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MARKOV SEMIGROUP APPROACH TO THE ANALYSIS OF A

NONLINEAR STOCHASTIC PLANT DISEASE MODEL

HAOKUN QI, XINZHU MENG, ZHENGBO CHANG

Abstract. In this article, we consider a stochastic plant disease model with
logistic growth and saturated incidence rate. We analyze long-term behaviors

of densities of the distributions of the solution. On the basis of the theory

of Markov semigroup, we obtain the existence of asymptotically stable sta-
tionary distribution density of the stochastic system. We demonstrate that

the densities can converge in L1 to an invariant density under appropriate

conditions. Moreover, we obtain the sufficient conditions for extinction of the
disease. Also, we present a series of numerical simulations to illustrate our

theoretical results.

1. Introduction

Plants not only provide necessary basic living materials for humans, but also
provide food and shelter for other species on Earth. However, plants are invaded
by various diseases during their growth and development, causing huge crop losses
and global threats to food security during the spread of plant diseases [30]. Plant
viruses or pathogens are an important constraint to crop production worldwide and
cause serious losses in agricultural production and economic efficiency. For exam-
ple, the cassava plant, which is a staple in many lesser-developed African countries,
is vulnerable to the cassava mosaic virus. This virus has ravaged plants in Kenya,
Uganda and Tanzania[9]. In India, tomato leaf curl disease (TLCD) causes the
leaves of tomato plants to curl and may become sterile[9]. In the United States, the
annual loss caused by plant diseases accounts for about 15% of the total agricultural
production, that is, more than $15 billion[16]. At present, plant diseases are still
important diseases that endanger human health and have not been effectively con-
trolled. In order to prevent plant disease disasters, people are constantly studying
the disease mechanism, transmission laws and prevention and control strategies of
plant diseases. The dynamics of infectious diseases is an important method for the
theoretical quantitative research of the epidemic of infectious diseases. Meanwhile,
mathematics plays a large role in studying the dynamic behaviors of infectious
diseases. Since the pioneer work of Kermack and McKendrick[11], mathematical
models have been contributing to improve our understanding of the dynamics of
infectious diseases and helping us develop preventive measures to control infection
spread qualitatively and quantitatively. Therefore, plant diseases have attracted
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the interest of many mathematical modeling researchers and epidemiologists (see
[3, 6, 7, 13, 18, 19, 20, 21, 29, 33]). For example, Meng and Li have investigated the
dynamic behaviors of the vegetatively propagated plant disease models with contin-
uous and impulsive cultural control strategies (see[18]). The scholars in [7] studied
the invasion and persistence of plant pathogens. Here, a plant disease model with
logistic growth and saturated incidence rate is described by

dSt =
[
rSt
(
1− St

K

)
− βStIt

1 + αSt
+ γIt

]
dt,

dIt =
[ βStIt

1 + αSt
− (µ+ γ)It

]
dt,

(1.1)

where the parameters r, K, α, β, γ, µ are positive constants. In model (1.1), S(t)
and I(t) denote the number of susceptible and infected plants, respectively, r is an
intrinsic growth rate of susceptible plants, K represents the carrying capacity of
susceptible plants, β is the transmission coefficient, α denotes potentially density
dependent, γ is the recovery rate of the cured diseased plants, and µ is the disease-
related death rate of the infected plants. The basic reproduction number R0 =

βK
(1+αK)(µ+γ) is the threshold of system (1.1) for an epidemic to occur. If 0 < R0 < 1,

model (1.1) has a unique disease-free equilibrium E0 = (K, 0) which is globally
asymptotically stable. This means the plants disease will disappear and the entire
plant population will become susceptible. If R0 > 1, E0 becomes unstable and
system (1.1) has a unique positive equilibrium

E∗ = (S∗, I∗) =
( µ+ γ

β − α(µ+ γ)
,
rS∗

µ

(
1− S∗

K

))
which is globally asymptotically stable. This means the plants disease always re-
mains.

However, any system is always subject to environmental noise in nature. Plant
disease models that have a significant impact on human survival are inevitably af-
fected by environmental fluctuations in the ecosystem. Therefore, it is more realistic
to study the stochastic model than to study the deterministic model. Consequently,
many researchers have investigated the effect of environmental noise on stochastic
models (see[5, 10, 14, 15, 22, 25, 32]). There are several approaches to study
the effect of environmental noises on the dynamic behaviors of stochastic mod-
els. For example, Pasquali [22] discussed the stability in distributions of solutions
of stochastic logistic equations by solving the explicit solution of the correspond-
ing Fokker-Planck equations. Cai et al. [5] obtained thresholds of the stochastic
SIRS model which determine the extinction and persistence by using the theory of
Markov semigroups. Based on the discussion above, in this paper, we consider a
stochastic plant disease model

dSt =
[
rSt
(
1− St

K

)
− βStIt

1 + αSt
+ γIt

]
dt− σStIt

1 + αSt
dBt,

dIt =
[ βStIt

1 + αSt
− (µ+ γ)It

]
dt+

σStIt
1 + αSt

dBt,

(1.2)

where B(t) is independent standard Brownian motion with B(0) = 0 and σ2(t) is
the intensities of Wiener processes B(t).
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In this article, we discuss the long-time dynamical behaviors of system (1.2).
Particularly, as the main purpose, we will investigate the extinction and the ex-
istence of stable stationary distribution density by establishing the corresponding
sufficient conditions. Furthermore, we will validate the main conclusions obtained
in this paper by the numerical simulations.

This article is organized as follows. In Section 2, we present some auxiliary
definitions and results concerning Markov semigroups. In Section 3, we prove that
there exists a unique global positive solution of system (1.2). In section 4, we obtain
the sufficient conditions for extinction of model (1.2). In Section 5, we investigate
the existence of an invariant and asymptotically stable density of system (1.2). In
section 6, we give the main conclusions and make numerical simulations to illustrate
our conclusions.

2. Preliminaries

In this section, we provide some auxiliary definitions and results about Markov
semigroups and asymptotic properties (see [26, 27, 28, 23, 12]) to prove our main
results.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions. Let R+ = [0,+∞), Rn+ = {(x1, . . . , xn) ∈ Rn : xn >
0, 1 ≤ i ≤ n}.

Markov semigroups. Let X = R2
+, Σ = B be the σ-algebra of Borel subset of

X and m be the Lebesgue measure on (X,Σ). Let the triple (X,Σ,m) be a σ-
finite measure space. Denote D be the subset of the space L1 = L1(X,Σ,m) which
contains all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.
A linear mapping P : L1 → L1 is called a Markov operator if P (D) ⊂ D.

The Markov operator P is called an integral or kernel operator if there exists a
measurable function K : X× X→ [0,∞) such that

Pf(x) =

∫
X
K(x, y)f(y)m(dy)

for every density f . One can check that from the condition P (D) ⊂ D it follows
that ∫

X
K(x, y)m(dx) = 1 (2.1)

for all y ∈ X.
A a Markov semigroup is a family {P (t)}t≥0 of Markov operators that satisfies

the following conditions:

(a) P (0) = Id,
(b) P (t+ s) = P (t)P (s) for s, t ≥ 0,
(c) The function t→ P (t)f is continuous with respect to the L1 norm for each

f ∈ L1.

A Markov semigroup {P (t)}t≥0 is called integral, if for each t > 0, the operator
P (t) is an integral Markov operator. That is, there exists a measurable function
K : (0,∞)× X× X→ [0,∞), called a kernel, such that

Pf(x) =

∫
X
K(x, y)f(y)m(dy)
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for every density f .
We also need two definitions concerning the asymptotic behavior of a Markov

semigroup. A density f∗ is called invariant if P (t)f∗ = f∗ for each t > 0. The
Markov semigroup {P (t)}t≥0 is called asymptotically stable if there is an invariant
density f∗ such that

lim
t→∞

‖P (t)f − f∗‖ = 0 for f ∈ D.

A Markov semigroup {P (t)}t≥0 is called sweeping with respect to a set A ∈ Σ if
for every f ∈ D

lim
t→∞

∫
A

P (t)f(x)m(dx) = 0.

The following lemma summarizes some result concerning asymptotic stability and
sweeping.

Lemma 2.1 ([26, 27]). Let X be a metric space and Σ be the σ-algebra of Borel sets.
Let {P (t)}t≥0 be an integral Markov semigroup with a continuous kernel K(t;x; y)
for t > 0, which satisfies (2.1) for all y ∈ X. We assume that for every f ∈ D we
have ∫ ∞

0

P (t)fdt > 0 a.e.

Then this semigroup is asymptotically stable or is sweeping with respect to compact
sets.

The property that a Markov semigroup {P (t)}t≥0 is asymptotically stable or
sweeping from a sufficiently large family of sets is called the Foguel alternative [12].

Fokker-Planck equation. For A ∈ Σ, we denote the transition probability func-
tion by P(t, x, y, A) for the diffusion process (St, It), i.e.

P(t, x, y, A) = prob{(St, It) ∈ A}

with the initial condition (S0, I0) = (x, y). Assume that (St, It) is a solution of
system (1.2) such that the distribution of (S0, I0) is absolutely continuous and has
the density U(t, x, y). Then (St, It) also has the density U(t, x, y) and U satisfies
the Fokker-Planck equation [28],

∂U

∂t
=

1

2
σ2
(∂2(ϕU)

∂x2
− 2

∂2(ϕU)

∂x∂y
+
∂2(ϕU)

∂y2

)
− ∂(f1U)

∂x
− ∂(f2U)

∂y
, (2.2)

where ϕ(x, y) = x2y2/(1 + αx)2 and

f1(x, y) = rx
(
1− x

K

)
− βxy

1 + αx
+ γy,

f2(x, y) =
βxy

1 + αx
− (µ+ γ)y.

(2.3)

Now we introduce a Markov semigroup associated with (2.2). Let P (t)V (x, y) =
U(x, y, t) for V ∈ D. Since the operator P (t) is a contraction on D, it can be
extended to a contraction on L1. Thus the operators {P (t)}t≥0 form a Markov
semigroup. Let A be the infinitesimal generator of semigroup {P (t)}t≥0, i.e.

AV =
1

2
σ2
(∂2(ϕU)

∂x2
− 2

∂2(ϕU)

∂x∂y
+
∂2(ϕU)

∂y2

)
− ∂(f1U)

∂x
− ∂(f2U)

∂y
.
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The adjoint operator of A is of the form

A∗V =
1

2
σ2ϕ

(∂2(U)

∂x2
− 2

∂2(U)

∂x∂y
+
∂2(U)

∂y2

)
− ∂(f1U)

∂x
− ∂(f2U)

∂y
. (2.4)

3. Global positive solution

We first prove the existence and uniqueness of positive solution of system (1.2).

Theorem 3.1. For each initial value (S0, I0) ∈ R2
+, there is a unique positive

solution (St, It) of system (1.2) on t ≥ 0 and the solution will remain in R2
+ with

probability one, namely, (St, It) ∈ R2
+ for all t ≥ 0 almost surely.

Proof. Note that the coefficients of system (1.2) are locally Lipschitz conditions,
then for any given initial value (S0, I0) ∈ R2

+, there is a unique positive local
solution (St, It) on t ∈ [0, τe), where τe is the explosion time. To demonstrate that
this solution is global, we only need to prove that τe =∞ a.s.

Let k0 > 0 be sufficiently large for any initial value S0 and I0 lying within the
interval [1/k0, k]. For each integer k ≥ k0, define the following stopping time

τk = inf
{
t ∈ [−ω, τe) : St /∈

(1

k
, k
)
, or It /∈

(1

k
, k
)}
,

where we set inf ∅ =∞ (as usual ∅ denotes the empty set). Clearly, τk is increasing
as k → ∞. Let τ∞ = limk→∞ τk, hence τ∞ ≤ τk a.s. Next, we only need to verify
τ∞ = ∞ a.s. If this statement is false, then there exist two constants T > 0 and
ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Thus there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε, k ≥ k1.

Define a C2-function V : R2
+ → R+ as follows

V (St, It) = St −
µ

β
− µ

β
ln
βSt
µ

+ It − 1− ln It,

the nonnegativity of this function can be obtained from u − 1 − lnu ≥ 0, u > 0.
Applying Itô’s formula yields

dV (St, It) = LV (St, It)dt+
σ
(
2StIt − St − µ

β It
)

1 + αSt
dBt,

where

LV (St, It) =
(
1− µ

βSt

)[
rSt
(
1− St

K

)
− βStIt

1 + αSt
+ γIt

]
+

σ2I2
t

2(1 + αSt)2

+
(
1− 1

It

)[ βStIt
1 + αSt

− (µ+ γ)It

]
+

σ2S2
t

2(1 + αSt)2

=rSt −
r

K
S2
t − µIt −

rµ

β
+

rµ

Kβ
St +

µIt
1 + αSt

− µγ

β

It
St
− βSt

1 + αSt

+ µ+ γ +
σ2I2

t

2(1 + αSt)2
+

σ2S2
t

2(1 + αSt)2

≤−
[ r
K
S2
t −

( rµ
Kβ

+ r
)
St

]
+ µ+ γ +

1

2
σ2(S2

t + I2
t ).
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From system (1.2), we have

d (St + It)

dt
+ µ(St + It) = rSt

(
1− St

K

)
+ µSt ≤

K(r + µ)2

4r
= P.

Then

St + It ≤
P

µ
+ e−µt

(
S0 + I0 −

K(r + µ)2

4rµ

)
.

For each t ≤ τk and k, we have

St + It ≤

{
P
µ , if S0 + I0 ≤ K(r+µ)2

4rµ ,

S0 + I0, if S0 + I0 >
K(r+µ)2

4rµ .

Therefore,

LV (St, It) ≤ −
[ r
K
S2
t − (

rµ

Kβ
+ r)St

]
+ µ+ γ +

σ2P 2

µ2
:= M0,

where M0 is a positive constant.
The rest of the proof follows that in [8], se we omit it here. �

4. Extinction

The aim of this section is to investigate the stochastic extinction of the plant
disease in system (1.2). We denote

Rs0 = R0 −
σ2K2

2(1 + αK)2(µ+ γ)
.

Theorem 4.1. Let (St, It) be a solution of system (1.2) with any given initial value
(S0, I0) ∈ R2

+. If

σ2 > max
{β(1 + αK)

K
,

β2

2(µ+ γ)

}
, (4.1)

or

Rs0 < 1 and σ2 ≤ β(1 + αK)

K
, (4.2)

then

lim sup
t→∞

ln It
t
≤ −a < 0 a.s.,

where a = (µ+γ)− β2

2σ2 under condition (4.1) and a = (µ+γ)(1−Rs0) corresponding
to conditions (4.2). In other words, the disease It dies out with probability one.

Proof. By Itô’s formula, we have

d ln It =
[ βSt

1 + αSt
− (µ+ γ)− σ2S2

t

2(1 + αSt)2

]
dt+

σSt
1 + αSt

dBt. (4.3)

Integrating both sides of (4.3) from 0 to t gives

ln It = ln I0 +

∫ t

0

[ βSs
1 + αSs

− (µ+ γ)− σ2S2
s

2(1 + αSs)2

]
ds+

∫ t

0

σSs
1 + αSs

dBs.

Note that M(t) =
∫ t

0
σSs

1+αSs
dBs implies

〈M,M〉t
t

=
1

t

∫ t

0

σ2S2
s

(1 + αSs)2
ds ≤ σ2K2

(1 + αK)2
< +∞.
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By the strong law of large numbers for martingales [17], we have lim supt→∞
M(t)
t =

0 a.s. Under conditions (4.1), we obtain

ln It = ln I0 +

∫ t

0

[ βSs
1 + αSs

− (µ+ γ)− σ2S2
s

2(1 + αSs)2

]
ds+

∫ t

0

σSs
1 + αSs

dBs

= ln I0 +

∫ t

0

[
− σ2

2

( Ss
1 + αSs

− β

σ2

)2

+
β2

2σ2
− (µ+ γ)

]
ds

+

∫ t

0

σSs
1 + αSs

dBs

≤ ln I0 +

∫ t

0

[ β2

2σ2
− (µ+ γ)

]
ds+M(t).

(4.4)

Taking the limit superior of both sides of (4.4), we obtain

lim sup
t→∞

ln It
t
≤ β2

2σ2
− (µ+ γ) < 0 a.s.

Using the condition (4.2), one obtains

ln It = ln I0 +

∫ t

0

[ βSs
1 + αSs

− (µ+ γ)− σ2S2
s

2(1 + αSs)2

]
ds+

∫ t

0

σSs
1 + αSs

dBs

≤ ln I0 +

∫ t

0

[ βK

1 + αK
− (µ+ γ)− σ2K2

2(1 + αK)2

]
ds+

∫ t

0

σSs
1 + αSs

dBs

= ln I0 +

∫ t

0

[(µ+ γ)(Rs0 − 1)]ds+M(t).

Hence,

lim sup
t→∞

ln It
t
≤ (µ+ γ)(Rs0 − 1) < 0 a.s.

Therefore, limt→∞ It = 0,a.s. The proof is complete. �

In system (1.2), Rs0 = R0 − σ2K2

2(1+αK)2(µ+γ) ≤ R0. From the condition (4.2)

of Theorem 4.1, we can easily conclude that the disease It will disappear and
the disease It will also become extinct in the corresponding deterministic model.
Therefore, if the noises are not considered, then Rs0 is coincide with R0 of the
deterministic system (1.1).

5. Asymptotic stability of stationary distribution density

In this section, our aim is to investigate the existence of an invariant and asymp-
totically stable density of model (1.2).

Theorem 5.1. Let (St, It) be a solution of system (1.2) with any given initial value
(S0, I0) ∈ R2

+. For every t > 0, the distribution of (St, It) has a density U(t, x, y).
If

Rs0 > 1,
αβS∗

µ(1 + αS∗)
+ a <

r

K
+

1

K − S∗
,

and

p3 < min
{[ r
K

+ r
(
1− S∗

K

)( γ
K
− αβS∗

µ(1 + αS∗)
− a
)]

(S∗)2, aµ(I∗)2
}
,



8 H. QI, X. MENG, Z. CHANG EJDE-2019/116

where

p3 = γ
(
1− S∗

K

)(P
µ
− I∗

)
+
σ2S∗P 2

2µ2
, a =

βK

r(1 + αK)(K − S∗)
,

S∗ =
µ+ γ

β − α(µ+ γ)
, I∗ =

rS∗

µ

(
1− S∗

K

)
.

Then there exists a unique density U∗(t, x, y) which is a stationary solution of sys-
tem (1.2) and

lim
t→∞

∫∫
R2

+

|U(t, x, y)− U∗(t, x, y)| dx dy = 0.

In addition, we have

Ξ := suppU∗ =
{

(x, y) ∈ R2
+ : 0 < x+ y <

P

µ

}
.

The strategy of the proof of theorem 5.1 is as follows. First, using the Hörmander
condition [4] we show that the transition function of the process (St, It) is absolutely
continuous. Then, we prove that the density of the transition function is positive on
R2

+ via using support theorems [1, 31, 2]. Next, we verify that the Markov semigroup
satisfies the “Foguel alternative”. Finally, we exclude sweeping by showing that
there exists a Khasminskǐi function. We realize this strategy by lemma 5.2–5.6.

Lemma 5.2. The transition probability function P(t, x0, y0, A) has a continuous
density K(t, x, y;x0, y0) with respect to the Lebesgue measure.

Proof. In the proof of this lemma, we use the Hörmander theorem (see [4]) on the
existence of smooth densities of the transition probability function for degenerate
diffusion processes. If a(x) and b(x) are vector fields on Rd, then the Lie bracket
[a, b] is a vector field given by

[a, b]j(x) =

d∑
k=1

(
ak
∂bj
∂xk

(x)− bk
∂aj
∂xk

(x)
)
, j = 1, 2, . . . , d.

Let

a1(x, y) =

(
rx(1− x

K )− βxy
1+αx + γy

βxy
1+αx − (µ+ γ)y

)
, a2(x, y) =

(
− σxy

1+αx
σxy

1+αx

)
.

Then, by direct calculations, the Lie bracket [a1, a2] is a vector field given by

[a1, a2] =

(
− σy

(1+αx)2 (rx− r
Kx

2 + γy) + σxy
1+αx

(
r + µ− 2r

K x
)

σy
(1+αx)2 (rx− r

Kx
2 + γy)

)
.

Consequently

|a2[a1, a2]| =

∣∣∣∣∣− σxy
1+αx − σy

(1+αx)2

(
rx− r

Kx
2 + γy

)
+ σxy

1+αx (r + µ− 2r
K x)

σxy
1+αx

σy
(1+αx)2

(
rx− r

Kx
2 + γy

) ∣∣∣∣∣
=− σ2x2y2

(1 + αx)2

(
r + µ− 2r

K
x
)
.

For each (x, y) ∈ R+/
K(µ+r)

2r ×R+, vectors a2(x, y), [a1, a2](x, y) span the space R2
+.

In view of Hörmander Theorem, the transition probability function P(t, x0, y0, A)
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has a continuous density K(t, x, y;x0, y0) and

K ∈ C∞
(

(0,∞)×
(
R+/

K(µ+ r)

2r
× R+

)
×
(
R+/

K(µ+ r)

2r
× R+

))
.

This completes the proof. �

Lemma 5.3. Let E =
(
R+/

K(µ+r)
2r × R+

)
. For each (x0, y0) ∈ E and (x, y) ∈ E,

there exists T > 0 such that K(T, x, y;x0, y0) > 0.

Proof. We briefly describe the method based on support theorems (see [1, 31, 2])
for checking positivity of K. Itô’s SDEs in system (1.2) need to be rewritten in the
Stratonovitch’s form

dSt = f1(St, It)dt−
σStIt

1 + αSt
◦ dBt,

dIt = f2(St, It)dt+
σStIt

1 + αSt
◦ dBt,

where

f1(x, y) = rx
(
1− x

K

)
− βxy

1 + αx
+ γy +

1

2

[ σ2x2y

(1 + αx)2
− σ2xy2

(1 + αx)3

]
,

f2(x, y) =
βxy

1 + αx
− (µ+ γ)y − 1

2

[ σ2x2y

(1 + αx)2
− σ2xy2

(1 + αx)3

]
.

(5.1)

Fix a point (x0, y0) ∈ E and a continuous function φ ∈ L2([0, T ];R), consider the
following system of integral equations

xφ(t) = x0 +

∫ t

0

(
f1(xφ(s), yφ(s))− σφxφ(s)yφ(s)

1 + αxφ(s)

)
ds,

yφ(t) = y0 +

∫ t

0

(
f2(xφ(s), yφ(s)) + σφ

xφ(s)yφ(s)

1 + αxφ(s)

)
ds,

(5.2)

Denote Dx0,y0;φ be the Frechét derivative of the function h 7→ Xφ+h(T ) from
L2([0, T ];R) to R2

+, where Xφ+h = [xφ+h, yφ+h]T . If for some φ ∈ L2([0, T ];R) the
derivativeDx0,y0;φ has rank 2, thenK(T, x, y;x0, y0) > 0 for (x, y) = (xφ(T ), yφ(T )).
The derivative Dx0,y0;φ can be found by means of the perturbation method for
ODEs. In other words, let

Ψ = f ′(xφ, yφ) + g′(xφ, y0)φ,

where f ′ and g′ are the Jacobians of

f =

(
f1(x, y)
f2(x, y)

)
, g =

(
− σxy

1+αx
σxy

1+αx

)
,

respectively. For 0 ≤ t0 ≤ t ≤ T , let Q(t, t0) be a matrix function such that

Q(t0, t0) = I, ∂Q(t,t0)
∂t = Ψ(t)Q(t, t0). Then

Dx0,y0;φh =

∫ T

0

Q(T, s)g(s)h(s)ds.
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Since we consider a continuous control function φ, the system (5.2) can be re-
placed by the following system of differential equations

x′φ = f1(xφ, yφ)− σφ xφyφ
1 + αxφ

,

y′φ = f2(xφ, yφ) + σφ
xφyφ

1 + αxφ
.

(5.3)

Step 1. We claim that the rank of Dx0,y0;φ is 2. Let ε ∈ (0, T ) and h(t) =
1+αxφ(t)
xφ(t)yφ(t)1[T−ε,T ] for t ∈ [0, T ], where 1[T−ε,T ] is the characteristic function of in-

terval [T − ε, T ]. By Taylor expansion, we obtain

Q(T, s) = I + Ψ(T )(s− T ) + o((T − s)).
Then

Dx0,y0;φh =

∫ T

0

[I + Ψ(T )(s− T ) + o((T − s))]g(s)h(s)ds

=εv +
ε2

2
Ψ(T )v + o(ε2),

where v = (−σ, σ)T , and

Ψ(T )v = σ
(
− r +

2r

K
x+ γ + β

∂a

∂x
− 1

2

∂b

∂x
− β ∂a

∂y
+

1

2

∂b

∂y
+ σ

∂a

∂x
φ− σ∂a

∂y
φ

− µ− γ − β ∂a
∂x

+
1

2

∂b

∂x
+ β

∂a

∂y
− 1

2

∂b

∂y
− σ ∂a

∂x
φ+ σ

∂a

∂y
φ
)
,

where a(x, y) = xy
1+αx , b(x, y) = σ2x2y

(1+αx)2 −
σ2xy2

(1+αx)3 . Since

|v Ψ(T )v| =

∣∣∣∣∣−σ −σ[−r + 2r
K x+ γ + β ∂a∂x −

1
2
∂b
∂x − β

∂a
∂y + 1

2
∂b
∂y + σ ∂a∂xφ− σ

∂a
∂yφ

]
σ σ

[
− µ− γ − β ∂a∂x + 1

2
∂b
∂x + β ∂a∂y −

1
2
∂b
∂y − σ

∂a
∂xφ+ σ ∂a∂yφ

] ∣∣∣∣∣
= − σ2x2y2

(1 + αx)2

(
r + µ− 2r

K
x
)
6= 0.

Then v, Ψ(T )v are linearly independent and the derivative Dx0,y0;φ is rank 2.

Step 2. We prove that for any two points (x0, y0) ∈ E and (x1, y1) ∈ E, there
exist a control function φ and T > 0 such that (xφ(0), yφ(0)) = (x0, y0) and
(xφ(T ), yφ(T )) = (x, y). Let zφ = xφ + yφ. then system (5.2) becomes

x′φ(t) = g1(xφ(t), zφ(t))− σφxφ(t)(zφ(t)− xφ(t))

1 + αxφ(t)
,

z′φ(t) = g2(xφ(t), zφ(t)),

(5.4)

where

g1(x, z) = f1(x, z − x),

g2(x, z) = (r + µ)x− r

K
x2 − µz.

Let

Ξ0 =
{

(x, z) ∈ E : 0 < x < K, 0 < z <
P

µ
, and x < z

}
.

Now we prove for any (x0, z0) ∈ Ξ0 and (x1, z1) ∈ Ξ0, there exist a control function
φ and T > 0 such that (xφ(0), zφ(0)) = (x0, z0) and (xφ(T ), zφ(T )) = (x1, z1).
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We construct the control function φ in the following way. First, we find a positive
constant T and a differentiable function

zφ : [0, T ]→
(
0,
P

µ

)
,

such that zφ(0) = z0, zφ(T ) = z1, z′φ(0) = g2(x0, z0) = zd0 , z′φ(T ) = g2(x1, z1) = zdT
and

0 < (r + µ)x− r

K
x2 − µz = z′φ(t) = rx− r

K
x2 − µzφ(t) < P − µzφ(t), (5.5)

for t ∈ [0, T ]. To do this, we split the construction of the function zφ on three

intervals [0, ε], [ε, T − ε] and [T − ε, T ], where 0 < ε < T
2 . Let

ξ =
1

2
min

{
z0 − 0, z1 − 0,

P

µ
− z0,

P

µ
− z1

}
.

If zφ ∈
(
0 + ξ, Pµ − ξ

)
, we have

(r+ µ)x− r

K
x2 − µzφ(t) < −µξ < 0, P − µzφ(t) > µξ > 0 for t ∈ [0, T ]. (5.6)

Hence, it follows from (5.6) that we can construct a C2-function zφ : [0, ε] →
(0 + ξ, Pµ − ξ) such that

zφ(0) = z0, z
′
φ(0) = zd0 , z

′
φ(ε) = 0

and zφ satisfies (5.5) for t ∈ [0, ε]. Analogously, we construct a C2-function zφ :

[T − ε, T ]→
(

0 + ξ, Pµ − ξ
)

such that

zφ(T ) = z1, z
′
φ(T ) = zdT , z

′
φ(T − ε) = 0

and zφ satisfies (5.5) for t ∈ [T − ε, T ].
Taking T sufficiently large, we can extend the function

zφ : [0, ε] ∩ [T − ε, T ]→
(
0 + ξ,

P

µ
− ξ
)

to a C2-function zφ defined on the whole interval [0, T ] such that

(r + µ)x− r

K
x2 − µzφ(t) < −µξ < z′φ(t) < µξ < P − µzφ(t) for [ε, T − ε]

and therefore, the function zφ satisfies (5.5) on [0, T ]. It follows that we can find
a C1-function xφ which satisfies the second equation of (5.3) and finally we can
determine a continuous function φ from the first equation of (5.3). This completes
the proof. �

Lemma 5.4. Assume that Rs0 > 1. For the semigroup {P (t)}t≥0 and every density
f , we have

lim
t→∞

∫∫
Ξ

P (t)f(x, y) dx dy = 1.

Proof. We substitute Jt = St + It. Then system (1.2) can be replaced by

dSt =
[
rSt
(
1− St

K

)
− βSt(Jt − St)

1 + αSt
+ γ(Jt − St)

]
dt− σSt(Jt − St)

1 + αSt
dBt,

dJt =
[
(r + µ)St −

r

K
S2
t − µJt

]
dt.

(5.7)
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Since (St, It) is a positive solution of system (1.2) with probability one, from the
second equation of (5.7), we obtain

0 <
dJt
dt

< P − µJt, t ∈ (0,∞) a.s. (5.8)

Now we claim that for almost every ω ∈ Ω, there exists t0 = t0(ω) such that

0 < Jt(ω) <
P

µ
, t > t0.

In fact, there are two possible cases.
(1) J0 ∈ (0, Pµ ). In this case, our claim is evident from (5.8).

(2) J0 ∈ (Pµ ,+∞). Suppose that our assertion does not hold. Then there exists

Ω′ ⊂ Ω with prob(Ω′) > 0 such that

lim
t→∞

Jt(ω) =
P

µ
, ω ∈ Ω′.

From the second equation of (5.7), we obtain, for any ω ∈ Ω′,

Jt(ω) = e−µt
(
J0 +

∫ t

0

eµs[(r + µ)Ss(ω)− r

K
S2
s (ω)]ds

)
,

hence, for any ω ∈ Ω′,

lim
t→∞

St(ω) = K, lim
t→∞

It(ω) =
P

µ
−K.

namely,

lim
t→∞

ln It − ln I0
t

= 0, ω ∈ Ω′.

By Itô’s formula, we have

d ln It =
[ βSt

1 + αSt
− (µ+ γ)− σ2S2

t

2(1 + αSt)2

]
dt+

σSt
1 + αSt

dBt.

Hence,

lim
t→∞

ln It − ln I0
t

= lim
t→∞

(1

t

∫ t

0

( βK

1 + αK
− (µ+ γ)− σ2K2

2(1 + αK)2

)
ds

+
1

t

∫ t

0

σSs
1 + αSt

dBs

)
=

βK

1 + αK
− (µ+ γ)− σ2K2

2(1 + αK)2

=(µ+ γ)(Rs0 − 1)

>0, a.s. on Ω′,

which is contradiction. Thus our claim holds for J0 ∈ (Pµ ,+∞). �

From Lemmas 5.3 and 5.4, we know that if the Fokker-Planck equation (2.2) has
a stationary solution U∗, then suppU∗ = Ξ.

Lemma 5.5. Assume that Rs0 > 1. The semigroup {P (t)}t≥0 is asymptotically
stable or sweeping with respect to compact sets.
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Proof. By Lemma 5.2, it follows that {P (t)}t≥0 is an integral Markov semigroup
with a continuous kernel K(t, x, y, x0, y0) for t > 0. According to Lemma 5.3, for
every f ∈ D we have ∫ ∞

0

P (t)fdt > 0, a.s. on Ξ.

From Lemma 5.4, we know that it is sufficient to demonstrate the restriction of the
semigroup {P (t)}t≥0 to the space L1(Ξ). From Lemma 2.1 it follows immediately
that the semigroup {P (t)}t≥0 is asymptotically stable or is sweeping with respect
to compact sets. �

Lemma 5.6. If Rs0 > 1, αβS∗

µ(1+αS∗) + a < r
K + 1

K−S∗ , and

p3 < min
{[ r
K

+ r
(

1− S∗

K

)( γ
K
− αβS∗

µ(1 + αS∗)
− a
)]

(S∗)2, aµ(I∗)2
}
,

where

p3 = γ
(
1− S∗

K

)(P
µ
− I∗

)
+
σ2S∗P 2

2µ2
, a =

βK

r(1 + αK)(K − S∗)
,

S∗ =
µ+ γ

β − α(µ+ γ)
, I∗ =

rS∗

µ

(
1− S∗

K

)
.

Then the semigroup {P (t)}t≥0 is asymptotically stable.

Proof. According to Lemma 5.5, the semigroup {P (t)}t≥0 satisfies the Foguel alter-
native. To exclude sweeping it is sufficient to construct a non-negative C2-function
V and a closed set O ∈ Σ such that

sup
(S,I)∈X\O

A∗V < 0.

The function V is called a Khasminskǐi function [24]. Using similar arguments to
those in [24], the existence of a Khasminskǐi function implies that the semigroup is
not sweeping from the set O, which will complete the proof. In fact, when R0 > 1,
there is an endemic equilibrium E∗ of system (1.1). Then we have

rS∗
(
1− S∗

K

)
− βS∗I∗

1 + αS∗
+ γI∗ = 0,

βS∗I∗

1 + αS∗
− (µ+ γ)I∗ = 0.

(5.9)

Let

V (S, I) =
(
S − S∗ − S∗ ln

S

S∗

)
+ a

(S − S∗ + I − I∗)2

2
:= V1 + aV2.

Then V is a nonnegative C2-function. It follows from (2.4) and (5.9) that

A∗V1 =
S − S∗

S

[
rS
(
1− S

K

)
− βSI

1 + αS
+ γI

]
+

σ2S∗I2

2(1 + αS)2

=(S − S∗)
[
r − r

K
S − βI

1 + αS
+ γ

I

S

]
+

σ2S∗I2

2(1 + αS)2

=(S − S∗)
[
− r

K
(S − S∗)− β(1 + αS∗)(I − I∗)− αβI∗(S − S∗)

(1 + αS∗)(1 + αS)

+ γ
S∗(I − I∗)− I∗(S − S∗)

S∗S

]
+

σ2S∗I2

2(1 + αS)2
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=− r

K
(S − S∗)2 +

αβI∗

(1 + αS∗)(1 + αS)
(S − S∗)2 − β

1 + αS
(S − S∗)(I − I∗)

− γI∗

S∗S
(S − S∗)2 +

γ

S
(S − S∗)(I − I∗) +

σ2S∗I2

2(1 + αS)2

≤−
[ r
K

[
1 + γ

(
1− S∗

K

)]
− αβI∗

(1 + αS∗)

]
(S − S∗)2 − β

1 + αK
(S − S∗)(I − I∗)

+ γ
(
1− S∗

K

)(P
µ
− I∗

)
+
σ2S∗P 2

2µ2
,

and

A∗V2 =(S − S∗ + I − I∗)[rS − r

K
S2 − µI]

=(S − S∗ + I − I∗)[r(S − S∗)− r

K
(S∗ + S)(S − S∗)− µ(I − I∗)]

≤r
(
1− S∗

K

)
(S − S∗)2 + r

(
1− S∗

K

)
(S − S∗)(I − I∗)− µ(I − I∗)2.

Hence,

A∗V =A∗V1 + aA∗V2

≤−
[ r
K

[
1 + γ

(
1− S∗

K

)]
− αβI∗

(1 + αS∗)
− ar

(
1− S∗

K

)]
(S − S∗)2

− aµ(I − I∗)2 + γ
(
1− µS∗

P

)(P
µ
− I∗

)
+
σ2S∗P 2

2µ2

:=− p1(S − S∗)2 − p2(I − I∗)2 + p3.

Conditions Rs0 > 1, αβS∗

µ(1+αS∗) + a < r
K + 1

K−S∗ , and

p3 < min
{[ r
K

+ r
(
1− S∗

K

)( γ
K
− αβS∗

µ(1 + αS∗)
− a
)]

(S∗)2, aµ(I∗)2
}
.

It then follows that the ellipsoid

−p1(S − S∗)2 − p2(I − I∗)2 + p3 = 0

lies entirely in X. Therefore there exist a closed set O ∈ Σ which contains this
ellipsoid and c > 0 such that

sup
(S,I)∈X\O

AV ≤ −c < 0.

The proof is complete. �

6. Numerical simulations and conclusions

We present some numerical examples that illustrate our main results. We employ
the following discrete equations

Sk+1 =Sk +
[
rSk

(
1− Sk

K

)
− βSkIk

1 + αSk
+ γIk

]
∆t− σSkIk

1 + αSk

√
∆tξk

− σ2SkIk
2(1 + αSk)

(ξ2
k − 1)∆t,

Ik+1 = Ik +
[ βSkIk

1 + αSk
− (µ+ γ)Ik

]
∆t+

σSkIk
1 + αSk

√
∆tξk +

σ2SkIk
2(1 + αSk)

(ξ2
k − 1)∆t,
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where ξk, k = 1, 2, . . . , n, are independent Gaussian random variables N(0, 1).

Example 6.1. For the deterministic system (1.1) and its stochastic system (1.2),
the parameters are taken as follows: r = 0.4, K = 1.2, β = 0.4, µ = 0.2, α = 0.4,
γ = 0.2.

Case 1. Let σ = 0.8. Then

σ2 = 0.64 > max {0.4933, 0.2} ,
as a consequence result of conditions (4.1) in Theorem 4.1, the disease It dies out
with probability one. Figure 1(a) shows the paths of St, It in the deterministic
system (1.1) and Figure 1(b) shows the paths of St, It in the stochastic system
corresponding to a deterministic system (1.1). Figure 1(b’) is the phase portrait of
Figure 1(a) and (b).

Case 2. Let σ = 0.3. Then

Rs0 = 0.7369 < 1, and σ2 = 0.09 ≤ β(1 + αK)

K
= 0.4933.

Then from conditions (4.2) in Theorem 4.1, the disease It also dies out with proba-
bility one. Figure 1(a) and Figure 1(c) show the paths of St, It in the deterministic
system (1.1) and the stochastic system (1.2), respectively. Figure 1(c’) is the phase
portrait of Figure 1(a) and (c).

Simulations in Figure 1 show that σ can affect the persistent and extinction of
the disease It. When σ is large, the disease It must be extinct. But the σ is not
large, the disease will also die out under certain conditions. Consequence, we can
control the persistent and extinction of the disease by controlling the size of σ.

Example 6.2. For the deterministic model (1.1) and its stochastic model (1.2),
the parameters are taken as follows r = 1.2, K = 2.5, β = 0.4, µ = 0.2, α = 0.35,
γ = 0.3, σ = 0.046. Then

Rs0 = 1.063 > 1 and p3 = 0.121 < min{0.819, 0.702},
according to Theorem 5.1, we can conclude that the density functions of St and It
will convergent. By Figure 2(a) and (c), we have that the disease It will persistent
in long time. Figure 2(b) and (d) describe the density function images of the
stationary distribution of St and It, respectively. Simulations in Figure 2 show
that σ keep the processes St, It for stochastic system (1.2) moving around the
orbits for the deterministic system (1.1) in a confined region. This indicates that
the semigroup of system (1.2) is asymptotically stable. Hence, Figure 2 approve
the conclusion of Theorem 5.1.

This article explores a stochastic plant disease model with logistic growth and
saturated incidence rate. The diffusion matrix of the stochastic system is the de-
generate form. Thus, the theory on Markov semigroup is used to analyze the
asymptotic behaviors of the distributions of the solutions. The densities of the dis-
tributions of the solutions are absolutely continuous, and the densities will converge
in L1 to an invariant density under appropriate conditions. Moreover, the sufficient
conditions is provided for the extinction of the disease under the different white
noise intensity. Our results are given as follows

(I) If one of the following two conditions holds

σ2 > max
{β(1 + αK)

K
,

β2

2(µ+ γ)

}
;
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Figure 1. (a) is the deterministic system, (b) and (c) are the
corresponding stochastic systems of (a), (b’) and (c’) are phase
portrait of (b) and (c), respectively. The initial values (S0, I0) =
(1, 0.6), (a) σ = 0, (b) σ = 0.3, (c) σ = 0.8, (b’) σ = 0.3, (c’)
σ = 0.8.

Rs0 < 1 and σ2 ≤ β(1 + αK)

K
,

then the diseases I of the system (1.2) will be extinct with probability one.
(II) If

Rs0 > 1,
αβS∗

µ(1 + αS∗)
+ a <

r

K
+

1

K − S∗
,
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Figure 2. (a) and (c) are the sample paths for the solutions of
system (1.2) and its corresponding deterministic system (1.1). (b)
and (d) are the density functions of St and It in stochastic systems
(1.2). (S0, I0) = (1, 1), σ = 0.046.

and

p3 < min
{[ r
K

+ r
(
1− S∗

K

)( γ
K
− αβS∗

µ(1 + αS∗)
− a
)]

(S∗)2, aµ(I∗)2
}
,

then system (1.2) exists a unique density U∗(t, x, y) of a stationary solution.
Through theoretical proof and numerical simulation, we have obtained that en-

vironmental noises have a critical influence on the development of plant infectious
diseases. Compared to the deterministic model, the stochastic model is more realis-
tic for the research of plant disease models. For the stochastic system (1.2), we can
control the persistence and extinction of the plant disease by the size of σ. When σ
is very large, the disease It will disappear (see Figure 1(b) and (b’)); when σ is not
large, the disease It may disappear or it may exist (see Figure 1(c), (c’) and Figure
2), which requires to predict the development of the disease by Rs0. When Rs0 > 1,
the disease will persist; when Rs0 < 1, the disease will become extinct. Therefore,
farmers can make the disease extinct by controlling the size of σ, so that farmers
can get more and better food, which is conducive to the country’s stability and
economic development.

Some interesting questions deserve further investigation. On the one hand, we
may explore some realistic but complex models, considering the effect of predators
hunting on diseased plants. On the other hand, we can use the methods to research
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epidemic models, chemostat models or other population dynamics models. We will
leave these cases as our future work.

Acknowledgements. This work was supported by the Research Fund for the
Taishan Scholar Project of Shandong Province of China, by the SDUST Research
Fund (2014TDJH102), by the Shandong Provincial Natural Science Foundation of
China (No. ZR2019MA003), and by the SDUST Innovation Fund for Graduate
Students (SDKDYC190119).

References

[1] S. Aida, S. Kusuoka, D. Strook; On the support of Wiener functionals, Asymptotic problems

in probability theory; Wiener functionals and asymptotic, Pitman Research Notes in Math.

Ser. Longman Scient. Tech. 284 (1993), 3-34.
[2] G. B. Arous, R. Leandre; Decroissance exponentielle du noyau de la chaleur sur ladiagonale

(II), Probab. Theory Related Fields, 90(3) (1991), 377-402.
[3] N. Bairagi, S. Chaudhuri, J. Chattopadhyay; Harvesting as a disease control measure in an

eco-epidemiological system-a theoretical study, Math. Biosci., 217 (2) (2009), 134-144.

[4] D. R. Bell; The Malliavin Calculus, Dover Publications, New York, 2006.
[5] Y. Cai, Y. Kang, M. Banerjee, W. Wang; A stochastic SIRS epidemic model with infectious

force under intervention strategies, J. Differ. Equations, 259 (12) (2015), 7463-7502.

[6] M. Donatelli, R.D. Magarey, S. Bregaglio, L. Willocquet, J. P. Whish, S. Savary; Modelling
the impacts of pests and diseases on agricultural systems, Agr. Syst., 155 (2017), 213-224.

[7] C. A. Gilligan, F. van den Bosch; Epidemiological models for invasion and persistence of

pathogens, Annu. Rev. Phytopathol., 46 (2008), 385-418.
[8] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan; A stochastic differential equation SIS

epidemic model, SIAM J. Appl. Math., 71 (3) (2011), 876-902.

[9] M. J. Jeger, J. Holt, F. Van Den Bosch, L. V. Madden; Epidemiology of insect-transmitted
plant viruses: modelling disease dynamics and control interventions, Physiol. Entomol., 29

(3) (2004), 291-304.
[10] D. Jiang, N. Shi, X. Li; Global stability and stochastic permanence of a non-autonomous

logistic equation with random perturbation, J. Math. Anal. Appl., 340 (1) (2008), 588-597.

[11] W. O. Kermack, A. G. McKendrick; A contributions to the mathematical theory of epidemics
(Part I), Proc. R. Soc. A., 115 (1927), 700-721.

[12] A. Lasota, M. C. Mackey; Chaos, fractals, and noise: stochastic aspects of dynamics, Springer

Science & Business Media, 97, (2013).
[13] K. H. Li, J. M. Li, W. Wang; Epidemic reaction-diffusion systems with two types of boundary

conditions, Electron. J. Differential Equations, 2018, No. 170 (2018), 1-21.

[14] D. Li, J. Cui, M. Liu, S. Liu; The evolutionary dynamics of stochastic epidemic model with
nonlinear incidence rate, B. Math. Biol., 77 (9) (2015), 1705-1743.

[15] M. Liu, Y. Yu, P. Mandal; Dynamics of a stochastic delay competitive model with harvesting

and Markovian switching, Appl. Math. Comput., 337 (2018), 335-349.
[16] G. B. Lucas, C. L. Campbell, L. T. Lucas; Introduction to plant diseases: identification and

management, Springer Science & Business Media, 1992.
[17] X. Mao; Stochastic differential equations and applications, Horwood, Chichester, 2007.

[18] X. Meng, Z. Li; The dynamics of plant disease models with continuous and impulsive cultural
control strategies, J. Theor. Biol., 266 (1) (2010), 29-40.

[19] X. Meng, F. Li, S. Gao; Global analysis and numerical simulations of a novel stochastic
eco-epidemiological model with time delay, Appl. Math. Comput., 339 (2018), 701-726.

[20] B. Mukhopadhyay, R. Bhattacharyya; Role of predator switching in an eco-epidemiological
model with disease in the prey, Ecol. Model., 220 (7) (2009), 931-939.

[21] M. Otero, H. G. Solari; Stochastic eco-epidemiological model of dengue disease transmission
by Aedes aegypti mosquito, Math. Biosci., 223 (1) (2010), 32-46.

[22] S. Pasquali; The stochastic logistic equation: stationary solutions and their stability, Rend.
Sem. Mat. Univ. Padova., 106 (2001), 165-183.
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