )| < ρ.

Suppose that (4.4) is violated. Then, we deduce

Pε[u
ε] ≥

N∑
i=1

Pε[u
ε;x−i , x

+
i ]

+ inf{φ(ξ1, ξ2) : zj ∈ F−1({0}), ξ1 ∈ K, ξ2 ∈ B(zj , ρ)}.

(4.5)

On the other hand, the triangle inequality gives

φ
(
v(x+i ),v(x−i )

)
≤ φ

(
v(x+i ),uε(x+i )

)
+ φ

(
uε(x+i ),uε(x−i )

)
+ φ

(
uε(x−i ),v(x−i )

)
and as a consequence

φ
(
uε(x−i ),uε(x+i )

)
≥ φ

(
v(x+i ),v(x−i )

)
− 2 sup{φ(zj , ξ2) : zj ∈ F−1({0}), ξ2 ∈ B(zj , ρ)}.

Substituting the latter bound in (4.5) and recalling that

Pε[u
ε;x−i , x

+
i ] ≥ φ

(
uε(x−i ),uε(x+i )

)
,

we infer that

Pε[u
ε] ≥ P0[v]− 2N sup{φ(zj , ξ2) : zj ∈ F−1({0}), ξ2 ∈ B(zj , ρ)}

+ inf{φ(ξ1, ξ2) : zj ∈ F−1({0}), ξ1 ∈ K, ξ2 ∈ B(zj , ρ)}.

For the choice of ρ and assumption (4.3), we obtain

Pε[u
ε] > P0[v] + 2N sup{φ(zj , ξ2) : zj ∈ F−1({0}), ξ2 ∈ B(zj , ρ)} ≥ Pε[uε],

which is a contradiction. Hence, the bound (4.4) is true. �

The previous result and Theorem 2.3 permits us to prove Theorem 4.1.

Proof of Theorem 4.1. Let ε0 > 0 so small that the assumptions on the initial data
(2.9), (2.10) imply that uε0 satisfy (4.2) and (4.3) for all ε ∈ (0, ε0). From Lemma
4.2 it follows that

d(ID[uε0], I[v]) <
1

2
δ1. (4.6)

Now, we apply the same reasoning to uε(·, t) for all t ≤ exp(A/ε). Assumption
(4.2) is satisfied for Theorem 2.3, while (4.3) holds because Eε[u

ε,uεt ](t) is a non-
increasing function of t. Then,

d(ID[uε(t)], I[v]) <
1

2
δ1 (4.7)
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for all t ∈ (0, exp(A/ε)). Combining (4.6) and (4.7), we obtain

d(ID[uε(t)], ID[uε0]) < δ1

for all t ∈ (0, exp(A/ε)) and the proof is complete. �

Then, the velocity of the transition layers is exponentially small. Thanks to
Theorem 2.3 and Theorem 4.1, we obtain exponentially slow motion. In [19], similar
results have been obtained in the scalar case, by using a different method, the
dynamical approach of Carr and Pego [12].

5. Appendix: Existence and uniqueness

In this appendix we study the well-posedness of the following initial boundary
problem

τutt +G(u)ut = ε2uxx + f(u) x ∈ [a, b], t > 0,

u(x, 0) = u0(x) x ∈ [a, b],

ut(x, 0) = u1(x) x ∈ [a, b],

ux(a, t) = ux(b, t) = 0 t > 0,

(5.1)

where u(x, t) ∈ Rm, G : Rm → Rm×m, f : Rm → Rm and ε, τ > 0. The strategy
that we will use is standard and is based on the semigroup theory for solutions
of differential equations on Hilbert spaces (see Cazenave and Haraux [15], and
Pazy [42]). Following the ideas of the scalar case m = 1 (cfr. [18]) and setting
y = (u,v) = (u,ut), we rewrite the first equation of (5.1) as a first order evolution
equation

yt = Amy + Φm(y), (5.2)

where

Amy :=

(
0m Im

ε2τ−1∂2xIm 0m

)
y − y (5.3)

Φm(y) := y +
1

τ

(
0

f(u)−G(u)v

)
. (5.4)

The unknown y is considered as a function of a real (positive) variable t with values
on the function space Xm = H1([a, b])

m × L2(a, b)
m

with scalar product

〈(u,v), (w, z)〉X :=

∫ b

a

(ε2ux ·wx + τu ·w + τv · z)dx,

that is equivalent to the usual scalar product in H1([a, b])
m × L2(a, b)

m
.

Proposition 5.1. The linear operator Am : D(Am) ⊂ Xm → Xm defined by (5.3)
with

D(Am) =
{

(u,v) ∈ H2([a, b])
m ×H1([a, b])

m
: ux(a) = ux(b) = 0

}
, (5.5)

is m-dissipative with dense domain.

The proof is just a vector notation of the scalar case m = 1 (see [18, Proposition
A.3]).

Given a matrix B ∈ Rm×m, we denote by ‖ · ‖∞ the matrix norm induced by
the vector norm |u|∞ = max |uj | on Rm

‖B‖∞ := max
1≤i≤m

m∑
j=1

|bij |.
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We suppose that f ∈ C(Rm,Rm) and

|f(x1)− f(x2)| ≤ L1(K)|x1 − x2|, ∀x1,x2 ∈ BK . (5.6)

Here and below BK is the open ball of center 0 and of radius K in the relevant
space. Regarding G, we suppose that G ∈ C(Rm,Rm×m) and

‖G(x1)−G(x2)‖∞ ≤ L2(K)|x1 − x2|, ∀x1,x2 ∈ BK . (5.7)

Then, f and G are locally Lipschitz continuous functions. If f satisfies (5.6) and if
F is the operator defined by (F(u))(x) := f(u(x)), then F maps H1([a, b])

m
into

L2(a, b)
m

and there exists C(K) > 0 such that

‖F(u1)−F(u2)‖
L2 ≤ C1(K)‖u1 − u2‖L2 , ∀u1,u2 ∈ BK , (5.8)

where ‖u‖2
L2

:=
∫ b
a
|u|2dx.

Moreover, we have

‖G(u)v‖2
L2
≤
∫ b

a

‖G(u)‖2
∞
|v|2dx ≤ max

x
‖G(u(x))‖2

∞
‖v‖2

L2
, (5.9)

for all (u,v) ∈ Xm. Using (5.7) and (5.9), we obtain

‖(G(u1)−G(u2))v‖2
L2
≤ C2(K)‖u1 − u2‖2

L∞
‖v‖2

L2
, (5.10)

for all u1,u2 ∈ BK . It follows that the function Φm defined by (5.4) is a Lipschitz
continuous function on bounded subsets of Xm. Indeed, for all y1 = (u1,v1),
y2 = (u2,v2) ∈ Xm we have

‖Φm(y1)−Φm(y2)‖
Xm

≤ ‖y1 − y2‖Xm + C
(
‖F(u1)−F(u2)‖

L2 + ‖G(u1)v1 −G(u2)v2‖L2

)
.

Let K := max{‖y1‖Xm , ‖y2‖Xm}. We have that

‖G(u1)v1 −G(u2)v2‖L2 ≤ ‖G(u1)(v1 − v2)‖
L2 + ‖(G(u1)−G(u2))v2‖L2

≤ C(K)(‖v1 − v2‖L2 + ‖u1 − u2‖H1 ),

where we used that G is locally Lipschitz continuous and H1([a, b]) ⊂ L∞([a, b])
with continuous inclusion. From this inequality and (5.8), it follows that there
exists a constant L(K) (depending on K) such that

‖Φm(y1)−Φm(y2)‖
Xm ≤ L(K)‖y1 − y2‖Xm .

Therefore, we can proceed in the same way of the scalar case m = 1. For all x ∈ Xm

the Cauchy problem (5.2), with Am and Φm defined by (5.3)-(5.5) and (5.4), f , G
locally Lipschitz continuous and initial data y(0) = x has a unique mild solution
on [0, T (x)), that is a function y ∈ C([0, T (x), Xm) solving the problem

y(t) = Sm(t)x +

∫ t

0

Sm(t− s)Φm(y(s))ds, ∀t ∈ [0, T (x)),

where (Sm(t))t≥0 is the contraction semigroup in Xm, generated by Am. In par-
ticular, if x = (u0,u1) ∈ D(Am), then y = (u,ut) is a classical solution, that is a
solution of (5.1) for t ∈ [0, T (x)) satisfying

(u,ut) ∈ C([0, T (x)), D(Am)) ∩ C1([0, T (x)), Xm).
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To show the existence of a global solution, we define the energy

E[u,ut](t) :=

∫ b

a

[τ
2
|ut(x, t)|2 +

ε2

2
|ux(x, t)|2 + F (u(x, t))

]
dx, (5.11)

where f(u) = −∇F (u). Observe that the energy (5.11) is well-defined for mild
solutions (u,ut) ∈ C([0, T ], Xm). Using the same procedure of [18], we can prove
the following result.

Proposition 5.2. Assume that f and G are locally Lipschitz continuous. If (u,ut)
is in C([0, T ], Xm) and is a mild solution, then∫ T

0

∫ b

a

G(u)ut · ut dx dt = E[u,ut](0)− E[u,ut](T ). (5.12)

Proof. Let T > 0 and u be a classical solution of problem (5.1). Taking the scalar
product with ut and integrating on [a, b]× (0, T ), we have∫ T

0

∫ b

a

(τut · utt +G(u)ut · ut) dx dt =

∫ T

0

∫ b

a

(
ε2ut · uxx + f(u) · ut

)
dx dt.

Using integration by parts and the homogeneous Neumann boundary conditions,
we obtain ∫ b

a

τut · utt dx = τ〈ut,utt〉L2 =
d

dt

(τ
2
‖ut‖2

L2

)
,∫ b

a

ε2ut · uxx dx = −ε2
∫ b

a

utx · uxdx = − d

dt

(ε2
2
‖ux‖2

L2

)
.

Therefore,∫ T

0

∫ b

a

G(u)ut · ut dx dt =

∫ b

a

[τ
2
|ut(x, 0)|2 − τ

2
|ut(x, T )|2

]
dx

+

∫ b

a

[
ε2

2
|ux(x, 0)|2 − ε2

2
|ux(x, T )|2

]
dx

+

∫ b

a

[F (u(x, 0))− F (u(x, T ))] dx.

Using the definition of energy (5.11), we have (5.12) for classical solutions.
If x ∈ D(Am) the solution is classical and (5.12) holds. For x ∈ Xm\D(Am),

we use the continuous dependence on the initial data of the solution (cfr. [15,
Proposition 4.3.7]). Let us consider xn ∈ D(Am) such that xn → x in Xm. For the
corresponding solution yn = (un, (un)t), (5.12) is satisfied; by passing to the limit
and using [15, Proposition 4.3.7], we obtain (5.12) for y = (u,ut). �

If we assume that G(u) is positive semi-definite for all u ∈ Rm, then the energy
is a nonincreasing function of t along the solutions of (5.1). Furthermore, if G(u)
is positive definite for all u ∈ Rm, then there exists a constant α > 0 such that

α

∫ T

0

∫ b

a

|ut|2 dx dt ≤ E[u,ut](0)− E[u,ut](T ).

Therefore, the initial boundary value problem (5.1) is globally well-posed in the
energy space H1([a, b])

m × L2(a, b)
m

.
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Theorem 5.3. Assume that f , G are locally Lipschitz continuous,

G(x)y · y ≥ 0, ∀x,y ∈ Rm (5.13)

and that there is L > 0 such that for any |x| > L,

F (x) ≥ C|x|2, for some C ∈ R, (5.14)

where f(x) := −∇F (x). Then, for any (u0,u1) ∈ H1([a, b])
m × L2(a, b)

m
there

exists a unique mild solution of (5.1)

(u,ut) ∈ C
(

[0,∞), H1([a, b])
m × L2(a, b)

m
)
.

Thanks to Proposition 5.1 and Proposition 5.2, the proof is just a vector notation
of the scalar case (see [18, Theorem A.7]).
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