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UPPER AND LOWER SOLUTIONS METHODS FOR IMPULSIVE
CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL

INCLUSIONS

FARIDA BELHANNACHE, SAMIRA HAMANI, JOHNNY HENDERSON

Abstract. In this article we use the method of lower and upper solutions

combined with the fixed point theorem by Bohnnenblust-Karlin to show the
existence of solutions for initial-value problems of impulsive Caputo-Hadamard

fractional differential inclusions of order α ∈ (0, 1).

1. Introduction

In this article we study the initial value problem (IVP for short) for the α-th
order fractional differential inclusion with impulse,

CHDαy(t) ∈ F (t, y(t)), a.e. t ∈ J = [a, T ], t 6= tk, k = 1, . . . ,m, (1.1)

∆y|t=tk = Ik(y(t−k ), k = 1, . . . ,m, (1.2)

y(a) = ya, (1.3)

where 0 < α < 1, a > 0, CHDα is the Caputo-Hadamard fractional derivative,
F : J × R → P(R) is a multivalued map, P(R) is the family of all nonempty
subsets of R, Ik : R → R, k = 1, . . . ,m, are continuous functions, a = t0 <
t1 < · · · < tm < tm+1 = T , ∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limε→0+ y(tk + ε)
and y(t−k ) = limε→0− y(tk + ε) represent the right and left limits of y at t = tk,
k = 1, . . . ,m. We apply the method of lower and upper solutions combined with the
fixed point theorem of Bohnenblust-Karlin to establish the existence of solutions to
this problem.

Fractional differential equations describe many phenomena in several fields of
engineering and scientific disciplines such as physics, biophysics, chemistry, biol-
ogy (such as blood flow phenomena), economics, control theory, signal and image
processing, aerodynamics, viscoelasticity, electromagnetism, and so on. They are
commonly viewed as better tools for description of hereditary properties of various
materials and processes than the corresponding integer order differential equations;
see, for example [9, 21, 22, 28, 32, 39, 44, 45, 48, 49, 50, 51, 54, 55].

In addition, there is high research activity in the theoretical development of
fractional calculus, fractional ordinary differential equations and fractional partial
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differential equations; see for example the recent textbook by Goodrich and Pe-
terson [29], as well as the monographs [33, 35, 39, 46, 51]. These monographs
and papers such as [6, 10] and their references therein, reflect the large number of
papers devoted to fractional research. There are numerous definitions of a frac-
tional derivative, with the most common being the Riemann-Liouville type frac-
tional derivative, and the Caputo type fractional derivative. Podlubny’s book [51]
and papers [34, 52] are good references for geometric and physical interpretations
of both types of fractional derivative. One major difference between the two types
of fractional derivatives is that the Caputo fractional derivative incorporates initial
values “at zero”, while the Riemann-Liouville is independent of any such initial
values. Hadamard’s [30] fractional derivative, introduced in 1892, differs signifi-
cantly from both the Riemann-Liouville type and the Caputo type. In particular,
the integral’s kernel in the definition of Hadamard’s fractional derivative contains
a logarithmic function of so-called arbitrary exponent. Good overviews and appli-
cations of where the Hadamard derivative and the Hadamard integral arise can be
found in the papers by Butzer, Kilbas and Trujillo [15, 16, 17]. Other important
results dealing with Hadamard fractional calculus and Hadamard differential equa-
tions can be found in [7, 38, 41, 58], as well as in the monograph by Kilbas et al.
[39].

This article involves a recent Caputo-type modification of the Hadamard frac-
tional derivative, which was first studied by Jarad et al. [36]. This derivative is
now known as the Caputo-Hadamard fractional derivative, and for a couple of other
papers dealing with Caputo-Hadamard calculus and Caputo-Hadamard differential
equations, we cite [5, 25].

Impulsive differential equations serve as basic models to study the dynamics of
processes that are subject to sudden changes in their states. Recent development
in this field has been motivated by many applied problems, such as engineering and
control theory [18, 27, 37, 53], population dynamics [20, 47, 57, 59] and medicine
[19, 24, 26]. For general aspects of impulsive differential equations, we suggest the
classical monographs [8, 43, 56, 60] and the more recent monograph [12]. Ben-
chohra and Slimani [11] initiated the study of fractional differential equations with
impulses.

The method of lower and upper solutions is among the most common (yet classi-
cal) techniques employed to establish existence of solutions for nonlinear differential
equations; see the classical monographs [31, 42] and the paper [23]. Recently, the
lower and upper solutions method was applied to obtain solutions for fractional
differential equations and fractional differential inclusions in the above cited mono-
graph [12], as well as in the papers [1, 2, 3, 4, 13].

2. Preliminaries

In this section, we introduce definitions and preliminary facts that are used in
the remainder of this article.

Let [a, b] be a compact interval, and C([a, b],R) be the Banach space of all
continuous functions from [a, b] into R with the norm

‖y‖∞ = sup{|y(t)| : a ≤ t ≤ b},
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and we denote by L1([a, b],R) the Banach space of functions y : [a, b]→ R that are
Lebesgue integrable, with norm

‖y‖L1 =
∫ b

a

|y(t)|dt.

AC([a, b],R) is the space of functions y : [a, b]→ R, which are absolutely continuous.
Let (X, ‖ · ‖) be a Banach space. Let Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) =
{Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact} and Pcp,c(X) =
{Y ∈ P(X) : Y compact and convex}.

A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex
(closed) for all x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is
bounded in X for all B ∈ Pb(X), i.e.

sup
x∈B
{sup{|y| : y ∈ G(x)}} <∞.

G is called upper semi-continuous (u.s.c.) on X, if for each x0 ∈ X, the set G(x0) is
a nonempty closed subset of X, and if for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N . G is said to be
completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗, yn →
y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that
x ∈ G(x). The fixed point set of the multivalued operator G will be denote by
FixG. A multivalued map G : J → Pcl(R) is said to be measurable if for every
y ∈ R, the function

t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 2.1. A function F : [a, b]×R→ P(R) is said to be L1-Carathéodory if

(1) t→ F (t, u) is measurable for each u ∈ R;
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ [a, b];
(3) for each q > 0, there exists ϕq ∈ L1(J,R+) such that

‖F (t, u)‖P = sup{|v| : v ∈ F (t, u)} ≤ ϕq for all |u| ≤ q and a.e. t ∈ J.

For each y ∈ C([a, b],R), define the set of selections of F by

SF,y = {v ∈ L1([a, b],R) : v(t) ∈ F (t, y(t)) a.e. t ∈ [a, b]}.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖). Consider
Hd : P(X)× P(X)→ R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X), Hd) is a
metric space and (Pcl(X), Hd) is a generalized metric space (see [40]).

Lemma 2.2 (Bohnenblust-Karlin [14]). Let X be a Banach space, K ∈ Pcl,c(X).
Suppose that the operator G : K → Pcl,c(K) is upper semicontinuous and the set
G(K) is relatively compact in X. Then G has a fixed point in K.
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Definition 2.3 ([39]). The Hadamard fractional integral of order α for a function
h : [a, b]→ R where a, b ≥ 0 is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(
ln
t

s

)α−1h(s)
s
ds, α > 0,

provided the integral exists.

Definition 2.4 ([36]). Let ACnδ [a, b] = {g : [a, b] → C | δn−1g ∈ AC[a, b]} where
δ = t ddt , 0 < a < b < ∞ and let α ∈ C, such that Re(α) ≥ 0. For a function
g ∈ ACnδ [a, b] the Caputo type Hadamard derivative of fractional order α is defined
as follows:

(i) if α /∈ N, then for n − 1 < [Re(α)] < n, where [Re(α)] denotes the integer
part of Re(α),

(CHDα
a g)(t) =

1
Γ(n− α)

∫ t

a

(
ln
t

s

)n−α−1
δng(s)

1
s
ds;

(ii) if α ∈ N, then (CHDα
a g)(t) = δng(t),

where ln(·) = loge(·).

Lemma 2.5 ([36]). Let y ∈ ACnδ [a, b] or Cnδ [a, b], and let α ∈ C. Then

Iαa (CHDα
a y)(t) = y(t)−

n−1∑
k=0

δky(a)
k!

(
ln
t

a

)k
. (2.1)

Example 2.6 ([36]). Let Re(α) > 0, n = Re(α) + 1 and g ∈ C[a, b].
(i) If Re(α) 6= 0 or α ∈ N, then

CHDα
a (Iαa g)(t) = g(t) CHDα

b (Iαb g)(t) = g(t) .

(ii) If Re(α) ∈ N and Re(α) 6= 0 then

CHDα
a (Iαa g)(t) = g(t)− Iα+1−n

a g(a)
Γ(n− α)

(
ln
t

a

)n−α
3. Main results

Consider the space

PC(J,R) =
{
y : J → R : y ∈ C((tk, tk+1],R), k = 0, . . . ,m+ 1,

there exist y(t+k ) and y(t−k ) with y(t−k ) = y(tk) for k = 1, . . . ,m
}
.

This set is a Banach space with the norm ‖y‖PC = supt∈J |y(t)|. Set J ′ = J \
{t1, . . . , tm}.

Definition 3.1. A function y ∈ PC(J,R) ∩ ∪mk=0AC((tk, tk+1],R) is a solution of
(1.1)-(1.3) if there exists a function v ∈ L1([a, T ],R) such that v(t) ∈ F (t, y(t))
a.e. t ∈ J , for which CHDαy(t) = v(t) on J ′, and y also satisfies the impulsive
conditions

∆y|t=tk = Ik(y(t−k ), k = 1, . . . ,m,

and the initial condition y(a) = ya.
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Definition 3.2. A function u ∈ PC(J,R) ∩ ∪mk=0AC((tk, tk+1],R) is said to be a
lower solution of (1.1)-(1.3) if there exists a function v1 ∈ L1([a, T ],R) such that
v1(t) ∈ F (t, u(t)) a.e. t ∈ J , for which CHDαu(t) ≤ v1(t) on J ′, and u also satisfies
the conditions ∆u|t=tk ≤ Ik(u(t−k )), k = 1, . . . ,m, and u(a) ≤ ya.

Similarly, a function w ∈ PC(J,R) ∩ ∪mk=0AC((tk, tk+1],R) is said to be an
upper solution of(1.1)-(1.3) if there exists a function v2 ∈ L1([a, T ],R) such that
v2(t) ∈ F (t, w(t)) a.e. t ∈ J , for which CHDαw(t) ≥ v2(t) on J ′ and w also satisfies
the conditions ∆w|t=tk ≥ Ik(w(t−k )), k = 1, . . . ,m, and w(a) ≥ ya.

To prove the existence of solutions to (1.1)-(1.3), we need the following auxiliary
lemma.

Lemma 3.3. Let 0 < α < 1 and let ρ ∈ AC(J ′,R). A function y is a solution of
the fractional integral equation

y(t) =


ya + 1

Γ(α)

∫ t
a

(
ln t

s

)α−1
ρ(s) 1

s ds, if t ∈ [a, t1]

ya + 1
Γ(α)

∑k
i=1

∫ ti
ti−1

(
ln ti

s

)α−1 ρ(s)
s ds

+ 1
Γ(α)

∫ t
tk

(
ln t

s

)α−1 ρ(s)
s ds+

∑k
i=1 Ii(y(t−i )),

if t ∈ (tk, tk+1], k = 1, . . . ,m,

(3.1)

if and only if y is a solution of the impulsive fractional IVP
CHDαy(t) = ρ(t), for each t ∈ J ′, (3.2)

∆y|t=tk = Ik(y(t−k ), k = 1, . . . ,m, (3.3)

y(a) = ya. (3.4)

Proof. Let y be a solution of (3.2)-(3.4). Applying the Hadamard fractional integral
of order α to both sides of (3.2), using conditions (3.3), (3.4) and Lemma 2.5 we
obtain: If t ∈ [a, t1], then

y(t) = ya +
1

Γ(α)

∫ t

a

(
ln
t

s

)α−1 ρ(s)
s

ds.

If t ∈ (t1, t2], then

y(t) = y(t+1 ) +
1

Γ(α)

∫ t

t1

(
ln
t

s

)α−1 ρ(s)
s

ds

= ∆y|t=t1 + y(t−1 ) +
1

Γ(α)

∫ t

t1

(
ln
t

s

)α−1 ρ(s)
s

ds

= ya + I1(y(t−1 )) +
1

Γ(α)

∫ t1

a

(
ln
t1
s

)α−1 ρ(s)
s

ds+
1

Γ(α)

∫ t

t1

(
ln
t

s

)α−1 ρ(s)
s

ds.

If t ∈ (t2, t3], then

y(t) = y(t+2 ) +
1

Γ(α)

∫ t

t2

(
ln
t

s

)α−1 ρ(s)
s

ds

= ∆y|t=t2 + y(t−2 ) +
1

Γ(α)

∫ t

t2

(
ln
t

s

)α−1 ρ(s)
s

ds

= ya + I2(y(t−2 )) + I1(y(t−1 )) +
1

Γ(α)

∫ t1

a

(
ln
t1
s

)α−1 ρ(s)
s

ds
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+
1

Γ(α)

∫ t2

t1

(
ln
t2
s

)α−1 ρ(s)
s

ds+
1

Γ(α)

∫ t

t2

(
ln
t

s

)α−1 ρ(s)
s

ds.

If t ∈ (tk, tk+1], by induction we obtain (3.1).
Conversely, assume that y satisfies the impulsive fractional integral equation

(3.1). If t ∈ [a, t1], then y(a) = ya and using the fact that CHDα
a is the left inverse

of Iαa , we obtain
CHDαy(t) = ρ(t), for all t ∈ [a, t1].

Next, let t ∈ (tk, tk+1], k = 1, . . . ,m. We have CHDα
aκ = 0, for any constant κ,

then
CHDαy(t) = ρ(t), or all t ∈ (tk, tk+1].

Also, it is straightforward that ∆y|t=tk = Ik(y(t−k ) for k = 1, . . . ,m. �

For the next theorem we use the following hypotheses:
(H1) F : J × R→ Pcp,c(R) is an L1 Carathéodory multi-valued map.
(H2) There exist u and w ∈ PC(J,R)∩AC((tk, tk+1],R), k = 0, . . . ,m, lower and

upper solutions, respectively, for problem (1.1)-(1.3) such that u(t) ≤ w(t)
for each t ∈ J .

(H3)

u(t+k ) ≤ min
y∈[u(t−k ),w(t−k )]

Ik(y) ≤ max
y∈[u(t−k ),w(t−k )]

Ik(y) ≤ w(t+k ), k = 1, . . . ,m.

(H4) There exists l ∈ L1(J,R+), such that

Hd(F (t, u), F (t, ū)) ≤ l(t)|u− ū| ∀u, ū ∈ R,
d(0, F (t, 0)) ≤ l(t) a.e. t ∈ J.

Theorem 3.4. Under assumptions (H1)–(H4), problem (1.1)-(1.3) has at least one
solution y such that

u(t) ≤ y(t) ≤ w(t) ∀t ∈ J.

Proof. We transform problem (1.1)-(1.3) into a fixed point problem. For 0 < α < 1
and a > 0, we consider the modified problem

CHDαy(t) ∈ F (t, τ(y(t))), for a.e. t ∈ J = [a, T ], t 6= tk, k = 1, . . . ,m, (3.5)

∆y|t=tk = Ik(τ(t−k , y(t−k ))), k = 1, . . . ,m, (3.6)

y(a) = ya, (3.7)

where τ : PC(J,R)→ PC(J,R) is the truncation operator defined by

(τy)(t) =


u(t), y(t) < u(t),
y(t), u(t) ≤ y(t) ≤ w(t),
w(t), y(t) > w(t).

A solution to (3.5)-(3.7) is a fixed point of the operatorN : PC(J,R)→ P(PC(J,R))
defined by

N(y) =
{
h ∈ PC(J,R) : h(t) = ya +

1
Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1
ν(s)

1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
ν(s)

1
s
ds+

∑
a<tk<t

Ik(τ(t−k , y(t−k )))
}
,
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where

ν ∈ S̃1
F,τy{v ∈ S1

F,τy : v(t) ≥ v1(t) on A1 and v(t) ≤ v2(t) on A2},
S1
F,τy = {v ∈ L1(J,R) : v(t) ∈ F (t, (τy)(t)) for t ∈ J},

A1 = {t ∈ J : y(t) < u(t) ≤ w(t)},
A2 = {t ∈ J : u(t) ≤ w(t) < y(t)}.

Remark 3.5. (1) For each y ∈ PC(J,R), the set S̃1
F,τy is nonempty. In fact, (H1)

implies that there exists v3 ∈ S1
F,τy, so we set

v = v1χA1 + v2χA2 + v3χA3 ,

where A3 = {t ∈ J : u(t) ≤ y(t) ≤ w(t)}. Then, by decomposability, v ∈ S̃1
F,τy.

(2) By the definition of τ it is clear that F (·, τy(·)) is an L1− Carathéodory
multi-valued map with compact convex values and there exists φ1 ∈ L1(J,R+)
such that

‖F (t, τy(t))‖P ≤ φ1(t) for each y ∈ R.
(3) By the definition of τ and from (H3) we have

u(t+k ) ≤ Ik(τ(tk, y(tk))) ≤ w(t+k ), k = 1, . . . ,m.

Set

R = |ya|+
‖φ1‖L1

Γ(α+ 1)

m∑
k=1

(
ln

tk
tk−1

)α +
‖φ1‖L1

Γ(α+ 1)
(

ln
T

a

)α
+

m∑
k=1

max{|u(t+k )|, |w(t+k |}

B = {y ∈ PC(J,R) : ‖y‖PC ≤ R}.
Clearly B is a closed convex subset of PC(J,R) and that N maps B into B. We
shall show that B satisfies the assumptions of Lemma 2.2. The proof will be given
in several steps.
Step 1: N(y) is convex for each y ∈ B. Let h1, h2 belong to N(y). Then there
exist ν1, ν2 ∈ S̃1

F,τy such that for each t ∈ J we have

hi(t) = ya +
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1
νi(s)

1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
νi(s)

1
s
ds+

∑
a<tk<t

Ik(τt−k , y(t−k ))), i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ J , we have

(λh1 + (1− λ)h2)(t)

= ya +
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1[λν1 + (1− λ)ν2](s)
1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1[λν1 + (1− λ)ν2](s)
1
s
ds+

∑
a<tk<t

Ik(τt−k , y(t−k )))

Since S̃F,y is convex (because F has convex values), we have λh1+(1−λ)h2 ∈ N(y).
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Step 2: N(B) is bounded. For each h ∈ N(y) and y ∈ B, there exists ν ∈ S̃1
F,y

such that

h(t) = ya +
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1
ν(s)

1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
ν(s)

1
s
ds+

∑
a<tk<t

Ik(τt−k , y(t−k ))).

By (H1)–(H3), for each t ∈ J , we have

|h(t)| ≤ |ya|+
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1|ν(s)|1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1|ν(s)|1
s
ds+

∑
a<tk<t

|Ik(τt−k , y(t−k )))|

≤ |ya|+
‖φ1‖L1

Γ(α+ 1)

m∑
k=1

(
ln

tk
tk−1

)α +
‖φ1‖L1

Γ(α+ 1)
(

ln
T

a

)α
+

m∑
k=1

max{|u(t+k )|, |w(t+k |}.

Therefore ‖h‖∞ ≤ R.

Step 3: N(B) is equicontinuous. Let τ1, τ2 ∈ J , τ1 < τ2, Let y ∈ B and
h ∈ N(y). Then

|h(t2)− h(t1)|

=
1

Γ(α)

∑
τ1<tk<τ2

∫ tk

tk−1

(
ln
tk
s

)α−1|ν(s)
1
s
ds+

1
Γ(α)

∫ τ2

τ1

(
ln
τ2
s

)α−1|ν(s)|1
s
ds

+
1

Γ(α)

∫ τ1

tk

[(
ln
τ2
s

)α−1 −
(

ln
τ1
s

)α−1]|ν(s)|1
s
ds

+
∑

τ1<tk<τ2

|Ikτy(t−k , t
−
k )))|

≤ ‖φ1‖L1

Γ(α)

∑
τ1<tk<τ2

∫ tk

tk−1

(
ln
tk
s

)α−1 1
s
ds+

‖φ1‖L1

Γ(α)

∫ τ2

τ1

(
ln
τ2
s

)α−1 1
s
ds

+
‖φ1‖L1

Γ(α)

∫ τ1

tk

[(
ln
τ2
s

)α−1 −
(

ln
τ1
s

)α−1]1
s
ds

+
∑

τ1<tk<τ2

Ik|τ(t−k , y(t−k ))))|.

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude
that N : B → P(B) is completely continuous.

Step 4: N has a closed graph. Let yn → y∗, hn ∈ N(yn) and hn → h∗. We
need to show that h∗ ∈ N(y∗). hn ∈ N(yn) means that there exists νn ∈ S̃1

F,τyn
,
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such that, for each t ∈ J ,

hn(t) = ya +
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1
νn(s)

1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
νn(s)

1
s
ds+

∑
a<tk<t

Ikτ(t−k , y(t−k )))).

We must show that there exists ν∗ ∈ S̃1
F,τy∗

such that, for each t ∈ J ,

h∗(t) = ya +
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1
ν∗(s)

1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
ν∗(s)

1
s
ds+

∑
a<tk<t

Ikτ(t−k , y(t−k )))).

Since F (t, ·) is upper semi-continuous, for every ε > 0, there exists a natural number
n0(ε) such that, for every n ≥ n0, we have

νn(t) ∈ F (t, τy∗(t)) + εB(0, 1), , a.e. t ∈ J.
Since F (·, ·) has compact values, there exists a subsequence νnm

(·) such that

νnm
(·)→ ν∗(·) as m→∞,

ν∗(t) ∈ F (t, τy∗(t)), a.e. t ∈ J.

For every w ∈ F (t, τy∗(t)), we have

|νnm
(t)− ν∗(t)| ≤ |νnm

(t)− w|+ |w − ν∗(t)|.
Then |νnm(t)− ν∗(t)| ≤ d(νnm(t), F (t, τy∗(t)).

We obtain an analogous relation by interchanging the roles of νnm and ν∗, and
it follows that

|νnm
(t)− ν∗(t)| ≤ Hd(F (t, τyn(t)), F (t, τy∗(t))) ≤ l(t)‖yn − y∗‖∞.

Then

|hnm(t)− h∗(t)| ≤
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
ln
tk
s

)α−1|νnm(s)− ν∗(s)|
1
s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1|νnm
(s)− ν∗(s)|

1
s
ds

+
∑

a<tk<t

|Ik(τ(t−k , ynm
(t−k ))))− Ik(τ(t−k , (y∗(t

−
k )))|

≤ m

Γ(α+ 1)
(

ln
T

a

)α ∫ T

a

l(s)ds‖ynm − y∗‖∞

+
1

Γ(α+ 1)
(

ln
T

a

)α ∫ T

a

l(s)ds‖ynm
− y∗‖∞

+
∑

a<tk<t

|Ik(τ(t−k , ynm(t−k ))))− Ik(τ(t−k , y∗(t
−
k )))|.

Hence

‖hnm(t)− h∗(t)‖∞ ≤
m+ 1

Γ(α+ 1)
(

ln
T

a

)α ∫ T

a

l(s)ds‖ynm
− y∗‖∞
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+
∑

a<tk<t

|Ik(τ(t−k , ynm(t−k ))))− Ik(y∗τ(t−k , t
−
k )))| → 0.

as m→∞.
Step 5: The solution y of (3.5)-(3.7) satisfies u(t) ≤ y(t) ≤ w(t) for all t ∈ J .
Let y be the above solution to (3.5)-(3.7). We prove that

y(t) ≤ w(t) ∀t ∈ J.

Assume that y − w attains a positive maximum on [t+k , t
−
k+1] at tk ∈ [t+k , t

−
k+1] for

some k = 0, . . . ,m; that is

(y − w)(tk) = max{y(t)− w(t) : t ∈ [t+k , t
−
k+1]} > 0, for some k = 0, . . . ,m.

We distinguish the following cases.
Case 1. If tk ∈ (t+k , t

−
k+1) then there exists t∗k ∈ (t+k , t

−
k+1) such that

y(t∗k)− w(t∗k) ≤ 0, (3.8)

y(t)− w(t) > 0, ∀t ∈ (t∗k, tk]. (3.9)

From the definition of τ , we have
CHDαy(t) ∈ F (t, w(t)) ∀t ∈ [t∗k, tk].

An integration on [t∗k, t] yields

y(t)− y(t∗k) =
1

Γ(α)

∫ t

t∗k

(
ln
t

s

)α−1
ν(s)

1
s
ds, (3.10)

where ν(t) ∈ F (t, w(t)). From (3.10) and using the fact that w is an upper solution
to (1.1)-(1.3) we obtain

y(t)− y(t∗k) ≤ w(t)− w(t∗k). (3.11)

From (3.8),(3.9) and (3.11) we obtain the contradiction

0 < y(t)− w(t) ≤ y((t∗k)− w((t∗k) ≤ 0, ∀t ∈ [t∗k, tk].

Case 2. If tk = t+k , k = 1, . . . ,m, then

w(t+k ) < Ik(τ(t−k , y(t−k ))) < w(t+k ),

which is a contradiction. Thus y(t) ≤ w(t) for all t ∈ [a, T ].
Analogously, we can prove that y(t) ≥ u(t) for all t ∈ [a, T ]. This shows that

problem (3.5)-(3.7) has a solution in the interval [u,w] which is a solution of (1.1)-
(1.3). �
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