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EXISTENCE, REGULARITY AND POSITIVITY OF GROUND

STATES FOR NONLOCAL NONLINEAR SCHRÖDINGER

EQUATIONS

YONG-CHAO ZHANG

Abstract. We study ground states of a nonlinear Schrödinger equation driven

by the infinitesimal generator of a rotationally invariant Lévy process. The

equation includes many special cases such as classical Schrödinger equations,
fractional Schrödinger equations and relativistic Schrödinger equations, etc.

It is proved that the equation possesses ground states in a suitable space

of functions, then the regularity of solutions to the equation is examined,
in particular, any solution is Hölder continuous, and, if the process involves

diffusion terms, any solution is twice differentiable further. Finally, we show

that any ground state is either positive or negative.

1. Introduction

The well known nonlinear Schrödinger equation

−∆u+ u = |u|p−2u, (1.1)

which is driven by the infinitesimal generator of a Brownian motion, has been
studied by many authors. There are many references to equation (1.1), see for
example [13, 11, 9].

Noting that the Brownian motion is a special rotationally invariant stable Lévy
process (i.e., its index is 2), one would like to consider the equation

(−∆)α/2u+ u = |u|p−2u, (1.2)

where 0 < α ≤ 2, since −(−∆)α/2 is the infinitesimal generator of a rotation-
ally invariant stable Lévy process with index α. Laskin obtained the fractional
Schrödinger equation through the path integral approach [15, 16]. Many authors
investigated Schrödinger equations involving fractional Laplacians.

Naturally, removing stable, we are interested in the (nonlocal) Schrödinger equa-
tion

− 2Au+ u = |u|p−2u, (1.3)

where A is the infinitesimal generator of a rotationally invariant Lévy process.
Zhang and Zhu [22] and Zhang and Zhou [23] explored this equation for the rota-
tionally invariant Lévy process with a non-degenerate diffusion term and a finite
Lévy measure.
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Equation (1.3) also stems from looking for the standing wave ψ(t, x) = eitu(x)
of the equation

i
∂ψ

∂ t
= −2Aψ − |ψ|p−2ψ.

After clarifying the required assumptions on the infinitesimal generator A, we
provide some examples satisfying the assumptions. Let σA be the symbol of A. We
assume the following:

(H1) There are positive constants s, c and K such that

−σA(ξ) ≥ c|ξ|2s for all ξ ∈ RN with |ξ| ≥ K.

(H2) (1 + |ξ|2s)/(1− 2σA(ξ)) is an Lq-Fourier multiplier for all q ∈ [2,+∞).

Remark 1.1. (1) Since A is the infinitesimal generator of a rotationally in-
variant Lévy process, we have, by [3, p. 128, Exercise 2.4.23],

σA(ξ) = −a
2
|ξ|2 +

∫
RN\{0}

(cos(ξ · x)− 1) ν(dx), (1.4)

where a ≥ 0 and ν is an O(N)-invariant Lévy measure. Thus s ≤ 1,
σA(ξ) ≤ 0 for all ξ ∈ RN , and

sup
{
s : there are constants c and K such that

−σA(ξ) ≥ c|ξ|2s for all ξ ∈ RN with |ξ| ≥ K
}

≥ 0.

(2) By (1.4) and

lim
|ξ|→∞

|ξ|−2

∫
RN\{0}

(cos(ξ · x)− 1) ν(dx) = 0

(cf. [6, p. 17]), we have that s = 1 if and only if a > 0.

Example 1.2. The infinitesimal generators −(−∆)s/2 of some rotationally invari-
ant stable Lévy processes with index 2s fulfill (H1) and (H2), where 0 < s ≤ 1.

We go a step further. Let φ : [0,+∞) → R be a Borel measurable function
such that φ(r) ≥ ε > 0. Define the symbol in (1.4) by a := 0 and ν(dx) :=
φ(|x|)/|x|N+2sdx, where s ∈ (0, 1). Then the symbol σA fulfills (H1) and, by [4,
Theorem 1], (H2). In particular, if φ(·) ≡ 1, the associated operator is −(−∆)s/2
up to some constant coefficient.

Example 1.3. Assume (H1) and

(H2’) There constants B and R such that |ξα∂ασA(ξ)| ≤ B|σA(ξ)| for α ∈ {0, 1}N
and |ξ| > R.

Then from [18, p. 117, Theorem 2.8.2] it follows that (1 + |ξ|2s)/(1− 2σA(ξ)) is an
Lq-Fourier multiplier for all q ∈ [2,+∞). Also refer to [19, p. 54, Theorem 1.5.4]
or [7, p. 87, Lemma 4.1].

Example 1.4. (Relativistic Schrödinger operators [3, pp. 166–167, Example 3.3.9])
Fix m, c > 0. The (minus) relativistic Schrödinger operator A is defined through

A := −
(√

m2c4 − c2∆−mc2
)
.

Then the symbol of A satisfies (H1) and (H2) with s = 1/2 by Example 1.3.
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More generally, the operator

A := −
(
(m2c4 − c2∆)s −m2sc4s

)
, where 0 < s < 1,

fulfills (H1) and (H2) by Example 1.3.

Remark 1.5. Equation (1.3) covers equations (1.1) and (1.2). Equation (1.3) also
covers relativistic Schrödinger equations (cf. [8, 10]) such as(√

m2c4 − c2∆−mc2
)
u+ u = |u|p−2u,

and more generally (see, for example, [2])(
(m2c4 − c2∆)s −m2sc4s

)
u+ u = |u|p−2u, where 0 < s < 1.

In what follows, we assume that (H1) and (H2) hold and 2 < p < 2∗s with
2∗s := +∞ if N ≤ 2s, and 2∗s := 2N/(N − 2s) if N > 2s.

To see that (1.3) has a variational structure, we introduce the Hilbert space
H1
A(RN ) := {u : u ∈ S ′(RN ) and (1 − 2σA(·))1/2û(·) ∈ L2(RN )} with the inner

product

(u, v) := (2π)−N
(

(1− 2σA(·))1/2û(·), (1− 2σA(·))1/2v̂(·)
)
L2
,

and the induced norm denoted by ‖ · ‖.
Define a functional E : H1

A(RN )→ R by

E(u) :=
1

2
‖u‖2 − 1

p

∫
RN

|u(x)|pdx. (1.5)

It follows from Lemma 2.2 and [21, p.11, Corollary 1.13] that E ∈ C2(H1
A(RN ),R).

Equation (1.3) has a variational structure: u ∈ H1
A(RN ) solves equation (1.3) if

and only if u is a critical point of the functional E.
Our main results are summarized in the following theorem.

Theorem 1.6. (i) (existence) There is a nonzero function v ∈ H1
A(RN ) such

that

−2Av + v = |v|p−2v

in the distribution sense. Moreover, E(v) > 0 and

E(v) = inf{E(u) : u ∈ H1
A(RN ) \ {0} and ‖u‖2 = ‖u‖pLp}. (1.6)

(ii) (regularity) Any weak solution u to equation (1.3) in H1
A(RN ) belongs to

H2s,q(RN ) for all q ≥ max{2, 2∗s/(p − 1)}. Moreover, if s′ ≤ s and 0 ≤
µ ≤ 2s′ − N/q < 1, then u ∈ C0,µ(RN ) and, if s = 1, u ∈ C2,µ

loc (RN ).
Consequently, u(x)→ 0 as |x| → ∞.

(iii) (positivity) Any ground state of equation (1.3) is either positive or negative.
(A solution to equation (1.3) such that (1.6) holds is called by definition a
ground state, see [21, p. 71]).

The rest of this article is organized as follows. In Section 2, we prove that equa-
tion (1.3) has ground states. In Section 3, we establish the regularity of solutions
to equation (1.3). In Section 4, we show that any ground state of equation (1.3) is
either positive or negative.
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2. Existence

In this section, we prove that equation (1.3) possesses a ground state. To this
end, we first introduce the definition of the Banach space Hs,q

A (RN ), and then we
present some embedding results and a concentration compactness principle. After
these preparations, we show that functional (1.5) has a nontrivial critical point in
Theorem 2.4, and this critical point is a ground state in Theorem 2.5, respectively.

Definition 2.1 ([14, Chapter 3]). For s ∈ R and q ∈ (1,+∞), we define Hs,q
A (RN )

to be the set of all tempered distributions u for which F−1((1−2σA(·))s/2F (u)(·))
is a function in Lq(RN ), i.e.,

Hs,q
A (RN ) := {u : u ∈ S ′(RN ), F−1((1− 2σA(·)) s

2 F (u)(·)) ∈ Lq(RN )}.

If q = 2, we define Hs
A(RN ), as usual, to be Hs,2

A (RN ).

Lemma 2.2. (i) The following embeddings are continuous:

H1
A(RN ) ↪→ Lq(RN ), N ≤ 2s and q ≥ 2,

H1
A(RN ) ↪→ Lq(RN ), N > 2s and 2 ≤ q ≤ 2∗s,

H2,q
A (RN ) ↪→ H2s,q(RN ), q > 1.

(ii) Let Ω be a bounded domain of RN . If 2 ≤ q < 2∗s, then every bounded
sequence in H1

A(RN ) has a convergent subsequence in Lq(Ω).

Proof. (i) It follows from (H1) that the embedding H1
A(RN ) ↪→ Hs(RN ) is con-

tinuous. Then, thanks to [1, p. 221, Theorem 7.63], we obtain the first and the
second continuous embeddings in (i). The last embedding follows from (H2) and
[14, p. 289, Theorem 3.3.28].

(ii) The conclusion is a consequence of (i) and [12, Lemma 2.1]. �

Lemma 2.3 (concentration compactness principle). Let r > 0 and 2 ≤ q < 2∗s. If
{un}∞n=1 is bounded in H1

A(RN ) and if

lim
n→∞

sup
y∈RN

∫
B(y,r)

|un(x)|qdx = 0,

then un → 0 in Lq(RN ) for 2 < q < 2∗s.

Proof. It follows from (H1) that the embedding H1
A(RN ) ↪→ Hs(RN ) is continuous;

consequently, {un}∞n=1 is bounded in Hs(RN ). The remains of the proof are similar
to that of [21, p. 16, Lemma 1.21]. Also refer to [12, Lemma 2.2]. �

Theorem 2.4. The functional E defined by (1.5) has a nontrivial critical point.

Proof. Step 1. Let

Γ := {γ : γ ∈ C([0, 1], H1
A(RN )) such that γ(0) = 0 and E(γ(1)) < 0}. (2.1)

Since p > 2, for T large enough we have

E(T exp(−| · |2)) =
T 2

2
‖ exp(−| · |2)‖2 − T p

p

∫
RN

exp(−p|x|2)dx < 0.

Thus Γ 6= ∅.
Step 2. Define

c := inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)). (2.2)
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By Lemma 2.2, there is a positive constant C such that

‖u‖Lp ≤ C‖u‖ for all u ∈ H1
A(RN ). (2.3)

Then it follows from the definition of the functional E that

E(u) ≥ 1

2
‖u‖2 − Cp

p
‖u‖p.

Setting r := (p/(4Cp))1/(p−2), we have

min
‖u‖≤r

E(u) = 0 and min
‖u‖=r

E(u) ≥ 1

4

( p

4Cp

) 2
p−2

> 0. (2.4)

It follows from the above fact that c ≥ (p/(4Cp))2/(p−2)/4 > 0 (see Figure 1).
Therefore, by [21, p. 41, Theorem 2.9], there exists a sequence {un}∞n=1 ⊂ H1

A(RN )
satisfying

E(un)→ c and E′(un)→ 0 as n→∞. (2.5)

(See Step 5 of the proof of Theorem 2.5).

ΓH1L

0

r

Figure 1. c > 0 and τ > 0.

Step 3. By (2.5), for n large enough, we have

c+ 1 + ‖un‖ ≥ E(un)− 1

p
〈E′(un), un〉 =

(1

2
− 1

p

)
‖un‖2.

It follows that {un}∞n=1 is bounded in H1
A(RN ). Thus {un}∞n=1 possesses a subse-

quence, again denoted by {un}∞n=1, such that

un ⇀ u in H1
A(RN ) (2.6)

for some u ∈ H1
A(RN ), and, by Lemma 2.2,

un → u in Lploc(RN ). (2.7)

Therefore, by (2.5)–(2.7), we have

E′(u)ϕ = lim
n→∞

E′(un)ϕ = 0 for any ϕ ∈ C∞0 (RN ),

i.e., u is a critical point of E.
Step 4. We prove

lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|un(x)|2dx > 0 (2.8)

by contradiction. If (2.8) fails, it follows from Lemma 2.3 that

un → 0 in Lp(RN ).
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For n large enough, by (2.5), we have

1

2
c ≤ E(un)− 1

2
E′(un)un =

(1

2
− 1

p

) ∫
RN

|un(x)|pdx.

Thus, c ≤ 0, which is contradictory to c > 0 (see Step 2).
Step 5. By (2.8), there is subsequence of {un}∞n=1, again denoted by {un}∞n=1,

such that ∫
B(yn,1)

un(x)2dx > ε

for some positive number ε and sequence {yn}∞n=1 with yn ∈ RN . Define vn(·) :=
un(·+ yn), n = 1, 2, . . . . Then ∫

B(0,1)

vn(x)2dx > ε, (2.9)

and
E(vn)→ c and E′(vn)→ 0 as n→∞. (2.10)

By repeating Step 3, {vn}∞n=1 possesses a subsequence, again denoted by {vn}∞n=1,
such that

vn ⇀ v in H1
A(RN ) (2.11)

for some v ∈ H1
A(RN ),

vn → v in Lploc(RN ), (2.12)

and v is a critical point of E. Moreover, by (2.9) and (2.12), v is nontrivial. �

In the next theorem we prove that the function v in (2.12) is a ground state of
equation (1.3).

Theorem 2.5. Define the Nehari manifold N through

N := {u : u ∈ H1
A(RN ) \ {0} and E′(u)u = 0}.

Then the number c defined in (2.2) satisfies c = infu∈N E(u). Moreover, the func-
tion v in (2.12) is a critical point of the critical value c.

Proof. Step 1. For u ∈ N , we have E′(u)u = 0, i.e.,

‖u‖2 −
∫
RN

|u(x)|pdx = 0. (2.13)

Noting that u 6= 0 as u ∈ N , we obtain∫
RN

|u(x)|pdx > 0.

Thus, for n ∈ N large enough, as p > 2, we have

E(nu) =
n2

2
‖u‖2 − np

p

∫
RN

|u(x)|pdx < 0. (2.14)

Define the path γ̃(t) := tnu, where t ∈ [0, 1]. Then, thanks to (2.14), γ̃ ∈ Γ (for
the definition of Γ, see (2.1)). Consequently, we obtain

c ≤ sup
t∈[0,1]

E(γ̃(t)). (2.15)

Step 2. From (2.4) it follows that

min
‖u‖=r

E(u) ≥ 1

4

( p

4Cp
) 2

p−2 > 0. (2.16)
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Take n > 1 large enough such that n‖u‖ > r. Then, by (2.14) and (2.16),

E(γ̃(·)) : [0, 1]→ R reaches its maximum at a point t ∈ (0, 1). (2.17)

Step 3. Note that

d

dt
E(γ̃(t)) = tn2‖u‖2 − tp−1np

∫
RN

|u(x)|pdx.

This, (2.13) and (2.17) yield that the function E(γ̃(·)) : [0, 1] → R reaches its
maximum at the point t = n−1. Thus, by noting (2.15), we obtain

c ≤ E(γ̃(n−1)) = E(u) for any u ∈ N . (2.18)

Step 4. Let γ ∈ Γ. Then E(γ(1)) < 0, i.e.,

1

2
‖γ(1)‖2 − 1

p

∫
RN

|γ(1)(x)|pdx < 0.

As p > 2, we obtain

‖γ(1)‖2 −
∫
RN

|γ(1)(x)|pdx < 0. (2.19)

Step 5. Set τ := sup{t : E′(γ(t))γ(t) ≥ 0, t ∈ [0, 1]}. Note (2.3) and

E′(u)u = ‖u‖2 −
∫
RN

|u(x)|pdx.

By taking r := (1/(4Cp))1/(p−2), we have

min
‖u‖≤r

E(u) = 0 and min
‖u‖=r

E′(u)u ≥ 3

4

( 1

4Cp

) 2
p−2

.

The above fact, γ ∈ Γ and E(γ(·)) ∈ C([0, 1],R) yield τ > 0 (cf. Figure 1).
Furthermore, E′(γ(·))γ(·) ∈ C([0, 1],R), E′(γ(τ))γ(τ) ≥ 0 and (2.19) imply there
is a point t0 ∈ [τ, 1) such that E′(γ(t0))γ(t0) = 0.

We prove γ(t0) 6= 0 by contradiction. If γ(t0) = 0, then, by the same argument
as above, there a number τ ′ such that τ < τ ′ < 1 and E′(γ(τ ′))γ(τ ′) ≥ 0 which is
contradictory to the definition of τ . In summary, γ(t0) ∈ N , i.e., γ([0, 1])∩N 6= ∅.

Step 6. It follows from γ([0, 1]) ∩ N 6= ∅ that c ≥ infN E(u). This and (2.18)
show us that c = infu∈N E(u).

Step 7. We have proved in Theorem 2.4 that v is a nontrivial critical point of
E. Particularly, it follows that v ∈ N . In this step, we prove E(v) = c. First we
have E(v) ≥ c since v ∈ N and c = infu∈N E(u). In the following, we show that
E(v) ≤ c. Note that p > 2 and

E(vn)− 1

2
E′(vn)vn =

(1

2
− 1

p

) ∫
RN

|vn(x)|pdx.

Then, for any positive number R, we have

E(vn)− 1

2
E′(vn)vn ≥

(1

2
− 1

p

) ∫
B(0,R)

|vn(x)|pdx.

Thanks to (2.10)–(2.12), taking limits in the above inequality, we obtain

c ≥
(1

2
− 1

p

) ∫
B(0,R)

|v(x)|pdx,

i.e., as R is arbitrary,

c ≥
(1

2
− 1

p

) ∫
RN

|v(x)|pdx.
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Therefore,

c ≥
(1

2
− 1

p

) ∫
RN

|v(x)|pdx+
1

2
‖v‖2 − 1

2
‖v‖2

= E(v)− 1

2
E′(v)v = E(v),

where we have used that v is a critical point of E in the last identity. �

3. Regularity

In this section, we investigate the regularity of weak solutions to equation (1.3).

Theorem 3.1. If u is a weak solution to the equation

−2Au+ u = |u|p−2u

in H1
A(RN ), then u ∈ H2s,q(RN ) for any q ∈ [max{2, 2∗s/(p−1)},+∞). Moreover, if

s′ ≤ s and 0 ≤ µ ≤ 2s′−N/q < 1, then u ∈ C0,µ(RN ) and, if s = 1, u ∈ C2,µ
loc (RN ).

Proof. The proof is similar to that of [23, Theorem 2].
Step 1. If N ≤ 2s, then, by (i) of Lemma 2.2, u ∈ Lq(RN ) for any q ∈ [2,+∞).

Consequently, by Definition 2.1, we have u ∈ H2,q
A (RN ). Furthermore, it follows

from (i) of Lemma 2.2 that u ∈ H2s,q(RN ) for any q ∈ [2,+∞).
Step 2. Assume that N > 2s. We conclude the result for this case by following

the bootstrapping procedure (cf. [5, pp. 50–51]). Recall 2∗s = 2N/(N − 2s). By
Lemma 2.2, we have u ∈ L2∗s (RN ), and then |u|p−1 ∈ Lq1(RN ), where q1 :=

2∗s/(p− 1). Furthermore, by Definition 2.1, we obtain u ∈ H2,q1
A (RN ). This and (i)

of Lemma 2.2 show us that u ∈ H2s,q1(RN ).
Step 3. If N ≤ 2sq1, it follows from u ∈ H2s,q1(RN ) and [1, p. 221, Theorem

7.63] that u ∈ Lq(RN ) for any q ∈ [2∗s/(p−1),+∞). Then by an argument similar to
Step 1, we have u ∈ H2s,q(RN ) for any q ∈ [2∗s/(p−1),+∞). If N > 2sq1, it follows
from u ∈ H2s,q1(RN ) and [1, p. 221, Theorem 7.63] that u ∈ Lq1N/(N−2sq1)(RN ),
and then |u|p−1 ∈ Lq2(RN ), where q2 := q1N/((N − 2sq1)(p − 1)). By the same
reason as Step 2, we find u ∈ H2s,q2(RN ).

For n = 3, 4, . . . , we define qn by induction as follows, qn := qn−1N/((N −
2sqn−1)(p − 1)) until max{n : N > 2sqn−1}. Then we have u ∈ H2s,qn(RN ) for
n = 1, 2 . . . .

Step 4. We prove qn/qn−1 > 1 + ε, for some positive number ε independent of
n and n = 1, 2 . . . , by induction. Note that p < 2∗s. There is a positive number ε
such that q1 = 2N(1 + ε)/(N + 2s). Therefore, after some calculations, we have

q2

q1
=

(1 + ε)(N − 2s)

N − 2s− 4ε
> 1 + ε.

Suppose that qn/qn−1 > 1 + ε. Then

qn+1

qn
=

qn
qn−1

· N − 2sqn−1

N − 2sqn
>

qn
qn−1

> 1 + ε.

Step 5. After finite steps, we must have u ∈ H2s,q(RN ) for any q ≥ qn0 and some
n0 ∈ N. Thus, by Hölder inequality, we have u ∈ H2s,q(RN ) for all q ≥ 2∗s/(p− 1).

Furthermore, it follows from [1, p. 221, Theorem 7.63] that u ∈ H2s′,q(RN ) for all
s′ ≤ s, and so u ∈ C0,µ(RN ) for any µ such that 0 ≤ µ ≤ 2s′ − N/q < 1. In

addition, by Schauder estimate, we obtain u ∈ C2,µ
loc (RN ) if s = 1. �
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Corollary 3.2. If u is a weak solution to the equation

−2Au+ u = |u|p−2u

in H1
A(RN ), then u(x)→ 0 as |x| → ∞.

Proof. Step 1. If u(x) 9 0 as |x| → ∞, there is a positive number ε and a sequence
{xn}∞n=1 ⊂ RN such that |xn| > |xn−1|+ 2 and |u(xn)| > 2ε.

Step 2. By Theorem 3.1, the function u is uniformly continuous. Thus there is
a positive number δ < 1 such that |u(x)− u(y)| < ε if |x− y| < δ.

Step 3. By Steps 1 and 2, we have |u(x)| > ε for x ∈ B(xn, δ) and n = 1, 2, . . . .
Consequently, ∫

RN

|u(x)|2dx ≥
∞∑
n=1

∫
B(xn,δ)

|u(x)|2dx =∞,

which contradicts u ∈ H1
A(RN ). �

Corollary 3.3. Assume that u ∈ H1
A(RN ) is a positive solution to the equation

−2Au + u = |u|p−2u. Let x0 ∈ RN is a maximizer of the function u. Then
u(x0) ≥ 1.

Proof. Following the proofs of [22, Corollary 2.4] and [23, Corollary 6], we have, by
the positive maximum principle (see, for example, [20, p. 283, Proposition 1.5] or
[3, p. 181, Theorem 3.5.2]), Au(x0) ≤ 0. Therefore,

u(x0)p−1 − u(x0) = −2Au(x0) ≥ 0.

So the inequality u(x0) ≥ 1 holds. �

4. Positivity

In this section, we examine the positivity of ground states of (1.3).

Lemma 4.1. Let f, g be real functions in H1
A(RN ). Then

‖
√
f2 + g2‖2 ≤ ‖f‖2 + ‖g‖2.

Proof. It follows from (1.4) and the definition of H1
A(RN ) that for ψ ∈ H1

A(RN ),

‖ψ‖2 = ‖ψ‖2L2 + a‖∇ψ‖2L2 +

∫
RN

∫
RN\{0}

(
ψ(x)− ψ(y)

)2
ν(−x+ dy)dx.

Then with the help of [17, p. 177, Theorem 7.8] and following the proof of [17,
p. 185, Theorem 7.13], we complete this proof. �

Theorem 4.2. If w ∈ H1
A(RN ) is a ground state of the equation

−2Au+ u = |u|p−2u,

then w > 0 or w < 0.

Proof. Step 1. We prove that |w| ∈ N and E(|w|) = E(w). First we have ‖|w|‖ ≤
‖w‖ by Lemma 4.1. Recall the Nehari manifold N ,

N = {u : u ∈ H1
A(RN ) \ {0} and ‖u‖2 = ‖u‖pLp}.

For any u ∈ H1
A(RN ) \ {0}, we have

ũ :=
( ‖u‖2
‖u‖pLp

) 1
p−2

u ∈ N .
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Thus E(ũ) ≥ E(w), i.e., ( ‖u‖
‖u‖Lp

) 2p
p−2 ≥ ‖w‖2.

In particular, taking u := |w|, we obtain ‖|w|‖ ≥ ‖w‖ and then ‖|w|‖ = ‖w‖.
Consequently, we obtain that |w| ∈ N and E(|w|) = E(w).

Step 2. Define a functional G from H1
A(RN ) to R by G(ψ) := ‖ψ‖2 − ‖ψ‖pLp .

Then G′(|w|) : H1
A(RN )→ R is surjective. Thanks to the Lagrange multiplier rule,

there exists a number λ such that

(|w|, ψ)− (|w|p−1, ψ)L2 = λ(2(|w|, ψ)− p(|w|p−1, ψ)L2) for any ψ ∈ H1
A(RN ).

Choosing ψ := |w|, we find λ = 0 since ‖|w|‖2 = ‖|w|‖pLp by Step 1.
Step 3. By Steps 1 and 2, |w| is also a ground state of the equation

−2Au+ u = |u|p−2u.

Thus, without loss of generality, we assume w ≥ 0.
Step 4. If ν = 0, then the strong maximum principle shows us that w > 0.
Step 5. Assume that ν 6= 0. We prove that w > 0 by contradiction. Let x0 be a

global minimizer of w on RN and w(x0) = 0. Noting that

−2Aw = −a∆w +

∫
RN\{0}

(2w(·)− w(· − y)− w(·+ y))ν(dy)

by (1.4), we find

0 > −2Aw(x0) + w(x0) = w(x0)p−1 = 0,

which is a contradiction. �

Corollary 4.3. The minimization problem

minimize
‖u‖
‖u‖Lp

over u ∈ H1
A(RN ) \ {0} (4.1)

has a solution which is a (positive) ground state of the equation −2Au+u = |u|p−2u.

Proof. By Theorem 4.2, let w be a (positive) ground state of the equation −2Au+
u = |u|p−2u. Then it follows from Step 1 of the proof of Theorem 4.2 that

‖u‖
‖u‖Lp

≥ ‖w‖
p−2
p .

The equality of the above inequality holds for u = w. �

Remark 4.4. (1) Problem (4.1) can be solved by a solution ϕ with ϕ > 0 and
‖ϕ‖Lp = 1, and is equivalent to

inf
u∈M

‖u‖, where M := {u : u ∈ H1
A(RN ) and ‖u‖Lp = 1}. (4.2)

(2) Define S := infu∈M ‖u‖. If ϕ is a solution to (4.2), then w := S
2

p−2ϕ is a
ground state of the equation −2Au+ u = |u|p−2u. To see this, we note the
facts
• w ∈ N ;
• infu∈N E(u) = infu∈N

(
1
2 −

1
p

)
‖u‖2;

• it follows from the Lagrange multiplier rule that−2Aϕ+ϕ = S2|ϕ|p−2ϕ.
(3) To find ground states of the equation −2Au + u = |u|p−2u, one may solve

(4.2), and vice versa.
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topics, Birkhäuser, Basel, 2006.

[8] J. P. Borgna, D. F. Rial; Existence of ground states for a one-dimensional relativistic

Schrödinger equation, J. Math. Phys., 53 (6) (2012), 062301.
[9] J. Byeon, Z.-Q. Wang; Standing waves with a critical frequency for nonlinear Schrödinger

equations, Arch. Rational Mech. Anal., 165(4) (2002), 295–316.
[10] W. Choi, J. Seok; Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear

Schrödinger equations, J. Math. Phys., 57 (2) (2016), 021510.

[11] D. G. deFigueiredo, Y. H. Ding; Solutions of a nonlinear Schrödinger equation, Discrete
Contin. Dyn. Syst., 8 (3) (2002), 563–584.

[12] P. Felmer, A. Quaas, J. Tan; Positive solutions of the nonlinear Schrödinger equation with

the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (6) (2012), 1237–1262.
[13] A. Floer, A. Weinstein; Nonspreading wave packets for the cubic Schrödinger equation with

a bounded potential, J. Funct. Anal., 69 (3) (1986), 397–408.

[14] N. Jacob; Pseudo-differential operators and markov processes volume II: Generators and
their potential theory, Imperial College Press, London, 2002.

[15] N. Laskin; Fractional quantum mechanics and Lévy path integrals, Phys. Lett., A 268 (4–6)
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