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EXISTENCE AND MULTIPLICITY OF POSITIVE PERIODIC

SOLUTIONS FOR FOURTH-ORDER NONLINEAR

DIFFERENTIAL EQUATIONS

HUJUN YANG, XIAOLING HAN

Abstract. In this article we study the existence and multiplicity of positive

periodic solutions for two classes of non-autonomous fourth-order nonlinear

ordinary differential equations

uiv − pu′′ − a(x)un + b(x)un+2 = 0,

uiv − pu′′ + a(x)un − b(x)un+2 = 0,

where n is a positive integer, p ≤ 1, and a(x), b(x) are continuous positive

T -periodic functions. These equations include particular cases of the extended
Fisher-Kolmogorov equations and the Swift-Hohenberg equations. By using

Mawhin’s continuation theorem, we obtain two multiplicity results these equa-
tions.

1. Introduction and statement of main results

In the previous years there has been an increasing interest in the study of higher
order problems that arise in Biology and Physics, such as the equations

uiv − pu′′ − a(x)u+ b(x)u3 = 0, x ∈ R, (1.1)

uiv − pu′′ + a(x)u− b(x)u3 = 0, x ∈ R. (1.2)

In [23], the authors prove the existence of periodic solutions to (1.1) and (1.2),
when p is a positive constant, and a(x), b(x) are continuous positive 2L-periodic
functions on R.

For (1.1) and (1.2), we consider the boundary conditions

u(0) = u(L) = u′′(0) = u′′(L) = 0.

Existence of nontrivial solutions for (1.1) is proved using a minimization theorem
and multiplicity using Clark’s theorem. Existence of nontrivial solutions for (1.2)
is proved using the symmetric mountain pass theorem. When p > 0, equations
(1.1) and (1.2) are called extended Fisher-Kolmogorov (EFK) equations, which was
proposed by Dee and Van Saarloos [10] in 1988 as a model for bistable systems.
On the other hand, when p < 0, Equations (1.1) and (1.2) are called the Swift-
Hohenberg (SH) equations, which was proposed by Swift and Honenberg [22] in
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1977, in the context of hydrodynamic instabilities. For more equations related to
the model, see [6, 11, 20, 21].

The following two-point boundary value problem is considered In [8],

uiv − pu′′ − a(x)u+ b(x)u3 = 0, 0 < x < L,

u(0) = u′′(0) = u(L) = u′′(L),

where p ∈ R, and the functions a(x) and b(x) are positive continuous even and 2L
periodic. This type of equations has been studied in [5, 7, 12, 17, 24, 27]. At the
same time, the existence of periodic solutions of nonlinear differential equations has
benn studied in [2, 3, 4, 9, 13, 14, 15, 16, 18, 25, 26].

In this paper, our purpose is to establish the existence and multiplicity of positive
periodic solutions of the non-autonomous fourth-order nonlinear ordinary differen-
tial equations at resonance

uiv − pu′′ − a(x)un + b(x)un+2 = 0, x ∈ R, (1.3)

uiv − pu′′ + a(x)un − b(x)un+2 = 0, x ∈ R, (1.4)

where n is a positive integer, p ≤ 1, and a(x), b(x) are continuous positive T -periodic
functions on R, where 0 < a ≤ a(x) ≤ A, 0 < b ≤ b(x) ≤ B.

In our work, we use coincidence degree theories to establish existence and mul-
tiplicity of positive periodic solutions for (1.3) and (1.4), under some specific as-
sumptions on a,A, b, B, p, T to be given later. It is worth noting that when n = 1
Eq.uations (1.3) and (1.4) reduce to (1.1) and (1.2). Our main results are the
following theorems.

Theorem 1.1. Let

1− p ≥ 0, (1.5)

a(x), b(x) be continuous positive T -periodic functions and a,A, b, B be positive con-
stants such that

0 < a ≤ a(x) ≤ A, 0 < b ≤ b(x) ≤ B, B

a
≤ A

b
. (1.6)

Suppose that there exist constants M1,M2, . . . ,Mm and T such that

0 < M1 < · · · < Mr−1 < Mr < Mr+1 < · · · < Mm, (1.7)

0 < T ≤ 1

β2(AMn−1
m +BMn+1

m − p+ 2)
, (1.8)

where β is the immersion constant of H2(0, T ) in C1([0, T ]); Mr+1 =
√
A/b + ε

and Mr =
√
B/a − ε are positive constants, where ε > 0 and small enough. Then

both (1.3) and (1.4) have at least m− 1 positive T -periodic solutions.

Theorem 1.2. As in Theorem 1.1 assume that (1.5), (1.6), (1.7) hold. Also assume
that

0 < T ≤ 1

γ2(AMn−1
m +BMn+1

m − p+ 3)
, (1.9)

where γ is the immersion constant of H3(0, T ) in C2([0, T ]); Mr+1 =
√
A/b + ε

and Mr =
√
B/a − ε are positive constants, where ε > 0 and small enough. Then

both (1.3) and (1.4) have at least m− 1 positive T -periodic solutions.
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2. Preliminaries

In this section, we state notation and preliminary results that will play important
roles in the prove of our main results.

Definition 2.1 ([19]). Let X,Y be real Banach spaces, L : DomL ⊂ X → Y be a
linear mapping. The mapping L is said to be a Fredholm mapping of index zero if

(a) ImL is closed in Y ;
(b) dim kerL = codim ImL < +∞.

If L is a Fredholm mapping of index zero, then there exist continuous projectors
P : X → X and Q : Y → Y such that

ImP = kerL,

kerQ = ImL = Im(I −Q).

It follows that the restriction LP of L to DomL ∩ kerP : (I − P )X → ImL is
invertible. We denote the inverse of LP by KP .

Definition 2.2 ([19]). Let N : X → Y be a continuous mapping. Then mapping
N is said to be L-compact on Ω if Ω is an open bounded subset of X, QN(Ω) is
bounded and KP (I −Q)N : Ω→ X is compact.

Lemma 2.3 (Mawhin’s Continuation Theorem [19]). Let L be a Fredholm mapping
of index zero, Ω ⊂ X is an open bounded set and let N is L-compact on Ω. If all
the following conditions hold:

(1) Lx 6= λNx for all x ∈ ∂Ω ∩DomL, and all λ ∈ (0, 1];
(2) QNx 6= 0, for all x ∈ ∂Ω ∩ kerL;
(3) deg{JQN,Ω ∩ kerL, 0} 6= 0, where J : ImQ→ kerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in DomL ∩ Ω.

We shall denote by Hn
per(0, T ) the usual Sobolev spaces of periodic functions,

that is

Hn
per(0, T ) = {u ∈ Hn(0, T ) : u(i)(0) = u(i)(T ), i = 0, . . . , n− 1}.

Then we consider X = H3
per(0, T ), Y = L2(0, T ).

Define a linear operator L : DomL ⊂ X → Y by setting

Lu = u(iv) − pu′′, u ∈ DomL,

where DomL = H4
per(0, T ). It is immediate to prove that kerL = R and

ImL =
{
ϕ ∈ L2(0, T ) :

∫ T

0

ϕ(t)dt = 0
}
.

It is not difficult to see that ImL is a closed set in Y and

dim kerL = codim ImL = 1.

Thus the operator L is a Fredholm operator with index zero.
We define the nonlinear operators N : X → Y by setting

Nu = a(x)un − b(x)un+2, or

Nu = −a(x)un + b(x)un+2.
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Now we define the projector P : X → kerL and the projector Q : Y → Y by setting

Pu(t) = ū =
1

T

∫ T

0

u(t)dt,

Qϕ(t) = ϕ̄ =
1

T

∫ T

0

ϕ(t)dt.

Hence, ImP = kerL, kerQ = ImL. Moreover, for ϕ ∈ ImL it follows that KP (ϕ)
is the unique solution u ∈ H4

per(0, T ) of the problem

u(iv) − pu′′ = 0,

ū = 0.

Lemma 2.4 ([1]). There exists a constant c such that

‖u‖H4 ≤ c‖Lu‖L2

for every u ∈ H4
per(0, T ) such that ū = 0.

Lemma 2.5. Let L and N be as before and assume that a(x), b(x) satisfy the
assumptions of Theorems 1.1 and 1.2. Then N is L-compact on Ω for any bounded
set Ω ⊂ X.

Proof. Clearly, operators QN : X → Y by setting

QNu =
1

T

∫ T

0

a(x)un − b(x)un+2, or

QNu =
1

T

∫ T

0

−a(x)un + b(x)un+2.

It is immediate that QN(Ω) is bounded. Moreover, if ϕ = (I −Q)Nu = Nu−Nu,
let v = KP (ϕ) the unique element of H4

per(0, T ) satisfying

Lv = ϕ, v̄ = 0.

By Lemma 2.4, we know that there exists a constant C such that ‖v‖H4 ≤ c‖ϕ‖L2 ≤
C for any u ∈ Ω, and compactness of KP (I − Q)N follows from the imbedding
H4

per(0, T ) ↪→ H3
per(0, T ). �

3. Proofs of the main results

Proof of Theorem 1.1. By Lemma 2.5, we know that N is L-compact on Ω for any
open bounded set Ω ⊂ X.

There exists an ε > 0 small enough such that

0 < ε+

√
A

b
= Mr+1 < Mr+2.

Let
Ωr+1 = {u ∈ X : Mr+1 < u(x) < Mr+2}, (3.1)

which is an open set in X. Suppose that there exist 0 < λ ≤ 1 and u be such that

uiv − pu′′ − λa(x)un + λb(x)un+2 = 0.

Multiplying by u and the integrating from 0 to T , we have∫ T

0

uivu− pu′′u− λa(x)un+1 + λb(x)un+3dx = 0.
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By (3.1), if u ∈ ∂Ωr+1, then Mr+1 ≤ |u|∞≤Mr+2, where |u|∞ = maxt∈[0,T ]|u(x)|.
By (1.5), (1.6), (1.7) and (1.8), we have

0 =

∫ T

0

uivu− pu′′u− λa(x)un+1 + λb(x)un+3dx

=

∫ T

0

(u′′)2 + p(u′)2dx−
∫ T

0

λa(x)un+1 − λb(x)un+3dx

>

∫ T

0

(u′′)2 + p(u′)2dx−
∫ T

0

λa(x)un+1 + λb(x)un+3dx

≥
∫ T

0

(u′′)2 + p(u′)2dx−
∫ T

0

a(x)un+1 + b(x)un+3dx

=

∫ T

0

(u′′)2 + (u′)2 + u2dx−
∫ T

0

−p(u′)2 + (u′)2 + u2dx

−
∫ T

0

a(x)un+1 + b(x)un+3dx

≥‖u‖2H2(0,T ) −
∫ T

0

(1− p)(u′)2 + u2dx−
∫ T

0

u2(A|u|n−1∞ +B|u|n+1
∞ )dx

≥‖u‖2H2(0,T ) −
∫ T

0

(1− p)‖u‖2C1([0,T ]) + ‖u‖2C1([0,T ])dx

−
∫ T

0

‖u‖2C1([0,T ])(AM
n−1
r+2 +BMn+1

r+2 )dx

≥
‖u‖2C1([0,T ])

β2
− T‖u‖2C1([0,T ])(AM

n−1
r+2 +BMn+1

r+2 − p+ 2)

>
‖u‖2C1([0,T ])

β2
− T‖u‖2C1([0,T ])(AM

n−1
m +BMn+1

m − p+ 2)

=

[
1

β2
− T (AMn−1

m +BMn+1
m − p+ 2)

]
‖u‖2C1([0,T ]) ≥ 0,

where β is the immersion constant of H2(0, T ) in C1([0, T ]). But this is contradic-
tion. Therefore condition (1) of Lemma 2.3 holds for Ωr+1.

It is easy to see that

a(x)− b(x)M2
r+2 < 0, (3.2)

a(x)− b(x)M2
r+1 < 0 . (3.3)

Taking u ∈ ∂Ωr+1 ∩ kerL, we have u = Mr+1 or u = Mr+2. By (3.2) and (3.3), we
know that for all u ∈ ∂Ωr+1 ∩ kerL, we obtain that

QNu =
1

T

∫ T

0

un(a(x)− b(x)u2)dx 6= 0. (3.4)

Therefore condition (2) of Lemma 2.3 holds for Ωr+1.
Now we consider (Mr+1 + Mr+2)/2, the arithmetic mean of Mr+1 and Mr+2.

We define a continuous function

H(u, µ) = −(1− µ)
(
u+

Mr+1 +Mr+2

2

)
+ µ

1

T

∫ T

0

un(a(x)− b(x)u2)dx,
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for µ ∈ [0, 1]. By (3.4), we obtain

H(u, µ) 6= 0, ∀u ∈ ∂Ωr+1 ∩ kerL.

By using the homotopy invariance theorem, we find that

deg(QN,Ωr+1 ∩ kerL, 0)

= deg
( 1

T

∫ T

0

un(a(x)− b(x)u2)dx,Ωr+1 ∩ kerL, 0
)

= deg
(
−
(
u+

Mr+1 +Mr+2

2

)
,Ωr+1 ∩ kerL, 0

)
6= 0.

Therefore condition (3) of Lemma 2.3 holds for Ωr+1. So we conclude from Lemma
2.3 that (1.3) has a solution in Ωr+1. By the method above, we can prove that (1.3)
has a solution in Ωr+l = {u ∈ X : Mr+l < u(x) < Mr+l+1}, l = 2, 3, . . . ,m− r− 1.

There exists an ε > 0 small enough such that

0 < Mr =

√
B

a
− ε <

√
A

b
+ ε = Mr+1.

Let

Ωr = {u ∈ X : Mr < u(x) < Mr+1}, (3.5)

an open set in X. Suppose that there exist 0 < λ ≤ 1 and u be such that

uiv − pu′′ − λa(x)un + λb(x)un+2 = 0.

Multiplying by u and the integrating from 0 to T ,∫ T

0

uivu− pu′′u− λa(x)un+1 + λb(x)un+3dx = 0.

By (3.5), if u ∈ ∂Ωr, we have Mr ≤ |u|∞≤Mr+1, where |u|∞ = maxt∈[0,T ]|u(x)|.
By (1.5), (1.6), (1.7) and (1.8), we have

0 =

∫ T

0

uivu− pu′′u− λa(x)un+1 + λb(x)un+3dx

>

∫ T

0

(u′′)2 + p(u′)2dx−
∫ T

0

a(x)un+1 + b(x)un+3dx

≥‖u‖2H2(0,T ) −
∫ T

0

(1− p)(u′)2 + u2dx−
∫ T

0

u2(AMn−1
r+1 +BMn+1

r+1 )dx

≥‖u‖2H2(0,T ) −
∫ T

0

(1− p)‖u‖2C1([0,T ]) + ‖u‖2C1([0,T ])dx

−
∫ T

0

‖u‖2C1([0,T ])(AM
n−1
r+1 +BMn+1

r+1 )dx

≥
‖u‖2C1[0,T ]

β2
− T‖u‖2C1([0,T ])(AM

n−1
r+1 +BMn+1

r+1 − p+ 2)

>
[ 1

β2
− T (AMn−1

m +BMn+1
m − p+ 2)

]
‖u‖2C1([0,T ]) ≥ 0,

where β is the immersion constant of H2(0, T ) in C1([0, T ]). But this is contradic-
tion. Therefore condition (1) of Lemma 2.3 holds for Ωr.
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It is easy to show that

a(x)− b(x)M2
r+1 < 0. (3.6)

a(x)− b(x)M2
r > 0. (3.7)

Taking u ∈ ∂Ωr ∩ kerL, we have u = Mr+1 or u = Mr. By (3.6) and (3.7), we
know that for all u ∈ ∂Ωr ∩ kerL. Then

QNu =
1

T

∫ T

0

un(a(x)− b(x)u2)dx 6= 0. (3.8)

Therefore condition (2) of Lemma 2.3 holds for Ωr.
Now we consider (Mr+1 + Mr)/2, the arithmetic mean of Mr+1 and Mr. We

define a continuous function

H(u, µ) = −(1− µ)
(
u− Mr+1 +Mr

2

)
+ µ

1

T

∫ T

0

un(a(x)− b(x)u2)dx,

for µ ∈ [0, 1]. By (3.8), we obtain

H(u, µ) 6= 0, ∀u ∈ ∂Ωr ∩ kerL.

By using the homotopy invariance theorem, we find that

deg(QN,Ωr ∩ kerL, 0)

= deg
( 1

T

∫ T

0

un(a(x)− b(x)u2)dx,Ωr ∩ kerL, 0
)

= deg

(
−
(
u− Mr+1 +Mr

2

)
,Ωr ∩ kerL, 0

)
6= 0.

Therefore condition (3) of Lemma 2.3 holds for Ωr. So we conclude from Lemma
2.3 that (1.3) has a solution in Ωr.

There exists an ε > 0 small enough such that

0 < Mr−1 <

√
B

a
− ε = Mr.

Let
Ωr−1 = {u ∈ X : Mr−1 < u(x) < Mr}, (3.9)

which is an open set in X. Suppose that there exist 0 < λ ≤ 1 and u be such that

uiv − pu′′ − λa(x)un + λb(x)un+2 = 0.

Multiplying by u and the integrating from 0 to T , it is immediate that∫ T

0

uivu− pu′′u− λa(x)un+1 + λb(x)un+3dx = 0.

By (3.9), if u ∈ ∂Ωr−1, we have Mr−1 ≤ |u|∞≤Mr, where |u|∞ = maxt∈[0,T ]|u(x)|.
By (1.5), (1.6), (1.7) and (1.8), we have

0 =

∫ T

0

uivu− pu′′u− λa(x)un+1 + λb(x)un+3dx

>

∫ T

0

(u′′)2 + p(u′)2dx−
∫ T

0

a(x)un+1 + b(x)un+3dx

≥‖u‖2H2(0,T ) −
∫ T

0

(1− p)(u′)2 + u2dx−
∫ T

0

u2(AMn−1
r +BMn+1

r )dx
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≥‖u‖2H2(0,T ) −
∫ T

0

(1− p)‖u‖2C1([0,T ]) + ‖u‖2C1([0,T ])dx

−
∫ T

0

‖u‖2C1([0,T ])(AM
n−1
r +BMn+1

r )dx

≥
‖u‖2C1([0,T ])

β2
− T‖u‖2C1([0,T ])(AM

n−1
r +BMn+1

r − p+ 2)

>

[
1

β2
− T (AMn−1

m +BMn+1
m − p+ 2)

]
‖u‖2C1([0,T ]) ≥ 0,

where β is the immersion constant of H2(0, T ) in C1([0, T ]). But this is contradic-
tion. Therefore condition (1) of Lemma 2.3 holds for Ωr−1.

It is easy to show that

a(x)− b(x)M2
r−1 > 0, (3.10)

a(x)− b(x)M2
r > 0. (3.11)

Taking u ∈ ∂Ωr−1 ∩ kerL, we have u = Mr−1 or u = Mr. By (3.10) and (3.11).
We know that for all u ∈ ∂Ωr−1 ∩ kerL, we obtain

QNu =
1

T

∫ T

0

un(a(x)− b(x)u2)dx6=0. (3.12)

Therefore condition (2) of Lemma 2.3 holds for Ωr−1.
Now we consider (Mr + Mr−1/2, the arithmetic mean of Mr−1 and Mr. We

define a continuous function

H(u, µ) = (1− µ)
(
u+

Mr +Mr−1

2

)
+ µ

1

T

∫ T

0

un(a(x)− b(x)u2)dx,

for µ ∈ [0, 1]. It follows from (3.12) that

H(u, µ) 6= 0, ∀u ∈ ∂Ωr−1 ∩ kerL.

By using the homotopy invariance theorem, we find that

deg(QN,Ωr−1 ∩ kerL, 0)

= deg

(
1

T

∫ T

0

un(a(x)− b(x)u2)dx,Ωr−1 ∩ kerL, 0

)

= deg

(
u+

Mr +Mr−1

2
,Ωr−1 ∩ kerL, 0

)
6= 0.

Therefore condition (3) of Lemma 2.3 holds for Ωr−1. So we conclude from Lemma
2.3 that (1.3) has a solution in Ωr−1. By the method above, we can prove that
(1.3) has a solution in Ωk = {u ∈ X : Mk < u(x) < Mk+1}, k = 1, 2, . . . , r − 2.

By (1.7), we know that Ωi ∩ Ωj = ∅, i = 1, 2, 3 . . .m, j = 1, 2, 3, . . .m, i 6= j.
In view of the discussion above, we know that (1.3) has at least m − 1 positive

T -periodic solutions. Similarly, we can prove (1.4) has at least m − 1 positive
T -periodic solutions. �

Proof of Theorem 1.2. By Lemma 2.5, we know that N is L-compact on Ω for any
open bounded set Ω ⊂ X. There exists an ε > 0 small enough such that

0 < Mr+1 =

√
A

b
+ ε < Mr+2.
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Let

Ωr+1 = {u ∈ X : Mr+1 < u(x) < Mr+2}, (3.13)

an open set in X. Suppose that there exist 0 < λ ≤ 1 and u be such that

uiv − pu′′ − λa(x)un + λb(x)un+2 = 0.

Multiplying by u′′ and the integrating from 0 to T , we have∫ T

0

uivu′′ − pu′′u′′ − λa(x)unu′′ + λb(x)un+2u′′dx = 0.

By (3.13), if u ∈ ∂Ωr+1, then Mr+1 ≤ |u|∞≤Mr+2, where |u|∞ = maxt∈[0,T ]|u(x)|.
By (1.5), (1.6), (1.7) and (1.9), we have

0 =

∫ T

0

uivu′′ − pu′′u′′ − λa(x)unu′′ + λb(x)un+2u′′dx

=

∫ T

0

(u′′′)2 + p(u′′)2 + λa(x)unu′′ − λb(x)un+2u′′dx

>

∫ T

0

(u′′′)2 + p(u′′)2dx−
∫ T

0

λa(x)un|u′′|+ λb(x)un+2|u′′|dx

≥
∫ T

0

(u′′′)2 + p(u′′)2dx−
∫ T

0

a(x)un|u′′|+ b(x)un+2|u′′|dx

≥‖u‖2H3(0,T ) −
∫ T

0

(1− p)(u′′)2 + (u′)2 + u2dx

−
∫ T

0

u|u′′|(A|u|n−1∞ +B|u|n+1
∞ )dx

≥‖u‖2H3(0,T ) −
∫ T

0

(3− p)‖u‖2C2([0,T ])dx

−
∫ T

0

‖u‖2C2([0,T ])(AM
n−1
r+2 +BMn+1

r+2 )dx

≥
‖u‖2C2([0,T ])

γ2
− T‖u‖2C2([0,T ])(AM

n−1
r+2 +BMn+1

r+2 − p+ 3)

>
‖u‖2C2([0,T ])

γ2
− T‖u‖2C2([0,T ])(AM

n−1
m +BMn+1

m − p+ 3)

=

[
1

γ2
− T (AMn−1

m +BMn+1
m − p+ 3)

]
‖u‖2C2([0,T ]) ≥ 0,

where γ is the immersion constant of H3(0, T ) in C2([0, T ]). But this is contradic-
tion. Therefore condition (1) of Lemma 2.3 holds for Ωr+1.

Obviously, for all u ∈ ∂Ωr+1 ∩ kerL, we obtain

QNu =
1

T

∫ T

0

un(a(x)− b(x)u2)dx6=0. (3.14)

Therefore condition (2) of Lemma 2.3 holds for Ωr+1.
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Now we consider (Mr+1 + Mr+2)/2 , the arithmetic mean of Mr+1 and Mr+2.
We define a continuous function

H(u, µ) = −(1− µ)

(
u+

Mr+1 +Mr+2

2

)
+ µ

1

T

∫ T

0

un(a(x)− b(x)u2)dx,

for µ ∈ [0, 1]. By (3.14), we obtain

H(u, µ) 6= 0, ∀u ∈ ∂Ωr+1 ∩ kerL.

By using the homotopy invariance theorem, we find that

deg(QN,Ωr+1 ∩ kerL, 0)

= deg
( 1

T

∫ T

0

un(a(x)− b(x)u2)dx,Ωr+1 ∩ kerL, 0
)

= deg
(
−
(
u+

Mr+1 +Mr+2

2

)
,Ωr+1 ∩ kerL, 0

)
6= 0.

Therefore condition (3) of Lemma 2.3 holds for Ωr+1. So we conclude from Lemma
2.3 that (1.3) has a solution in Ωr+1. By the method above, we can prove that (1.3)
has a solution in Ωr+l = {u ∈ X : Mr+l < u(x) < Mr+l+1}, l = 2, 3, . . . , m− r− 1.

There exists an ε > 0 small enough such that

0 < Mr =

√
B

a
− ε <

√
A

b
+ ε = Mr+1.

Let

Ωr = {u ∈ X : Mr < u(x) < Mr+1}, (3.15)

an open set in X. Suppose that there exist 0 < λ ≤ 1 and u be such that

uiv − pu′′ − λa(x)un + λb(x)un+2 = 0.

Multiplying by u′′ and the integrating from 0 to T ,∫ T

0

uivu′′ − pu′′u′′ − λa(x)unu′′ + λb(x)un+2u′′dx = 0.

By (3.15), if u ∈ ∂Ωr+1, we have Mr ≤ |u|∞≤Mr+1, where |u|∞ = maxt∈[0,T ]|u(x)|.
By (1.5), (1.6), (1.7) and (1.9). We have

0 =

∫ T

0

uivu′′ − pu′′u′′ − λa(x)unu′′ + λb(x)un+2u′′dx

>

∫ T

0

(u′′′)2 + p(u′′)2dx−
∫ T

0

λa(x)un|u′′|+ λb(x)un+2|u′′|dx

≥‖u‖2H3(0,T ) −
∫ T

0

(1− p)(u′′)2 + (u′)2 + u2dx

−
∫ T

0

u|u′′|(A|u|n−1∞ +B|u|n+1
∞ )dx

≥
‖u‖2C2([0,T ])

γ2
− T‖u‖2C2([0,T ])(AM

n−1
r+1 +BMn+1

r+1 − p+ 3)

>
‖u‖2C2([0,T ])

γ2
− T‖u‖2C2([0,T ])(AM

n−1
m +BMn+1

m − p+ 3) ≥ 0,
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where γ is the immersion constant of H3(0, T ) in C2([0, T ]). But this is contradic-
tion. Therefore condition (1) of Lemma 2.3 holds for Ωr.

Obviously, for all u ∈ ∂Ωr ∩ kerL, we obtain that

QNu =
1

T

∫ T

0

un(a(x)− b(x)u2)dx6=0. (3.16)

Therefore condition (2) of Lemma 2.3 holds for Ωr.
Now we consider (Mr+1 + Mr)/2, the arithmetic mean of Mr+1 and Mr. We

define a continuous function

H(u, µ) = −(1− µ)
(
u− Mr+1 +Mr

2

)
+ µ

1

T

∫ T

0

un(a(x)− b(x)u2)dx,

for µ ∈ [0, 1]. By (3.16), we obtain

H(u, µ) 6= 0, ∀u ∈ ∂Ωr ∩ kerL.

By using the homotopy invariance theorem, we find that

deg(QN,Ωr ∩ kerL, 0)

= deg
( 1

T

∫ T

0

un(a(x)− b(x)u2)dx,Ωr ∩ kerL, 0
)

= deg
(
−
(
u− Mr+1 +Mr

2

)
,Ωr ∩ kerL, 0

)
6= 0.

Therefore condition (3) of Lemma 2.3 holds for Ωr. So we conclude from Lemma
2.3 that (1.3) has a solution in Ωr.

There exists an ε > 0 small enough such that

0 < Mr−1 <

√
B

a
− ε = Mr.

Let

Ωr−1 = {u ∈ X : Mr−1 < u(x) < Mr}, (3.17)

which is an open set in X. Suppose that there exist 0 < λ ≤ 1 and u be such that

uiv − pu′′ − λa(x)un + λb(x)un+2 = 0.

Multiplying by u′′ and the integrating from 0 to T ,∫ T

0

uivu′′ − pu′′u′′ − λa(x)unu′′ + λb(x)un+2u′′dx = 0.

By (3.17), if u ∈ ∂Ωr−1, we have Mr−1 ≤ |u|∞≤Mr, where |u|∞ = maxt∈[0,T ]|u(x)|.
By (1.5), (1.6), (1.7) and (1.9). We have

0 =

∫ T

0

uivu′′ − pu′′u′′ − λa(x)unu′′ + λb(x)un+2u′′dx

>

∫ T

0

(u′′′)2 + p(u′′)2dx−
∫ T

0

λa(x)un|u′′|+ λb(x)un+2|u′′|dx

≥‖u‖2H3(0,T ) −
∫ T

0

(1− p)(u′′)2 + (u′)2 + u2dx

−
∫ T

0

u|u′′|(A|u|n−1∞ +B|u|n+1
∞ )dx



12 H. YANG, X. HAN EJDE-2019/119

≥
‖u‖2C2([0,T ])

γ2
− T‖u‖2C2([0,T ])(AM

n−1
r +BMn+1

r − p+ 3)

>
‖u‖2C2([0,T ])

γ2
− T‖u‖2C2([0,T ])(AM

n−1
m +BMn+1

m − p+ 3) ≥ 0,

where γ is the immersion constant of H3(0, T ) in C2([0, T ]). But this is contradic-
tion. Therefore condition (1) of Lemma 2.3 holds for Ωr−1.

Obviously, for all u ∈ ∂Ωr−1 ∩ kerL, we obtain that

QNu =
1

T

∫ T

0

un(a(x)− b(x)u2)dx6=0. (3.18)

Therefore condition (2) of Lemma 2.3 holds for Ωr−1.
Now we consider (Mr + Mr−1)/2, the arithmetic mean of Mr−1 and Mr. We

define a continuous function

H(u, µ) = (1− µ)
(
u+

Mr +Mr−1

2

)
+ µ

1

T

∫ T

0

un(a(x)− b(x)u2)dx,

for µ ∈ [0, 1]. By (3.18), we obtain

H(u, µ) 6= 0, ∀u ∈ ∂Ωr−1 ∩ kerL.

By using the homotopy invariance theorem, we find that

deg(QN,Ωr−1 ∩ kerL, 0)

= deg
( 1

T

∫ T

0

un(a(x)− b(x)u2)dx,Ωr−1 ∩ kerL, 0
)

= deg
(
u+

Mr +Mr−1

2
,Ωr−1 ∩ kerL, 0

)
6= 0.

Therefore condition (3) of Lemma 2.3 holds for Ωr−1. so we conclude from Lemma
2.3 that (1.3) has a solution in Ωr−1. by the above method, we prove that (1.3)
has a solution in Ωk = {u ∈ X : Mk < u(x) < Mk+1}, k = 1, 2, . . . , r − 2.

By (1.7), we know that Ωi ∩ Ωj = ∅, i = 1, 2, 3 . . .m, j = 1, 2, 3, . . .m, i 6= j.
In view of the discussion above, we know that (1.3) has at least m − 1 positive
T -periodic solutions. Similarly, we can prove (1.4) have at least m − 1 positive
T -periodic solutions. �

4. Example

Consider(1.3) and (1.4) with a(x) = cos(2πx
T ) + 7, b(x) = sin( 2πx

T ) + 5. Define
a = 6, A = 8, b = 4, B = 6, and n = 1. We have that

B

a
= 1 ≤ 2 =

A

b
.

Let ε = 0.01, Mr = 1 − 0.01 = 0.99 > 0, Mr+1 =
√

2 + 0.01 > 0, M1 = 0.1,
Mm = 100.

When p = 1, we have

1− p = 0 ≥ 0,

0 < T ≤ 1

β2(AMn−1
m +BMn+1

m − p+ 2)
=

1

60009β2
.
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Theorem 1.1 guarantees that both equations

uiv − u′′ −
(

cos
(2πx

T

)
+ 7
)
u+

(
sin
(2πx

T

)
+ 5
)
u3 = 0,

uiv − u′′ +
(

cos
(2πx

T

)
+ 7
)
u−

(
sin
(2πx

T

)
+ 5
)
u3 = 0,

have at least m− 1 positive T -periodic solutions.
When p = −1, we have that

1− p = 2 ≥ 0,

0 < T ≤ 1

β2(AMn−1
m +BMn+1

m − p+ 3)
=

1

60012γ2
.

Theorem 1.2 guarantees that both equations

uiv + u′′ −
(

cos
(2πx

T

)
+ 7
)
u+

(
sin
(2πx

T

)
+ 5
)
u3 = 0,

uiv + u′′ +
(

cos
(2πx

T

)
+ 7
)
u−

(
sin
(2πx

T

)
+ 5
)
u3 = 0,

have at least m− 1 positive T -periodic solutions.
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