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OSCILLATORY AND ASYMPTOTIC PROPERTIES OF
FRACTIONAL DELAY DIFFERENTIAL EQUATIONS

JAN ČERMÁK, TOMÁŠ KISELA

Abstract. This article discusses the oscillatory and asymptotic properties

of a test delay differential system involving a non-integer derivative order.
We formulate corresponding criteria via explicit necessary and sufficient con-

ditions that enable direct comparisons with the results known for classical

integer-order delay differential equations. In particular, we shall observe that
oscillatory behaviour of solutions of delay system with non-integer derivatives

embodies quite different features compared to the classical results known from

the integer-order case.

1. Introduction and preliminaries

Basic qualitative properties of the delay differential equation

y′(t) = Ay(t− τ), t ∈ (0,∞), (1.1)

where A is a constant real d × d matrix and τ > 0 is a constant real lag, are
well described in previous numerous investigations. While stability and asymptotic
properties of (1.1) were reported in [8], answers to various oscillation problems
regarding (1.1) were surveyed in [7].

A crucial role in these investigations was played by the associated characteristic
equation

det(sI −A exp{−sτ}) = 0, (1.2)
where I is the identity matrix. More precisely, appropriate properties of (1.1) were
first described via location of all roots of (1.2) in a specific area of the complex
plane. Then, efficient criteria guaranteeing such root locations were formulated in
terms of conditions imposed directly on the eigenvalues of A.

We recall some of relevant statements (reformulated in the above mentioned
sense) along with their consequences to the scalar case when (1.1) becomes

y′(t) = ay(t− τ), t ∈ (0,∞) (1.3)

where a is a real number. Since we are primarily interested in discussions of oscilla-
tory properties of appropriate fractional extensions of (1.1), we first state (see [7])
oscillation conditions for (1.1) (as it is customary, we say that a solution of (1.1) is
oscillatory if every its component has arbitrarily large zeros; otherwise the solution
is called non-oscillatory).
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Theorem 1.1. Let A ∈ Rd×d and τ ∈ R+. Then the following statements are
equivalent:

(a) All solutions of (1.1) oscillate;
(b) The characteristic equation (1.2) has no real roots;
(c) A has no real eigenvalues in [−1/(τe),∞).

Corollary 1.2. Let a ∈ R and τ ∈ R+. All solutions of (1.3) oscillate if and only
if

a < − 1
τe
.

As we shall see later, oscillatory properties of the corresponding fractional delay
system are closely related to convergence of all its solutions to the zero solution. In
the first-order case (1.1), this property was characterized in [8] via

Theorem 1.3. Let A ∈ Rd×d and τ ∈ R+. Then the following statements are
equivalent:

(a) Any solution y of (1.1) tends to zero as t→∞;
(b) The characteristic equation (1.2) has all roots with negative real parts;
(c) All eigenvalues λi (i = 1, . . . , d) of A satisfy

τ |λi| < | arg(λi)| − π/2 .

Moreover, the convergence of y to zero is of exponential type.

Remark 1.4. The condition (c) can be equivalently expressed via the requirement
that all eigenvalues λi (i = 1, . . . , d) of A have to be located inside the region
bounded by the curve

<(λ) = ω cos(ωτ), =(λ) = −ω sin(ωτ), − π

2τ
≤ ω ≤ π

2τ
in the complex plane.

Corollary 1.5. Let a ∈ R and τ ∈ R+. Any solution y of (1.3) tends to zero as
t→∞ if and only if

− π

2τ
< a < 0 .

Extensions of previous results to the n-th order equation (n is a positive integer)

y(n)(t) = Ay(t− τ), t ∈ (0,∞) (1.4)

yield different conclusions. In this case, the characteristic equation becomes

det(snI −A exp{−sτ}) = 0 . (1.5)

If n ≥ 2, then there is no analogue to Theorem 1.3. More precisely, the convergence
of all solutions of (1.4) to zero is not possible whenever n ≥ 2 (see, e.g. [6]).
Regarding oscillatory properties of (1.4), equivalency of conditions (a) and (b) (with
(1.2) replaced by (1.5)) of Theorem 1.1 remains preserved, but their conversion into
an explicit form depends on parity of n (see [7]).

The main goal of this article is to discuss these oscillatory and related asymptotic
properties of (1.1) with respect to their possible extension to the fractional delay
differential equation

Dα
0 y(t) = Ay(t− τ), t ∈ (0,∞) (1.6)
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where α > 0 is a real scalar and the symbol Dα
0 is the Caputo derivative of order

α introduced in the following way: First let y be a real scalar function defined on
(0,∞). For a positive real γ, the fractional integral of y is given by

D−γ0 y(t) =
∫ t

0

(t− ξ)γ−1

Γ(γ)
y(ξ)dξ, t ∈ (0,∞)

and, for a positive real α, the Caputo fractional derivative of y is given by

Dα
0 y(t) = D−(dαe−α)

0

( ddαe

dtdαe
y(t)

)
, t ∈ (0,∞)

where d·e means the upper integer part. As it is customary, we put D0
0y(t) = y(t)

(for more on fractional calculus, see, e.g. [10, 15]). If y is a real vector function, the
corresponding fractional operators are considered component-wise (similarly, if y
is a complex-valued function, then these fractional operators are introduced for its
real and imaginary part separately). We add that the initial conditions associated
to (1.6) are

y(t) = φ(t), t ∈ [−τ, 0] , (1.7)

lim
t→0+

y(j)(t) = φj , j = 0, . . . , dαe − 1 (1.8)

where all components of φ are absolutely Riemann integrable on [−τ, 0] and φj are
real scalars. In the frame of our oscillatory and asymptotic discussions on (1.6), we
are going not only to extend previous results to (1.6) but also discuss a dependence
of relevant conditions on changing derivative order α (with a special attention to
the case when α is crossing integer values).

The structure of this paper is following: Section 2 recalls some related special
functions as well as the characteristic equation associated with (1.6). Some asymp-
totic expansions of the studied special functions are described as well. In Section
3, we discuss in detail distribution of roots of the characteristic equation in specific
areas of the complex plane. Using these auxiliary statements, Sections 4 and 5 for-
mulate a series of results describing oscillation and asymptotic properties of (1.6)
in the vector and scalar case. More precisely, Section 4 presents analogues of The-
orems 1.1 and 1.3, and Section 5 contains some additional oscillation results in the
scalar case. Discussions on non-consistency of the obtained results with the above
recalled classical properties of (1.1) and (1.3) are subject of Section 6 concluding
the paper.

2. Special functions and their properties

In this section, we recall and extend some notions and formulae introduced in
[3] in the frame of stability analysis of (1.6) with 0 < α < 1. As we shall see
later, these tools turn out to be very useful also in oscillatory investigations of (1.6)
with arbitrary real α > 0. Since the proofs of auxiliary statements stated below
are (essentially) analogous to the proofs of appropriate assertions from [3], we omit
them.

In the sequel, the symbols L and L−1 denote the Laplace transform and inverse
Laplace transform of appropriate functions, respectively.

Definition 2.1. Let A ∈ Rd×d, let I be the identity d×d matrix and let α, τ ∈ R+.
The matrix function R : R→ Cd×d given by

R(t) = L−1
(
(sαI −A exp{−sτ})−1

)
(t) (2.1)
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is called the fundamental matrix solution of (1.6).

Theorem 2.2. Let A ∈ Rd×d, α, τ ∈ R+ and let R be the fundamental matrix
solution of (1.6). Then the solution y of (1.6)–(1.8) is given by

y(t) =
dαe−1∑
j=0

Dα−j−1
0 R(t)φj +

∫ 0

−τ
R(t− τ − u)Aφ(u)du.

Remark 2.3. Theorem 2.2 along with Definition 2.1 imply that the poles of the
Laplace image of solution of (1.6) coincide with roots of

det(sαI −A exp{−sτ}) = 0, equivalently
n∏
i=1

(sα − λi exp{−sτ})ni = 0 , (2.2)

where λi (i = 1, . . . , n) are distinct eigenvalues of A and ni are their algebraic
multiplicities. This confirms the well-known fact that (2.2) is the characteristic
equation associated to (1.6) (see, e.g. [5, 9, 11]).

The following notion of a generalized delay exponential function plays an im-
portant role in description of asymptotic expansions of the fundamental matrix
solution of (1.6).

Definition 2.4. Let λ ∈ C, η, β, τ ∈ R+ and m ∈ Z+ ∪{0}. The generalized delay
exponential function (of Mittag-Leffler type) is introduced via

Gλ,τ,mη,β (t) =
∞∑
j=0

(
m+ j

j

)
λj(t− (m+ j)τ)η(m+j)+β−1

Γ(η(m+ j) + β)
h(t− (m+ j)τ)

where h is the Heaviside step function.

The relationship between the fundamental matrix solution R and the generalized
delay exponential functions Gλ,τ,mη,β can be specified via the following lemma.

Lemma 2.5. The fundamental matrix solution (2.1) can be expressed as R(t) =
T−1G(t)T , where T is a regular matrix and G is a block diagonal matrix with upper-
triangular blocks Bj given by

Bj(t) =


Gλi,τ,0
α,α (t) Gλi,τ,1

α,α (t) Gλi,τ,2
α,α (t) · · · G

λi,τ,rj−1
α,α (t)

0 Gλi,τ,0
α,α (t) Gλi,τ,1

α,α (t) · · · G
λi,τ,rj−2
α,α (t)

0 0 Gλi,τ,0
α,α (t) · · · G

λi,τ,rj−3
α,α (t)

...
...

...
. . .

...
0 0 0 · · · Gλi,τ,0

α,α (t)

 ,

where j = 1, . . . , J (J ∈ Z+) and rj is the size of the corresponding Jordan block of
A.

As a next key auxiliary result, we describe asymptotic behaviour of Gλ,τ,mη,β func-
tions.

Lemma 2.6. Let λ ∈ C, α ∈ R+ \ Z+, β, τ ∈ R+ and m ∈ Z+ ∪ {0}. Further, let
si (i = 1, 2, . . . ) be the roots of

sα − λ exp{−sτ} = 0 (2.3)

with ordering <(si) ≥ <(si+1) (i = 1, 2, . . . ; in particular, s1 is the rightmost root).
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(i) If λ = 0, then

G0,τ,m
α,β (t) =

(t−mτ)mα+β−1

Γ(mα+ β)
h(t−mτ).

(ii) If λ 6= 0, then

Gλ,τ,mα,β (t) =
∞∑
i=1

m·ki∑
j=0

aij(t−mτ)j exp{si(t−mτ)}+ Sλ,τ,mα,β (t) ,

where ki is a multiplicity of si, aij are suitable nonzero complex constants
(j = 0, . . . ,mki, i = 1, 2, . . . ) and the term Sλ,τ,mα,β has the algebraic asymp-
totic behaviour expressed via

Sλ,τ,mα,β (t) =
(−1)m+1

λm+1Γ(β − α)
(t+ τ)β−α−1

+
(−1)m+1(m+ 1)
λm+2Γ(β − 2α)

(t+ 2τ)β−2α−1 +O(tβ−3α−1) as t→∞.

3. Distribution of characteristic roots

The aim of this section is to analyse (2.2) with respect to existence of its real
roots as well as number of its roots with positive real parts. Doing this, it is enough
to consider its partial form (2.3).

First, we characterize the set of all roots of (2.3) in terms of their magnitudes
and arguments (we assume here λ 6= 0, i.e. s 6= 0). Using the goniometric forms of
s and λ we obtain that (2.3) is equivalent to

|s|α cos[α arg(s)]− |λ| exp{−|s|τ cos[arg(s)]} cos[arg(λ)− |s|τ sin(arg(s))]
= 0,

(3.1)

|s|α sin[α arg(s)]− |λ| exp{−|s|τ cos[arg(s)]} sin[arg(λ)− |s|τ sin(arg(s))]
= 0.

(3.2)

To solve (2.3), we consider (3.1)–(3.2) as a system with unknowns |s| and arg(s).
If α arg(s) = `1π for some integer `1, then arg(λ) − |s|τ sin[arg(s)] = `2π for some
integer `2 and (3.1) yields

|s|α(−1)`1 − |λ| exp{−|s|τ cos[arg(s)]}(−1)`2 = 0,

i.e.
|s|α = (−1)`|λ| exp{−|s|τ cos[arg(s)]} = 0 for some integer `. (3.3)

Thus (3.1)–(3.2) can be reduced to

α arg(s)− arg(λ)− |s|τ sin[arg(s)] = 2kπ for some integer k, (3.4)

|s|α = |λ| exp{−|s|τ cos[arg(s)]}. (3.5)

If α arg(s) 6= `1π for any integer `1, then arg(λ) − |s|τ sin[arg(s)] 6= `2π for any
integer `2 and division (3.1) over (3.2) yields

α arg(s) = |λ| exp{−|s|τ cos[arg(s)]}+ `π for some integer `.

This, after substitution into (3.1), yields (3.3). Now, the same argumentation as
above shows equivalency of (2.3) and (3.4)–(3.5).

Using the previous process, we can derive the following characterization of pos-
sible real roots of (2.3).
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Proposition 3.1. Let λ ∈ C and α, τ ∈ R+.

(i) The characteristic equation (2.3) has a positive real root if and only if λ is
a positive real. This root is simple, unique and it is the rightmost root of
(2.3).

(ii) The characteristic equation (2.3) has a negative real root if and only if

0 < |λ| ≤ (
α

τe
)α and arg(λ) = (α− 2k)π for some k ∈ Z .

More precisely, if

0 < |λ| = (
α

τe
)α and arg(λ) = (α− 2k)π for some k ∈ Z ,

then s1,2 = −α/τ is double and the rightmost root of (2.3) (remaining roots
of (2.3) are not real). If

0 < |λ| <
( α
τe
)α and arg(λ) = (α− 2k)π for some k ∈ Z ,

then (2.3) has a couple of simple real negative roots, the greater of them
being rightmost (remaining roots of (2.3) are not real).

(iii) The characteristic equation (2.3) has the zero root if and only if λ = 0.

Furthermore, using (3.4)–(3.5) we can specify the distribution of characteristic
roots of (2.3) with respect to the imaginary axis. Before doing this, we introduce
the following areas in the complex plane.

For real parameters 0 < α < 2 and τ > 0, we define the set Q0(α, τ) of all
complex λ such that

| arg(λ)| > απ

2
and |λ| <

( | arg(λ)| − απ
2

τ

)α
.

Further, for any positive integer m and real parameters 0 < α < 4m+ 2 and τ > 0,
we define the sets Qm(α, τ) of all complex λ such that either

απ

2
− 2mπ < | arg(λ)| ≤ απ

2
− (2m− 2)π and |λ| <

( | arg(λ)| − απ
2 + 2mπ

τ

)α
,

or | arg(λ)| > απ
2 − 2mπ and( | arg(λ)| − απ

2 + (2m− 2)π
τ

)α
< |λ| <

( | arg(λ)| − απ
2 + 2mπ

τ

)α
.

We add that the sets Qm(α, τ) (m = 0, 1, . . . ) are defined to be empty whenever
α ≥ 4m+ 2.

Now, we can describe the location of the roots of (2.3) with respect to the
imaginary axis in terms of the sets Qm(α, τ) (we utilize here the standard notation
∂[Qm(α, τ)] for their boundaries).

Proposition 3.2. Let λ ∈ C and α, τ ∈ R+. Then there exist just m (m = 0, 1, . . . )
characteristic roots of (2.3) with a positive real part (while remaining roots have
negative real parts) if and only if λ ∈ Qm(α, τ). Moreover, (2.3) has a root with the
zero real part if λ ∈ ∂[Qm(α, τ)] for some m = 0, 1, . . . .

The appropriate regions Qm(α, τ) are depicted in Figures 1 and 2.
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Q (α,τ)2

Q (α,τ)3
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Q (α,τ)1
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Figure 1. α = 0.4 and τ = 1 (left). α = 1.1 and τ = 1 (right)
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Q (α,τ)1

Q (α,τ)4

Im(λ)

Im(λ)

Re(λ)

Re(λ)

Q (α,τ)1

Q (α,τ)3

Q (α,τ)2

Q (α,τ)4

Figure 2. α = 2.1 and τ = 1 (left). α = 3.1 and τ = 1 (right)

Proof. We start with the proof of Proposition 3.1 and consider the characterization
of roots s of (2.3) via (3.4)–(3.5). Obviously, (2.3) has a positive real root if
arg(λ) = 0 (i.e. λ is a positive real). In this case, the characteristic function

F (s) = sα − λ exp{−sτ}
is strictly increasing for all s ≥ 0 with F (0) = −λ < 0 and F (∞) = ∞, hence
there is a unique positive real root s1 of (2.3). To show its dominance, we consider
remaining roots si of (2.3) with a positive real parameter λ. Then (3.5) yields

(s1)α = λ exp{−s1τ}, |si|α = λ exp{−|si|τ cos[arg(si)]}.
From here, we obtain( s1

|si|

)α
= exp{(−s1 + |si| cos[arg(si)])τ} . (3.6)
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Assume that s1 is not the rightmost root of (2.3), i.e. |si| cos[arg(si)] ≥ s1 for some
root si of (2.3). Then

s1

|si|
< 1 and exp{(−s1 + |si| cos[arg(si)])τ} ≥ 1

which contradicts (3.6). This proves Proposition 3.1(i).
Similarly, (3.4)–(3.5) imply that (2.3) has a negative real root s if and only if

arg(λ) = (α− 2k)π for some k ∈ Z
and

|s|α = |λ| exp{|s|τ}.
Put r = |s| and G(r) = rα − |λ| exp{rτ}, r ≥ 0. Then G(0) = −|λ| < 0, G(∞) =
−∞ and G is increasing in (0, r∗) and decreasing in (r∗,∞) for a suitable r∗ > 0.
Thus G has (one or two) positive roots if and only if G(r∗) ≥ 0. In particular, G
has a unique positive root r∗ if and only if G(r∗) = G′(r∗) = 0, i.e.

(r∗)α − |λ| exp{r∗τ} = α(r∗)α−1 − |λ|τ exp{r∗τ} = 0 .

From here, we obtain
r∗ =

α

τ
and |λ| =

( α
τe

)α
.

Obviously, if
|λ| <

( α
τe

)α
,

then G has two real positive roots r1 < r2. We show that s1 = −r1 is the rightmost
root of (2.3), i.e s1 > |si| cos[arg(si)] for all remaining roots si (i = 2, 3, . . . ) of
(2.3). Indeed, by (3.5),

|s1|α = |λ| exp{|s1|τ} and |si|α = |λ| exp{−|si|τ cos[arg(si)]} .
Then |s1| < |si|, i.e. |s1| + |si| cos[arg(si)] < 0. Analogously we can show the
dominance of a double real root s1,2 (if exists). This proves Proposition 3.1 (ii).
The assertion of Proposition 3.1(iii) is trivial.

Now, we show the validity of Proposition 3.2. Since the case of real characteristic
roots of (2.3) has been discussed previously, we first search the roots s with 0 <
arg(s) ≤ π/2. Then (3.4)–(3.5) can be reduced to

|s| = arg(λ)− α arg(s) + 2kπ
τ sin[arg(s)]

, (3.7)(arg(λ)− α arg(s) + 2kπ
τ sin[arg(s)]

)α
− |λ| exp

{
(− arg(λ)

+ α arg(s)− 2kπ) cotan[arg(s)]
}

= 0 .
(3.8)

We denote the left-hand side of (3.8) by Hk = Hk(arg(s)). Then

Hk(0+) =∞, Hk(π/2) =
(arg(λ)− απ/2 + 2kπ

τ

)α
− |λ|

and Hk(arg(s)) decreases as arg(s) increases from 0 to π/2. This implies that (3.7)–
(3.8) has just m couples of solutions with |s| > 0 and 0 < arg(s) ≤ π/2 if and only
if either

απ

2
− 2mπ < arg(λ) ≤ απ

2
− (2m− 2)π and Hm(π/2) > 0 ,

or
arg(λ) >

απ

2
− 2mπ and Hm(π/2) > 0 > Hm−1(π/2) .
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If −π/2 ≤ arg(s) < 0, then we obtain the same conclusion with arg(λ) replaced by
− arg(λ). This implies the main part of the assertion. The supplement on existence
of purely imaginary roots of (2.3) follows from continuous dependence of roots s on
parameter λ. Alternatively, it can be obtained via the standard D-decomposition
method. �

4. Main results

In this section, we derive and formulate fractional-order analogues to Theorems
1.1 and 1.3.

Theorem 4.1. Let A ∈ Rd×d, α ∈ R+ \ Z+ and τ ∈ R+. Then the following
statements are equivalent:

(a) All non-trivial solutions of (1.6) are non-oscillatory;
(b) The characteristic equation (2.2) admits only real roots or roots with a

negative real part;
(c) A has all eigenvalues lying in Q0(α, τ) ∪ (Q1(α, τ) ∩ R) ∪ {0}.

Proof. Theorem 2.2 and Lemma 2.5 imply that every solution of (1.6)–(1.8) can be
expressed as

y(t) = T−1

dαe−1∑
j=0

Dα−j−1
0 G(t)Tφj + T−1

∫ 0

−τ
G(t− τ − u)JTφ(u)du , (4.1)

where G is a matrix function introduced in Lemma 2.5, J is a Jordan form of
the system matrix A and T is the corresponding regular projection matrix, i.e.
A = TJT−1. Employing (4.1) and Lemma 2.5, we can see that every component
of y is a linear combination of terms derived from elements of G. We distinguish
two cases with respect to (non)zeroness of eigenvalues λi of A.

First, let λi 6= 0 for all i = 1, . . . , n (n being the number of distinct eigenvalues
of A). Then the elements of matrices Dα−j−1

0 G(t) (j = 0, . . . , dαe − 1) can be
asymptotically expanded via the relation

Dα−j−1
0 Gλi,τ,m

α,α (t) = Gλi,τ,m
α,j+1 (t)

=
N∑
w=1

mkw∑
`=0

t` exp{swt}bw,`
(
1− mτ

t

)` exp{−swmτ}

+ tj−α
(−1)m+1(1 + τ/t)j−α

λm+1
i Γ(j − α+ 1)

+O(tj−2α) as t→∞ ,

(4.2)

where sw (w = 1, 2, . . . , N) are roots of (2.3) with the largest real parts ordered as
<(sw) ≥ <(sw+1), N is any positive integer satisfying <(sN ) < 0, kw is multiplicity
of sw and bw,` are suitable real constants (see ai,j in Lemma 2.6(ii)). Similarly, the
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elements of the matrix
∫ 0

−τ G(t− τ − u)JTφ(u)du have the expansions∫ 0

−τ
Gλi,τ,m
α,α (t− τ − u)φ̂p(u)du

=
N∑
w=1

mkw∑
`=0

t` exp{swt}cw,`λi
∫ 0

−τ

(
1− (m+ 1)τ

t
− u

t

)`
e−sw((m+1)τ+u)φ̂p(u)du

+ t−α−1

∫ 0

−τ

(−1)m+1(m+ 1)(1 + τ/t− u/t)−α−1

λm+1
i Γ(−α)

φ̂p(u)du+O(t−2α−1)

(4.3)
as t → ∞, where φ̂p(u) is pth row of the vector JTφ(u) and cw,` are suitable real
constants (see ai,j in Lemma 2.6(ii)).

If λi = 0 for some i = 1, . . . , n, then the appropriate analogues of (4.2)–(4.3)
involve only algebraic terms (see Lemma 2.6(i)). Now, we can prove the presented
equivalencies:
(a)⇔(b): The property (a) holds if and only if, for any choice of φ, the dominat-
ing terms involved in (4.2) and (4.3) are non-oscillatory. We can see that all the
algebraic terms from (4.2) and (4.3) are non-oscillatory and eventually dominating
with respect to all exponential terms with negative real parts of their arguments.
Contrary, an exponential term is eventually dominating provided its argument has
a non-negative real part. Clearly, if such a case does occur, the solution y of (1.6) is
non-oscillatory only if the imaginary parts of the corresponding arguments are zero.
By (4.2) and (4.3), the discussed arguments of the exponential terms are expressed
via roots of (2.2), which yields equivalency of (a) and (b).
(b)⇔(c): This equivalency follows immediately from Propositions 3.1 and 3.2. �

In the scalar case, when (1.6) becomes

Dα
0 y(t) = ay(t− τ), t ∈ (0,∞) , (4.4)

a being a real scalar, we obtain the following explicit characterization of non-
existence of a non-trivial oscillatory solution.

Corollary 4.2. Let a ∈ R, α ∈ R+ \ Z+ and τ ∈ R+. All non-trivial solutions y
of (4.4) are non-oscillatory if and only if

0 < α < 2 and −
( (2− α)π

2τ

)α
< a <

( (4− α)π
2τ

)α
,

or

2 < α < 4 and 0 < a <
( (4− α)π

2τ

)α
.

Remark 4.3. In the first-order case, the value a = −1/(τe) is of a particular impor-
tance: crossing this value, the (negative) real roots of the associated characteristic
equation disappear and all solutions of (1.3) become oscillatory for a < −1/(τe).
In the fractional-order case, the (negative) real roots disappear for a < −(α/(τe))α.
However, such roots have no impact on oscillatory behaviour of the solutions of (4.4)
because the exponential terms with negative arguments involved in the formulae
(4.1)–(4.3) are eventually suppressed by algebraic terms.

By Theorem 4.1, if all roots of (2.2) have negative real parts, then all non-trivial
solutions of (1.6) are non-oscillatory. Therefore, we give an explicit characterization
of this assumption and thus provide a fractional-order analogue to Theorem 1.3.
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Theorem 4.4. Let A ∈ Rd×d and α, τ ∈ R+. Then the following statements are
equivalent

(a) Any solution y of (1.6) tends to zero as t→∞;
(b) The characteristic equation (2.2) has all roots with negative real parts;
(c) All eigenvalues λi (i = 1, . . . , d) of A are nonzero and satisfy

τ |λi|1/α < |arg (λi)| − απ/2 .

Moreover, if α /∈ Z+, then the convergence to zero is of algebraic type; more pre-
cisely, for any solution y of (1.6) there exists a suitable integer j ∈ {0, . . . , dαe}
such that |y(t)| ∼ tj−α−1 as t → ∞ (the symbol ∼ stands for asymptotic equiva-
lency).

Proof. (a)⇔(b): If λi = 0 for some i = 1, . . . , d, then the appropriate analogues
of (4.2) and (4.3) yield that there is always a constant term involved in these
expansions (this constant is nonzero if φ0 is nonzero), hence the property (a) is
not true. Obviously, the property (b) cannot occur as well provided λi = 0 for
some i = 1, . . . , d. Thus, without loss of generality, we may assume λi 6= 0 for all
i = 1, . . . , d.

The statement (a) is valid if and only if (4.2) and (4.3) do not contain any terms
with a non-negative real part of the argument, which directly yields the equivalency
(see also [11]).
(b)⇔(c): It is a direct consequence of Proposition 3.2.

Consequently, since all the exponential terms in (4.2) and (4.3) have a negative
argument, they are suppressed by the algebraic terms. The presence of the term
behaving like tj−α−1 for j = 1, . . . , dαe as t → ∞ is determined by values φj−1.
If φj−1 = 0 for all j = 1, . . . , dαe, the integral term (4.3) becomes dominant. The
integrability of φ enables us to write

lim
t→∞

1
t−α−1

∣∣ ∫ 0

−τ
Gλi,τ,m
α,α (t− τ − u)φ̂p(u)du

∣∣
=
∣∣ ∫ 0

−τ
lim
t→∞

(−1)m+1(m+ 1)(1 + τ/t− u/t)−α−1

λm+1
i Γ(−α)

φ̂p(u)du
∣∣

= K
∣∣ ∫ 0

−τ
φ̂p(u)du

∣∣
for a suitable real K, therefore the integral term behaves like t−α−1 as t→∞. This
completes the proof. �

For the case of scalar equation (4.4), we obtain the following result.

Corollary 4.5. Let a ∈ R and α, τ ∈ R+. All solutions y of (4.4) tend to zero if
and only if

α < 2 and −
( (2− α)π

2τ

)α
< a < 0 .

In particular, an interesting link between Theorems 4.1 and 4.4 is provided by
the following assertion.

Corollary 4.6. Let A ∈ Rd×d, α ∈ R+ \ Z+ and τ ∈ R+. If (1.6) has a non-
trivial oscillatory solution, then it has also a solution which does not tend to zero
as t→∞.
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Remark 4.7. In fact, formulae (4.1)–(4.3) reveal that any non-trivial solution of
(1.6) tending to zero is non-oscillatory. Moreover, the solutions tending to zero
pose an algebraic decay (there is no solution with an exponential decay).

5. Other oscillatory properties of (4.4)

In the classical integer-order case, oscillation argumentation often uses the fact
that exp(swt) is a solution of (1.3) for any root sw of the corresponding character-
istic equation

s− a exp{−sτ} = 0 . (5.1)
In particular, if (5.1) admits a real root, then (1.3) has (via appropriate choice of φ)
a non-oscillatory solution. In the fractional-order case, no such a direct connection
for the influence study of characteristic roots of

sα − a exp{−sτ} = 0 (5.2)

on the oscillatory behaviour of (4.4) is available. Nevertheless, as we can see from
(4.1)–(4.3), the exponential functions generated by characteristic roots of (5.2)
again play an important role in qualitative analysis of solutions of (4.4). Using
this fact, we are able to describe some oscillatory properties of (4.4) with respect
to asymptotic relationship between the studied solutions and the corresponding
exponential functions. To specify this relationship, we introduce the following as-
ymptotic classifications of solutions of (4.4).

Definition 5.1. Let a ∈ R and α, τ ∈ R+. The solution y of (4.4) is called major
solution, if it satisfies the asymptotic relationship

lim sup
t→∞

∣∣ y(t)
tk1 exp{s1t}

∣∣ > 0 ,

where s1 is the rightmost root of (5.2) and k1 its algebraic multiplicity.

Definition 5.2. Let a ∈ R, α, τ ∈ R+, sw (w = 1, 2, . . . ) be roots of (5.2) with
ordering <(sw) ≥ <(sw+1) and let kw (w = 1, 2, . . . ) be the corresponding algebraic
multiplicities. The solution y of (4.4) is called m-minor solution, if it satisfies the
asymptotic relationships

lim sup
t→∞

∣∣ y(t)
tkm exp{smt}

∣∣ = 0 and lim sup
t→∞

∣∣ y(t)
tkm+1 exp{sm+1t}

∣∣ > 0 .

Remark 5.3. The notions of the major and m-minor solutions are not just theo-
retical, but such solutions can be constructively obtained via appropriate choice of
the initial function φ. For example, if s1 is simple with a non-negative real part,
then, by (4.1)–(4.3), the major solution occurs if φ meets the condition

dαe−1∑
j=0

φjb1,j + ac1,0

∫ 0

−τ
φ(u) exp{−s1(τ + u)}du 6= 0

where b1,j , c1,0 have the same meaning as in (4.2)–(4.3). Clearly, such a con-
dition is satisfied by infinitely many initial functions, e.g. by φ(u) = 1, φj = 0
(j = 1, . . . , dαe − 1) and φ0 6= −ac1,0(1− exp{−s1τ})/(b1,0s1). Similarly, m-minor
solution is characterized by the conditions

dαe−1∑
j=0

φjbw,j + acw,0

∫ 0

−τ
φ(u) exp{−sw(τ + u)}du = 0 for w = 1, . . . ,m ,
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dαe−1∑
j=0

φjbm+1,j + acm+1,0

∫ 0

−τ
φ(u) exp{−sm+1(τ + u)}du 6= 0

provided sw (w = 1, . . . ,m+ 1) are simple roots and bw,j , cw,0, bm+1,j , cm+1,0 have
the same meaning as in (4.2)–(4.3).

Using the notions of major and m-minor solutions, we can formulate in a more
detail assertions revealing the relation between oscillatory properties of (4.4) and
location of roots of (5.2) in the complex plane.

Lemma 5.4. Let a ∈ R \ (Q0(α, τ) ∪ {0}), α ∈ R+ \ Z+, τ ∈ R+ and let sw
(w = 1, 2, . . . ) be roots of (5.2) with ordering <(sw) ≥ <(sw+1). Then the major
solutions of (4.4) do not tend to zero and there exists M > 0 such that all m-minor
solutions of (4.4) are non-oscillatory and tend to zero as t → ∞ for all m ≥ M .
Furthermore, it holds:

(i) If a ≤ −((2 − α)π/(2π))α for α < 2 or a < 0 for α > 2, then all major
solutions of (4.4) are oscillatory.

(ii) If α < 4 and 0 < a < ((4 − α)π/(2π))α, then all non-trivial solutions of
(4.4) are non-oscillatory.

(iii) If α < 4 and a = ((4 − α)π/(2π))α, then all major solutions of (4.4)
are non-oscillatory. Moreover, all 1-minor solutions are oscillatory and
bounded.

(iv) If a > ((4 − α)π/(2π))α for α < 4 or a > 0 for α > 4, then all major
solutions of (4.4) are non-oscillatory. Moreover, all 1-minor solutions are
oscillatory and unbounded.

Proof. The first part of the assertion follows from the expansion of solution y of
(4.4) based on (4.2)–(4.3). By Proposition 3.2, the rightmost root s1 has a non-
negative real part, therefore the major solutions involve, as a dominant term, an
exponential function which does not tend to zero. Using a technique similar to that
in Remark 5.3 we can always eliminate all terms in the asymptotic expansion of y
corresponding to the characteristic roots with a non-negative real part, and, thus,
construct non-oscillatory m-minor solutions algebraically tending to zero. Further
utilization of this arguments enables us to obtain even more detailed results:

(i) The value a ≤ −((2 − α)π/(2π))α for α < 2 or a < 0 for α > 2 guarantees
that the rightmost root s1 has a non-negative real part and non-zero imaginary
part (see Propositions 3.1 and 3.2), therefore the major solutions are oscillatory.

(ii)–(iv) If a > 0, Proposition 3.1(i) implies that the rightmost root s1 is a positive
real, therefore the major solutions are non-oscillatory. Eliminating the rightmost
root s1 as in Remark 5.3, the terms corresponding to s2 become dominant and,
again using Proposition 3.2, we obtain the parts (ii)–(iv). �

Remark 5.5. For a = 0, (5.2) has the only root s1 = 0 with multiplicity dαe
and the qualitative behaviour is implied directly by Lemma 2.6(i). In particular, if
α < 1, then all non-trivial solutions of (4.4) are constant, i.e. they are bounded and
non-oscillatory. If α > 1, then all non-trivial solutions of (4.4) are non-oscillatory.
Moreover, if φj = 0 for all j = 1, . . . , dαe − 1, then the solutions are bounded,
otherwise being unbounded.
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It is of a particular interest to emphasize that unlike the integer-order case,
there is no combination of entry parameters such that all the solutions of (4.4) are
oscillatory. In fact, (4.4) has always infinitely many non-oscillatory solutions.

6. Concluding remarks

We have discussed oscillatory and related asymptotic properties of solutions
of the fractional delay differential system (1.6) as well as of the corresponding
scalar equation (4.4). The obtained oscillation results qualitatively differ from
those known from the classical oscillation theory of (integer-order) delay differential
equations. We survey here the most important notes related to this phenomenon.

First, while the appropriate criteria from the classical theory (such as Theorem
1.1) formulate necessary and sufficient conditions for oscillation of all solutions,
their fractional counterparts (Theorem 4.1) present conditions for non-oscillation
of all non-trivial solutions. In particular, our analysis shows that (1.6) cannot ad-
mit only oscillatory solutions. Secondly, considering (1.6), one can observe a close
resemblance between non-oscillation of all non-trivial solutions and convergence to
zero of all solutions (this property defines asymptotic stability of the zero solution
of (1.6)). The latter property is sufficient for non-oscillation of all non-trivial solu-
tions of (1.6) and, moreover, it is not far from being also a necessary one. These
features (along with some other precisions made in Section 5) demonstrate that
(non)oscillatory properties of (1.6) qualitatively depend on the fact if the value α
is integer or non-integer. In particular, Corollary 4.2 implies that the endpoints
of corresponding non-oscillation intervals depend continuously on changing non-
integer derivative order α; when α is crossing the integer-order value, a sudden
change in oscillatory behaviour occurs (see Corollary 1.2). Note that despite of
some introductory papers on oscillation of (1.6) and other related fractional delay
differential equations (see, e.g. [1, 17]), these properties have not been reported yet.

On the other hand, one can observe that dependence of stability areas of (1.6) on
changing derivative order is “continuous”. As illustrated via Figures 1–4, this area is
continuously becoming smaller, starting from the circle (corresponding to the non-
differential case when α = 0) to the empty set (when α = 2). We add that the way
to stability remains closed for all real α ≥ 2. From this viewpoint, considerations
of (1.6) with non-integer derivative order enable a better understanding of classical
stability results on (1.6) with integer α.

The method utilized in our oscillation analysis indicates that the main reason of
a rather strange oscillatory behaviour of (1.6) with non-integer α is hidden in the
algebraic rate of convergence of its solutions to zero (compared to the exponential
rate known from the integer-order case). Since this type of convergence has been
earlier described not only for other types of fractional delay equations (see [2, 9,
11, 12]), but also for fractional equations without delay (see [4, 13, 14, 16]), the
above described oscillatory behaviour might be typical for a more general class of
fractional differential equations.
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Tomáš Kisela

Institute of Mathematics, Brno University of Technology, Technická 2, 616 69 Brno,
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