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MULTIPLICITY AND CONCENTRATION OF NONTRIVIAL

SOLUTIONS FOR GENERALIZED EXTENSIBLE BEAM

EQUATIONS IN RN

JUNTAO SUN, TSUNG-FANG WU

Abstract. In this article, we study a class of generalized extensible beam
equations with a superlinear nonlinearity

∆2u−M
(
‖∇u‖2

L2

)
∆u+ λV (x)u = f(x, u) in RN , u ∈ H2(RN ),

where N ≥ 3, M(t) = atδ+b with a, δ > 0 and b ∈ R, λ > 0 is a parameter, V ∈
C(RN ,R) and f ∈ C(RN × R,R). Unlike most other papers on this problem,

we allow the constant b to be non-positive, which has the physical significance.

Under some suitable assumptions on V (x) and f(x, u), when a is small and λ is

large enough, we prove the existence of two nontrivial solutions u
(1)
a,λ and u

(2)
a,λ,

one of which will blow up as the nonlocal term vanishes. Moreover, u
(1)
a,λ → u

(1)
∞

and u
(2)
a,λ → u

(2)
∞ strongly in H2(RN ) as λ → ∞, where u

(1)
∞ 6= u

(2)
∞ ∈ H2

0 (Ω)

are two nontrivial solutions of Dirichlet BVPs on the bounded domain Ω. Also,
the nonexistence of nontrivial solutions is also obtained for a large enough.

1. Introduction

We consider the nonlinear generalized extensible beam equations of the form

∆2u−M
(
‖∇u‖2L2

)
∆u+ λV (x)u = f(x, u) in RN ,

u ∈ H2(RN ),
(1.1)

where N ≥ 3,∆2u = ∆(∆u),M(t) = atδ + b with a, δ > 0 and b ∈ R, λ > 0 is a
parameter, and f ∈ C(RN × R,R).

We assume that the potential V (x) satisfies the following assumptions:

(A1) V ∈ C(RN ) and V (x) ≥ 0 for all x ∈ RN ;
(A2) there exists c0 > 0 such that the set {V < c0} := {x ∈ RN : V (x) < c0}

has finite positive Lebesgue measure for N ≥ 4 and

|{V < c0}| < S−2
∞
(
1 +

A2
0

2

)−1
for N = 3,

where | · | is the Lebesgue measure, S∞ is the best Sobolev constant for the
imbedding of H2(RN ) in L∞(RN ) for N = 3, and A0 is defined in (1.7)
below;
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(A3) Ω = int{x ∈ RN : V (x) = 0} is nonempty and has smooth boundary with
Ω = {x ∈ RN : V (x) = 0}.

The above hypotheses, suggested by Bartsch et al. [3], imply that λV (x) repre-
sents a potential well whose depth is controlled by λ. If λ is sufficiently large, then
λV (x) is known as the steep potential well. About its applications, we refer the
reader to [15, 23, 24, 25, 26, 27, 35, 36] and references therein.

Equation (1.1) arises in an interesting physical context. In 1950, Woinowsky and
Krieger [31] introduced the following extensible beam equation:

ρutt + EIuxxxx −
(Eh

2I

∫ L

0

|ux|2dx+ P0

)
uxx = 0, (1.2)

where L is the length of the beam in the rest position, E is the Young modulus of
the material, I is the cross-sectional moment of inertia, ρ is the mass density, P0 is
the tension in the rest position and h is the cross-sectional area. This model is used
to describe the transverse deflection u(x, t) of an extensible beam of natural length
L whose ends are held a fixed distance apart. Such problems are often referred to as

being nonlocal because of the presence of the term (
∫ L

0
|ux|2dx)uxx, which indicates

the change in the tension of the beam due to its extensibility. The qualitative and
stable analysis of solutions for (1.2) can be traced back to the 1970s, for instance
in the papers by Ball [2], Dickey [10] and Medeiros [21].

As a simplification of the von Karman plate equation, Berger [4] proposed the
plate model describing large deflection of plate as follows

utt + ∆2u−
(∫

Ω

|∇u|2dx+Q0

)
∆u = f(u, ut, x), (1.3)

where Ω ⊂ RN (N = 1, 2) is a bounded domain with a sufficiently smooth bound-
ary, the parameter Q0 is in-plane forces applied to the plate (Q0 > 0 represents
outward pulling forces and Q0 < 0 means inward extrusion forces) and the func-
tion f represents transverse loads which may depend on the displacement u and
the velocity ut. Apparently, when N = 1 and f ≡ 0 in (1.3), the corresponding
equation becomes the extensible beam equation (1.2). Owing to its importance,
the various properties of solutions for (1.3) have been treated by many researchers;
see for example, [8, 9, 20, 22, 34]. More precisely, Patcheu [22] investigated the ex-
istence and decay property of global solutions to the Cauchy problem of (1.3) with
f(u, ut, x) ≡ f(ut) in the abstract form. Yang [34] studied the global existence, sta-
bility and the longtime dynamics of solutions to the initial boundary value problem
(IBVP) of an extensible beam equation with nonlinear damping and source terms
in any space dimensions, i.e., (1.3) with f(u, ut, x) = g(ut) + h(u) + k(x).

In the previous two decades, the stationary form of (1.3), of the form similar
to (1.1), has begun to attract attention, specially on the existence and multiplicity
of nontrivial solutions, but the relevant results are rare. We refer the reader to
[7, 12, 16, 19, 28, 29, 32, 33] and references therein. To be precise, Ma [19] studied
the existence of nontrivial solutions for a class of extensible beam equations with
nonlinear boundary conditions in dimension one. Wang et al. [28] concentrated on
the Navier BVPs,

∆2u+ λ(a

∫
Ω

|∇u|2dx+ b)∆u = f(x, u) x ∈ Ω,

u = ∆u = 0 x ∈ ∂Ω,
(1.4)
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where Ω ⊂ RN is a smooth bounded domain and λ, a, b > 0. Applying mountain
pass techniques and the truncation method, they obtained the existence of non-
trivial solutions for (1.4) for λ small enough when f(x, u) satisfies some superlinear
assumptions. Cabada and Figueiredo [7] considered a class of generalized extensible
beam equations with critical growth in RN ,

∆2u−M(‖∇u‖2L2)∆u+ u = λf(u) + |u|2
∗∗−2u in RN ,

u ∈ H2(RN ),
(1.5)

where M : R+ → R+ are continuous increasing functions, f ∈ C(R,R), 2∗∗ = 2N
N−4

with N ≥ 5 and λ > 0 is a parameter. By using the minimax theorem and the
truncation technique, the existence of nontrivial solutions of ( 1.5) is proved for λ
sufficiently large. Later, Liang and Zhang [16] obtained the existence and multi-
plicity of nontrivial solutions for (1.5) via Lions’ second concentration-compactness
principle.

On the other hand, steep potential well has been applied to the study of the
existence and multiplicity of nontrivial solutions for biharmonic equations without
nonlocal term; see, for example, [14, 18, 26, 30, 35]. Specifically, Sun et al. [26] in-
vestigated the following biharmonic equations with p-Laplacian and steep potential
well,

∆2u− β∆pu+ λV (x)u = f(x, u) in RN ,

u ∈ H2(RN ),
(1.6)

where N ≥ 1, β ∈ R, ∆pu = div(|∇u|p−2∇u) with p ≥ 2 and λV (x) is a steep
potential well. When f satisfies various superlinear or sublinear assumptions, they
proved that (1.6) admits one or two nontrivial solutions, respectively.

Motivated by all results mentioned above, in the present paper we are concerned
with a class of generalized extensible beam equations with steep potential well, i.e.
(1.1). We focus our attention on the multiplicity and concentration of nontrivial
solutions for (1.1). Distinguished from the existing literatures, (I) we allow the con-
stant b to be non-positive, which has the physical significance; (II) we are interested
in seeking two nontrivial solutions for (1.1) with a superlinear nonlinearity, one of
which will blow up as the nonlocal term vanishes; (III) we would like to explore
the phenomenon of concentrations of two different nontrivial solutions as λ → ∞,
which seems to be less involved in extensible beam equations.

It is noteworthy that in analysis, we have to face some challenges. First, since
the constant b ≤ 0 is allowed, how to construct an appropriate norm of the working
space such that this norm is associated with the norm ‖∇u‖L2 = (

∫
RN |∇u|

2dx)1/2

is crucial. Second, having considered the fact that the norms ‖∇u‖L2 and ‖u‖H2 =
(
∫
RN (|∆u|2 + |∇u|2 + u2)dx)1/2 are not equivalent, how to verify that the energy

functional of (1.1) is bounded below and coercive in H2(RN ) is critical.
To overcome these difficulties, in this paper some new inequalities are established

and new research techniques are introduced. By so doing, we obtain the existence
of two nontrivial solutions for (1.1) by the minimax theory and the nonexistence of
nontrivial solutions. Furthermore, we successfully figure out the concentrations of
two different nontrivial solutions for (1.1) as λ→∞.

Before stating our results, we shall first introduce some notations. Denote the
best Sobolev constant for the imbedding H2(RN ) ↪→ Lr(RN )(2 ≤ r < +∞) by Sr
for N = 4. Let A0 > 0 be a Gagliardo-Nirenberg constant satisfying the following
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Gagliardo-Nirenberg inequality∫
RN
|∇u|2dx ≤ A2

0

(∫
RN
|∆u|2dx

)1/2(∫
RN

u2dx
)1/2

. (1.7)

Set

βN :=

{(
1 +

A2
0

2

)
(1 +A

16/N

N |{a < c0}|4/N ) for N = 3, 4,(
1 +

A2
0

2

)
(1 +B

2

N |{V < c0}|4/N ) for N ≥ 4,

and

Θ2,N :=


[
(
1 +

A2
0

2

)−1 − S2
∞|{V < c0}|]−1 for N = 3,

S−2
2

(
1 +

A2
0

2

)
for N = 4,

1 +
A2

0

2 for N > 4.

Next we summarize our main results using the following assumptions:

(A4) f(x, s) is a continuous function on RN × R;
(A5) there exists a constant 0 < d0 < α such that

pF (x, s)− f(x, s)s ≤ d0s
2 for all x ∈ RN and s ∈ R,

where

α =

{
1
2δΘ

−2
2,N (2 + bA2

0βN ) if − 2A−2
0 β−1

N < b < 0,

δΘ−2
2,N if b ≥ 0,

and F (x, s) =
∫ s

0
f(x, t)dt;

(A6) for each ε ∈ (0, 1
2 (2 + bA2

0βN )Θ−2
2,N ), there exist constants 2 < p < 2N

N−2 and

C1,ε, C2,ε > 0 satisfying C1,ε >
2δ+2−p
δp C2,ε such that for all x ∈ RN and s ∈

R,

C2,εs
p−1 − γs ≤ f(x, s) ≤ εs+ C1,εs

p−1

for some constant γ independent on ε.

Theorem 1.1. Suppose that N ≥ 3, δ ≥ 2
N−2 , b > −2A−2

0 β−1
N and assumptions

(A1)–(A6) hold. Then there exists constants Λ1, a∗ > 0 such that for every λ ≥
Λ1 and 0 < a < a∗, (1.1) admits at least two nontrivial solutions u

(1)
a,λ and u

(2)
a,λ

satisfying Ja,λ(u
(2)
a,λ) < 0 < Ja,λ(u

(1)
a,λ). In particular, u

(2)
a,λ is a ground state solution

of (1.1). Furthermore, when δ > 2
N−2 , for every λ ≥ Λ1,

Ja,λ(u
(2)
a,λ)→ −∞ and ‖u(2)

a,λ‖λ →∞ as a→ 0,

where Ja,λ is the energy functional of (1.1) and ‖ · ‖λ is defined as (2.1).

Theorem 1.2. Suppose that N ≥ 3, δ ≥ 2
N−2 , b > −2A−2

0 β−1
N and conditions (A1),

(A2) hold. In addition, we assume that the function f is a continuous function on
RN × R and satisfies

(A6’) for each ε ∈ (0, bS
2|{V < c0}|−2/N ), there exists constants 2 < p < 2N

N−2

and C1,ε > 0 such that for all x ∈ RN s ∈ R,

f(x, s) ≤ εs+ C1,εs
p−1.

Then there exists a∗ > 0 such that for every a > a∗, (Ka,λ) does not admit any

nontrivial solution for all λ > bc−1
0 S

2|{V < c0}|−2/N .
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Theorem 1.3. Assume that N ≥ 5. Let u
(1)
a,λ and u

(2)
a,λ be the solutions obtained

by Theorem 1.1. Then u
(1)
a,λ → u

(1)
∞ and u

(2)
a,λ → u

(2)
∞ in H2(RN ) as λ → ∞, where

u
(1)
∞ 6= u

(2)
∞ ∈ H2

0 (Ω) are two nontrivial solutions of the Dirichlet BVP

∆2u−M(

∫
Ω

|∇u|2dx)∆u = f(x, u) in Ω,

u =
∂u

∂n
= 0, on ∂Ω.

(1.8)

The remainder of this paper is organized as follows. After presenting some
preliminary results in section 2, we prove Theorem 1.1 in section 3, and demonstrate
proof of Theorem 1.2 in Sections 4. Sections 5 is dedicated to the proof of Theorem
1.3.

2. Preliminaries

Let

X =
{
u ∈ H2(RN ) :

∫
RN

(|∆u|2 + V (x)u2)dx <∞
}

be equipped with the inner product and norm

〈u, v〉 =

∫
RN

(∆u∆v + V (x)uv)dx, ‖u‖ = 〈u, u〉1/2.

For λ > 0, we also need the following inner product and norm

〈u, v〉λ =

∫
RN

(∆u∆v + λV (x)uv)dx, ‖u‖λ = 〈u, u〉1/2λ . (2.1)

It is clear that ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Now we set Xλ = (X, ‖u‖λ).
By the Young and Gagliardo-Nirenberg inequalities, there exists a constant A0 >

0 such that ∫
RN
|∇u|2dx ≤ A2

0

2

∫
RN

(
|∆u|2 + u2

)
dx. (2.2)

This shows that∫
RN

(|∆u|2 + u2)dx ≤ ‖u‖2H2 ≤
(
1 +

A2
0

2

) ∫
RN

(
|∆u|2 + u2

)
dx. (2.3)

For N = 3, 4, applying condition (A1) and the Hölder, Young and Gagliardo-
Nirenberg inequalities, there exists a sharp constant AN > 0 such that∫

RN
u2dx

≤ 1

c0

∫
{V≥c0}

V (x)u2dx+
(
|{V < c0}|

∫
RN
|u|4dx

)1/2

≤ 1

c0

∫
RN

V (x)u2dx+
NA

16
N

N |{V < c0}|
4
N

8

∫
RN
|∆u|2dx+

8−N
8

∫
RN

u2dx,

which shows that∫
RN

u2dx ≤ 8

Nc0

∫
RN

V (x)u2dx+A
16/N

N |{a < c0}|4/N
∫
RN
|∆u|2dx. (2.4)
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It follows from (2.3) and (2.4) that

‖u‖2H2 ≤
(
1 +

A2
0

2

)
max

{
1 +A

16/N

N |{a < c0}|4/N ,
8

Nc0

}
‖u‖2. (2.5)

Similarly, we obtain

‖u‖2H2 ≤
(
1 +

A2
0

2

)(
1 +A

16/N

N |{a < c0}|4/N
)
‖u‖2λ (2.6)

for λ ≥ 8N−1c−1
0 (1 + A

16/N

N |{a < c0}|4/N ). For N > 4, by conditions (A1), (A2),

and Hölder and Gagliardo-Nirenberg inequalities, there exists a constant BN > 0
such that∫

RN
u2dx =

∫
{V≥c0}

u2dx+

∫
{V <c0}

u2dx

≤ 1

c0

∫
RN

V (x)u2dx+B
2

N |{V < c0}|4/N
∫
RN
|∆u|2dx.

Combining the above inequality with (2.3) yields

‖u‖2H2 ≤
(
1 +

A2
0

2

)
max

{
1 +B

2

N |{V < c0}|4/N ,
1

c0

}
‖u‖2. (2.7)

Similarly, we have

‖u‖2H2 ≤
(
1 +

A2
0

2

)(
1 +B

2

N |{V < c0}|4/N
)
‖u‖2λ (2.8)

for λ ≥ c−1
0 (1 +B

2

N |{V < c0}|4/N ). Set

αN =

{(
1 +

A2
0

2

)
max{1 +A

16/N

N |{a < c0}|4/N , 8
Nc0
} for N = 3, 4,(

1 +
A2

0

2

)
max{1 +B

2

N |{V < c0}|4/N , 1
c0
} for N ≥ 5.

Thus, it follows from (2.5) and (2.7) that

‖u‖2H2 ≤ αN‖u‖2, (2.9)

which implies that the imbedding X ↪→ H2(RN ) is continuous. If we set

ΛN :=

{
8N−1c−1

0

(
1 +A

16/N

N |{a < c0}|4/N
)

for N = 3, 4,

c−1
0 (1 +B

2

N |{V < c0}|4/N ) for N ≥ 5,

then we have

‖u‖2H2 ≤ βN‖u‖2λ for λ ≥ ΛN , (2.10)

where βN is defined as (1.7). Furthermore, by (2.2), (2.3) and (2.10) one has∫
RN
|∇u|2dx ≤ 1

2
A2

0βN‖u‖2λ for λ ≥ ΛN . (2.11)

Since the imbedding H2(R3) ↪→ L∞(R3) is continuous, by (2.6), for any r ∈ [2,+∞)
we have∫

R3

|u|rdx ≤ ‖u‖r−2
L∞

∫
R3

u2dx

≤ S−(r−2)
∞

(
1 +

A2
0

2

)r/2
(1 +A

16/3

3 |{a < c0}|4/3)r/2‖u‖rλ

(2.12)
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for λ ≥ 8
3c0

(1 + A
16/3

3 |{a < c0}|4/3). Moreover, using the fact that the imbedding

H2(R4) ↪→ Lr(R4) (2 ≤ r < +∞) is continuous and (2.6), for any r ∈ [2,+∞) one
has ∫

R4

|u|rdx ≤ S−rr
(
1 +

A2
0

2

)r/2(
1 +A

4

4|{a < c0}|
)r/2‖u‖rλ (2.13)

for λ ≥ 2c−1
0 (1 + A

4

4|{a < c0}|), where Sr is the best Sobolev constant for the
imbedding of H2(R4) in Lr(R4) (2 ≤ r < +∞). Finally, for N > 4, from conditions
(A1), (A2), (2.8) and Hölder and Gagliardo-Nirenberg inequalities again, it follows
that for any r ∈ [2, 2N

N−4 ),∫
RN
|u|rdx

≤ CN(r−2)/4
0

(∫
RN
|u|2dx

)[2N−r(N−4)]/8(∫
RN
|∆u|2dx

)N(r−2)/8

≤ CN(r−2)/4
0

(
1 +

A2
0

2

)r/2‖u‖rλ for λ ≥ 1 + C2
0 |{V < c0}|4/N

c0
.

(2.14)

Set

Θr,N :=


S
−(r−2)
∞

(
1 +

A2
0

2

)r/2
(1 +A

16/3

3 |{a < c0}|4/3)r/2 if N = 3,

S−rr
(
1 +

A2
0

2

)r/2
(1 +A

4

4|{a < c0}|)r/2 if N = 4,

C
N(r−2)/4
0

(
1 +

A2
0

2

)r/2
(1 +B

2

N |{V < c0}|4/N )r/2 if N > 4.

(2.15)

Thus, (2.12)–(2.15) show that for any r ∈ [2, 2∗) and λ ≥ ΛN , it holds∫
RN
|u|rdx ≤ Θr,N‖u‖rλ. (2.16)

It is easily seen that (1.1) is variational and its solutions are critical points of the
functional defined in Xλ by

Ja,λ(u) =
1

2
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
b

2
‖∇u‖2L2 −

∫
RN

F (x, u)dx. (2.17)

It is not difficult to prove that the functional Ja,λ is of class C1 in Xλ, and that

〈J ′a,λ(u), v〉 =

∫
RN

[∆u ·∆v + λV (x)uv]dx+ a‖∇u‖2δL2

∫
RN
∇u · ∇vdx

+ b

∫
RN
∇u · ∇vdx−

∫
RN

f(x, u)vdx.

(2.18)

Furthermore, we have the following results.

Lemma 2.1. Suppose that N ≥ 3 and δ ≥ 2/(N − 2). In addition, we assume
that conditions (V 1)− (V 2), (F1) and (F3) hold. Then the energy functional Ja,λ
is bounded below and coercive on Xλ for all a > 0 and

λ ≥ Λ0 :=

max{ΛN , 2ε
c0
} if δ > 2

N−2 ,

max{ΛN , 2ε
c0

+
4C1,ε

c0p

( 2C1,ε(1+δ)

apS
2N/(N−2)

) (p−2)(N−2)
2N−p(N−2) } if δ = 2

N−2 .

Furthermore, for all a > 0 and λ ≥ Λ0, there exists a constant Ra > 0 such that

Ja,λ(u) ≥ 0 for all u ∈ Xλ with ‖u‖λ ≥ Ra
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Proof. Let u ∈ Xλ. Note that for any 2 ≤ r ≤ 2∗ := 2N
N−2 , it holds∫

RN
|u|rdx

≤
(∫

RN
|u|2dx

) 2∗−r
2∗−2

(∫
RN
|u|2

∗
dx
) r−2

2∗−2

≤
( 1

λc0

∫
RN

λV (x)u2dx+ S
−2|{V < c0}|

2
N ‖∇u‖2L2

) 2∗−r
2∗−2

(
S
−1‖∇u‖L2

)N(r−2)
2

,

(2.19)
where we have used the Hölder and Sobolev inequalities and S is the best Sobolev
constant for the imbedding of D1,2(RN ) in L2∗(RN ). We now divide the proof into
two separate cases:

Case A: ∫
RN

λV (x)u2dx ≥ λc0(
4C1,ε

p(λc0 − 2ε)
)

4
(p−2)(N−2) (S

−1‖∇u‖L2)2∗ .

It follows from condition (A6) and (2.19) that

Ja,λ(u)

≥ 1

2
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
b

2
‖∇u‖2L2 −

ε

2

∫
RN

u2dx− C1,ε

p

∫
RN
|u|pdx

≥ 1

4
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
1

2
(b− εS−2|{V < c0}|

2
N )‖∇u‖2L2

− C1,ε

pS
p |{V < c0}|

2N−p(N−2)
2N ‖∇u‖pL2 .

Since δ ≥ 2
N−2 , we have 1 + δ > p

2 > 1. Then there exists a constant Da such that

Da = min
t≥0

[ at1+δ

2(1 + δ)
+
t

2

(
b− ε|{V < c0}|

2
N

S
2

)
− C1,εt

p/2

pS
p |{V < c0}|

2N−p(N−2)
2N

]
< 0,

and Da → −∞ as a→ 0. This and the above inequality leads to

Ja,λ(u) ≥ 1

4
‖u‖2λ +Da ≥ Da,

which implies that Ja,λ(u) is bounded below and coercive on Xλ for all a > 0 and
λ > max{ΛN , 2ε

c0
}.

Case B: ∫
RN

λV (x)u2dx < λc0(
4C1,ε

p(λc0 − 2ε)
)

4
(p−2)(N−2) (S

−1‖∇u‖L2)2∗ .

By (2.19) one has∫
RN
|u|pdx

≤
( 1

λc0

∫
RN

λV (x)u2dx+
|{V < c0}|

2
N

S
2 ‖∇u‖2L2

) 2∗−p
2∗−2

(
S
−1‖∇u‖L2

)N(p−2)
2

≤ S−2∗
( 4C1,ε

p(λc0 − 2ε)

) 2N−p(N−2)
(p−2)(N−2) ‖∇u‖2

∗

L2 +
|{V < c0}

2N−p(N−2)
2N

S
p ‖∇u‖pL2 .
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This and condition (F3), give

Ja,λ(u)

≥ 1

2
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
b

2
‖∇u‖2L2

− ε

2

∫
RN

u2dx− C1,ε

p

∫
RN
|u|pdx

≥ 1

4
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
1

2

(
b− εS−2|{V < c0}|

2
N

)
‖∇u‖2L2

− C1,ε

pS
2∗

( 4C1,ε

p(λc0 − 2ε)

) 2N−p(N−2)
(p−2)(N−2) ‖∇u‖2

∗

L2 −
C1,ε

pS
p |{V < c0}|

2N−p(N−2)
2N ‖∇u‖pL2 .

If δ = 2
N−2 , then for

λ >
2ε

c0
+

4C1,ε

c0p

[2C1,ε(1 + δ)

apS
2∗

] (p−2)(N−2)
2N−p(N−2) ,

there exists a constant Da < Da < 0 such that

Ja,λ(u) ≥ 1

4
‖u‖2λ +

1

2
(b− εS−2|{V < c0}|

2
N )‖∇u‖2L2

+
[ a

2(1 + δ)
− C1,ε

pS
2∗ (

4C1,ε

p(λc0 − 2ε)
)

2N−p(N−2)
(p−2)(N−2)

]
‖∇u‖2(1+δ)

L2

− C1,ε

pS
p |{V < c0}|

2N−p(N−2)
2N ‖∇u‖pL2

≥ 1

4
‖u‖2λ +Da ≥ Da.

If δ > 2
N−2 , then for λ > 2ε

c0
, there exists a constant D̃a < 0 such that

Ja,λ(u)

≥ 1

4
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
1

2
(b− εS−2|{V < c0}|

2
N )‖∇u‖2L2

− C1,ε

pS
2∗ (

4C1,ε

p(λc0 − 2ε)
)

2N−p(N−2)
(p−2)(N−2) ‖∇u‖2

∗

L2 −
C1,ε

pS
p |{V < c0}|

2N−p(N−2)
2N ‖∇u‖pL2

≥ D̃a.

This indicates that Ja,λ is bounded below and coercive on Xλ for all a > 0 and
λ ≥ Λ0. Furthermore, for all a > 0 and λ ≥ Λ0, it is clear that there exists a
constant Ra > 0 such that

Ja,λ(u) ≥ 0 for all u ∈ Xλ with ‖u‖λ ≥ Ra.
The proof is complete. �

Next, we give a useful theorem, which is the variant version of the mountain pass
theorem. It can help us to find a so-called Cerami type (PS) sequence.

Lemma 2.2 ([11], Mountain Pass Theorem). Let E be a real Banach space with
its dual space E∗, and suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
‖u‖=ρ

I(u),
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for some µ < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 and e, then there exists a sequence {un} ⊂ E such that

I(un)→ c ≥ η and (1 + ‖un‖)‖I ′(un)‖E∗ → 0 as n→∞.

In what follows, we give two lemmas which ensure that the functional Ja,λ has
the mountain pass geometry.

Lemma 2.3. Suppose that b > −2A−2
0 β−1

N . In addition, assume that conditions
(V 1)− (V 2), (F1) and (A6) hold. Then there exists ρ > 0 such that for every a > 0
and λ > ΛN ,

inf{Ja,λ(u) : u ∈ Xλ with ‖u‖λ = ρ} > η

for some η > 0.

Proof. By (2.11) and condition (A6), for all u ∈ Xλ one has

Ja,λ(u)

≥ 1

2
‖u‖2λ +

a

2(1 + δ)
‖∇u‖2(1+δ)

L2 +
b

2
‖∇u‖2L2 −

ε

2

∫
RN

u2dx− C1,ε

p

∫
RN
|u|pdx

≥

{
1
2 (1− εΘ2

2,N )‖u‖2λ −
C1,ε

p Θp
p,N‖u‖

p
λ if b ≥ 0,

1
2 (1 +

bA2
0

2 βN − εΘ2
2,N )‖u‖2λ −

C1,ε

p Θp
p,N‖u‖

p
λ if − 2A−2

0 β−1
N < b < 0.

Let

g(t) =
1

2
(1− εΘ2

2,N )t2 −
C1,εΘ

p
p,N

p
tp for t ≥ 0.

A direct calculation shows that

max
t≥0

g(t) = g(t̄) =
(p− 2)

2p
(1− εΘ2

2,N )p/(p−2)(C1,εΘ
p
p,N )−2/(p−2),

where

t̄ =
[ (1− εΘ2

2,N )

C1,εΘ
p
p,N

]1/(p−2)

.

This shows that when b ≥ 0, for every u ∈ Xλ with ‖u‖λ = t̄ we have Ja,λ(u) ≥
g(t̄) > 0. Choosing ρ = t̄ and

η =
(p− 2)

2p
(1− εΘ2

2,N )p/(p−2)(C1,εΘ
p
p,N )−2/(p−2) > 0,

it is easy to see that the result holds. Similarly, when −2A−2
0 β−1

N < b < 0, for every
u ∈ Xλ with

‖u‖λ = t̃ =
[ (1 +

bA2
0

2 βN − εΘ2
2,N )

C1,εΘ
p
p,N

]1/(p−2)

,

we can take ρ = t̃ and

η =
(p− 2)

2p

(
1 +

bA2
0

2
βN − εΘ2

2,N

)p/(p−2)(
C1,εΘ

p
p,N

)−2/(p−2)

such that the result holds. This completes the proof. �
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Define

Πλ = sup
u∈Xλ\{0}

(
∫
RN |u|

pdx)1/p

‖u‖λ
. (2.20)

It follows from (2.16) that

Πλ ≤ Θp,N for λ ≥ ΛN . (2.21)

Furthermore, by Appendix A there exist Λ1 ≥ ΛN and φλ ∈ Xλ\{0} such that

Πλ =
(
∫
RN |φλ|

pdx)1/p

‖φλ‖λ
> 0 for every λ ≥ Λ1, (2.22)

and there exists a constant Π∞ > 0 independent on λ such that

Πλ ↘ Π∞ as λ↗∞. (2.23)

Setting

a∗ :=
22+δC2,εΠ

p
∞(1 + δ)(p− 2)

δpA
2(1+δ)
0 β1+δ

N

[ C2,εΠ
p
∞(2δ + 2− p)

δp(1 +
bA2

0

2 βN + γΘ2
2,N )

] 2δ+2−p
p−2

.

Lemma 2.4. Assume that b ∈ R, and assumptions (A1)–(A4), (A6) hold. Let
ρ > 0 be as in Lemma 2.3. Then for every λ ≥ Λ1 and 0 < a < a∗, there exists
e ∈ Xλ satisfying

‖e‖λ > ρ and ‖e‖λ →∞ as a→ 0

such that

Ja,λ(e) < 0 and Ja,λ(e)→ −∞ as a→ 0.

Proof. Let φλ ∈ Xλ\{0} be as in (2.22) and let

I(t) = Ia,λ(tφλ)

=
t2

2
‖φλ‖2λ +

at2(1+δ)

2(1 + δ)
‖∇φλ‖2(1+δ)

L2 +
bt2

2
‖∇φλ‖2L2

+
γt2

2

∫
RN

φ2
λdx−

C2,εt
p

p

∫
RN
|φλ|pdx for t > 0.

Then it follows from (2.11) and (2.16) that

I(t) ≤
A

2(1+δ)
0 β1+δ

N ‖φλ‖2(1+δ)
λ t2

23+δ(1 + δ)

[
at2δ

+
22+δ(1 + δ)(1 +

bA2
0

2 βN + γΘ2
2,N )

A
2(1+δ)
0 β1+δ

N ‖φλ‖2δλ
− 23+δ(1 + δ)C2,εΠ

p
∞

pA
2(1+δ)
0 β1+δ

N ‖φλ‖2(1+δ)−p
λ

tp−2
]
.

A direct calculation shows that there exists

ta,λ :=
(22+δC2,εΠ

p
∞(1 + δ)(p− 2)

aδpA
2(1+δ)
0 β1+δ

N

)1/(2δ+2−p)
‖φλ‖−1

λ > 0

such that for every 0 < a < a∗,

at2δa,λ +
2(1 + δ)(b+ γΘ2

2,N )

A2
0βN‖φλ‖2δλ

− 4(1 + δ)C2,εΠ
p
∞

pA2
0βN‖φλ‖

2(1+δ)−p
λ

tp−2
a,λ

=
22+δ(1 + δ)‖φλ‖−2δ

λ

A
2(1+δ)
0 β1+δ

N

[(
1 +

bA2
0

2
βN + γΘ2

2,N

)



12 J. SUN, T.-F. WU EJDE-2019/41

− C2,εΠ
p
∞(2δ + 2− p)
δp

(22+δC2,εΠ
p
∞(1 + δ)(p− 2)

aδpA
2(1+δ)
0 β1+δ

N

) p−2
2δ+2−p

]
< 0 .

This implies I(ta,λ) = Ia,λ(ta,λφλ) < 0 for 0 < a < a∗ and

Ia,λ(ta,λφλ)→ −∞ as a→ 0.

Choosing e = ta,λ|φλ|. Clearly,

‖e‖λ = ‖ta,λφλ‖λ =
[22+δC2,εΠ

p
∞(1 + δ)(p− 2)

aδpA
2(1+δ)
0 β1+δ

N

]1/(2δ+2−p)
→∞ as a→ 0.

Note that for 0 < a < a∗, by (2.21) and (2.23),[22+δC2,εΠ
p
∞(1 + δ)(p− 2)

aδpA
2(1+δ)
0 β1+δ

N

] 1
2δ+2−p

>
[δp(1 +

bA2
0

2 βN + γΘ2
2,N )

C2,εΘ
p
p,N (2δ + 2− p)

] 1
p−2

,

by using (2.21). This and (A6) lead to

‖e‖λ > ρ :=


( 1−εΘ2

2,N

C1,εΘ
p
p,N

)1/(p−2)
if b ≥ 0,( 1+

bA2
0

2 βN−εΘ2
2,N

C1,εΘ
p
p,N

) 1
p−2 if − 2A−2

0 β−1
N < b < 0,

where ρ > 0 is as in Lemma 2.3. Moreover, by condition (A6), it holds Ja,λ(e) ≤
Ia,λ(e) < 0 for 0 < a < a∗. The proof is complete. �

We define

cλ = inf
γ∈Γλ

max
0≤t≤1

Ja,λ(γ(t)),

c0(Ω) = inf
γ∈Γλ(Ω)

max
0≤t≤1

Ja,λ|H2
0 (Ω)(γ(t)),

where Ja,λ|H2
0 (Ω) is a restriction of Ja,λ on H2

0 (Ω),

Γλ = {γ ∈ C([0, 1], Xλ) : γ(0) = 0, γ(1) = e},
Γλ(Ω) = {γ ∈ C([0, 1], H2

0 (Ω)) : γ(0) = 0, γ(1) = e}.

Note that for u ∈ H2
0 (Ω),

Ja,λ|H2
0 (Ω)(u) =

1

2

∫
Ω

|∆u|2dx+
a

2(1 + δ)
(

∫
Ω

|∇u|2dx)2(1+δ)

+
b

2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u)dx

and c0(Ω) independent of λ. Moreover, if conditions (A4) and (A6) hold, then by
the proofs of Lemmas 2.3 and 2.4, we can conclude that Ja,λ|H2

0 (Ω) satisfies the
mountain pass hypothesis as in Theorem 2.2.

Since H2
0 (Ω) ⊂ Xλ for all λ > 0, one can see that 0 < η ≤ cλ ≤ c0(Ω) for all

λ ≥ ΛN . Take D0 > c0(Ω). Then

0 < η ≤ cλ ≤ c0(Ω) < D0 for all λ ≥ ΛN .

By Lemmas 2.3, 2.4 and Theorem 2.2, we obtain that for each λ ≥ ΛN , there exists
a sequence {un} ⊂ Xλ such that

Ja,λ(un)→ cλ > 0 and (1 + ‖un‖λ)‖J ′a,λ(un)‖X−1
λ
→ 0 as n→∞.
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3. Proof of Theorem 1.1

Recall that a C1-functional Ja,λ satisfies Cerami condition at level c ((C)c-
condition for short) if every sequence {un} ⊂ Xλ satisfying

Ja,λ(un)→ c and (1 + ‖un‖λ)‖J ′a,λ(un)‖X−1
λ
→ 0,

has a convergent subsequence, and such sequence is called a (C)c-sequence.

Lemma 3.1. Assume that N ≥ 1, δ > 0 and b > −2A−2
0 β−1

N . In addition, assume
that conditions (A1)–(A4), (A6) hold. Then {un} is bounded in Xλ for each λ ≥ Λ0,
where {un} is a (C)c-sequence.

Proof. Following the argument in Lemma 2.1, we can conclude that the (C)c-
sequence {un} is bounded in Xλ for each λ ≥ Λ0. �

Proposition 3.2. Assume that b > −2A−2
0 β−1

N , and that conditions (A1)–(A6)
hold. Then for each D > 0, there exists Λ1 := Λ1(D) ≥ Λ0 > ΛN such that Ja,λ
satisfies the (C)c-condition in Xλ for all c < D and λ > Λ1.

Proof. Let {un} be a (C)c-sequence with c < D. By Lemma 3.1, {un} is bounded in
Xλ and there exists D0 > 0 such that ‖un‖λ ≤ D0. Then there exist a subsequence
{un} and u0 in Xλ such that

un ⇀ u0 weakly in Xλ,

un → u0 strongly in Lrloc(RN ), for 2 ≤ r < 2∗,

un → u0 a.e. in RN .

Moreover, (2.11) and (2.16) imply that the imbedding Xλ ↪→ W 1,2(RN ) is contin-
uous, which shows that

un ⇀ u0 weakly in W 1,2(RN ).

Similar to the proof of [13, Lemma 4.4], one can easily obtain that

∇un(x)→ ∇u0(x) a.e. in RN .

Thus, it follows from Brezis-Lieb lemma [6] that∫
RN
|∇(un − u0)|2dx =

∫
RN
|∇un|2dx−

∫
RN
|∇u0|2dx+ o(1). (3.1)

Now we prove that un → u0 strongly in Xλ. Let vn = un − u0. Then vn ⇀ 0 in
Xλ. By condition (A2), we have∫

RN
v2
ndx =

∫
{V≥c0}

v2
ndx+

∫
{V <c0}

v2
ndx ≤

1

λc0
‖vn‖2λ + o(1). (3.2)

Using (3.2) and the Hölder and Sobolev inequalities, for any λ > ΛN , we have the
following estimates:

For N = 3,∫
RN
|vn|rdx ≤ ‖vn‖r−2

L∞

∫
RN

v2
ndx ≤

Sr−2
∞
λc0
‖vn‖r−2

H2 ‖vn‖2λ + o(1)

≤ Sr−2
∞
λc0

[(
1 +

A2
0

2

)−1 − S2
∞|{V < c0}|

]−(r−2)/2

‖vn‖rλ + o(1).

(3.3)
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For N = 4,∫
RN
|vn|rdx ≤

(∫
RN

v2
ndx

)1/2(∫
RN

v2(r−1)
n dx

)1/2

≤
( 1

λc0
‖vn‖2λ + o(1)

)1/2

S
−(r−1)
2(r−1)

(
1 +

A2
0

2

)(r−1)/2‖vn‖r−1
λ

=
S
−(r−1)
2(r−1)√
λc0

(
1 +

A2
0

2

)(r−1)/2‖vn‖rλ + o(1).

(3.4)

For N > 4, ∫
RN
|vn|rdx ≤

(∫
RN
|vn|2dx

) 2∗−r
2∗−2

(∫
RN
|vn|2∗dx

) r−2
2∗−2

≤ C
2∗(r−2)
2∗−2

0

( 1

λc0

) 2∗−r
2∗−2 ‖vn‖rλ + o(1).

(3.5)

Set

Ψr :=


Sr−2
∞
λc0

[(1 +
A2

0

2 )−1 − S2
∞|{V < c0}|]−(r−1)/2 if N = 3,

S
−(r−1)

2(r−1)√
λc0

(
1 +

A2
0

2

)(r−1)/2
if N = 4,

C
2∗(r−2)
2∗−2

0 ( 1
λc0

)(2∗−r)/(2∗−2) if N > 4.

Clearly, Ψr → 0 as λ→∞. Inequalities (3.3)–(3.5) indicate that∫
RN
|vn|rdx ≤ Ψr‖vn‖rλ + o(1). (3.6)

Following the argument in [23], it is easy to verify that∫
RN

F (x, vn)dx =

∫
RN

F (x, un)dx−
∫
RN

F (x, u0)dx+ o(1) (3.7)

and

sup
‖h‖λ=1

∫
RN

[f(x, vn)− f(x, un) + f(x, u0)]h(x)dx = o(1).

Thus, using (3.1), (3.7) and Brezis-Lieb Lemma [6], we deduce that

Ja,λ(un)− Ja,λ(u0) =
1

2
‖vn‖2λ +

a

2(1 + δ)
(‖∇un‖2(1+δ)

L2 − ‖∇u0‖2(1+δ)
L2 )

+
b

2
‖∇vn‖2L2 −

∫
RN

F (x, vn)dx+ o(1).

(3.8)

Moreover, it follows from the boundedness of the sequence {un} in Xλ and (2.11)
that there exists a constant A > 0 such that

‖∇un‖2L2 → A as n→∞.
This indicates that for any ϕ ∈ C∞0 (RN ),

o(1) = 〈J ′a,λ(un), ϕ〉

=

∫
RN

∆un∆ϕdx+

∫
RN

λV (x)unϕdx+ a‖∇un‖2δL2

∫
RN
∇un∇ϕdx

+ b

∫
RN
∇un∇ϕdx−

∫
RN

f(x, un)ϕdx

→
∫
RN

∆u0∆ϕdx+

∫
RN

λV (x)u0ϕdx+ aAδ
∫
RN
∇u0∇ϕdx
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+ b

∫
RN
∇u0∇ϕdx−

∫
RN

f(x, u0)ϕdx as n→∞,

which shows that

‖u0‖2λ + (aAδ + b)

∫
RN
|∇u0|2dx−

∫
RN

f(x, u0)u0dx = o(1).

Note that

o(1) = 〈J ′a,λ(un), un〉

= ‖un‖2λ + a‖∇un‖2(1+δ)
L2 + b‖∇un‖2L2 −

∫
RN

f(x, un)undx.

Combining the above two equalities gives

o(1) = ‖un‖2λ + a‖∇un‖2(1+δ)
L2 + b‖∇un‖2L2 −

∫
RN

f(x, un)undx

− ‖u0‖2λ − (aAδ + b)

∫
RN
|∇u0|2dx+

∫
RN

f(x, u0)u0dx

= ‖vn‖2λ + a‖∇un‖2(1+δ)
L2 − a‖∇un‖2δL2‖∇u0‖2L2

+ b‖∇vn‖2L2 −
∫
RN

f(x, vn)vndx+ o(1)

= ‖vn‖2λ + a‖∇un‖2δL2‖∇vn‖2L2 + b‖∇vn‖2L2 −
∫
RN

f(x, vn)vndx+ o(1).

(3.9)

By Lemma 2.1, there exists a constant K < 0 such that

Ja,λ(u0) ≥ K. (3.10)

Thus, by (A5) and (3.8)–(3.10), one has

D −K ≥ c− Ja,λ(u0)

≥ Ja,λ(un)− Ja,λ(u0) + o(1)

≥ 1

2
‖vn‖2λ +

a

2(1 + δ)

(
‖∇un‖2(1+δ)

L2 − ‖∇u0‖2(1+δ)
L2

)
+
b

2
‖∇vn‖2L2 −

∫
RN

F (x, vn)dx+ o(1)

≥ δ

2(1 + δ)
‖vn‖2λ +

bδ

2(1 + δ)
‖∇vn‖2L2 −

d0

2(1 + δ)

∫
RN

v2
ndx

+
a

2(1 + δ)
(‖∇un‖2δL2 − ‖∇u0‖2δL2)‖∇u0‖2L2 + o(1)

≥
δ − d0Θ2

2,N

2(1 + δ)
‖vn‖2λ +

bδ

2(1 + δ)
‖∇vn‖2L2

+
a

2(1 + δ)

(
‖∇un‖2δL2 − ‖∇u0‖2δL2

)
‖∇u0‖2L2 + o(1),

which implies that there exists a constant D̂ = D̂(a,D) > 0 such that

‖vn‖2λ ≤ D̂ + o(1) for every λ > ΛN . (3.11)

It follows (A6), (3.6) and (3.11) that

o(1) = ‖vn‖2λ + a‖∇un‖2δL2‖∇vn‖2L2 + b‖∇vn‖2L2 −
∫
RN

f(x, vn)vndx
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≥ ‖vn‖2λ + b‖∇vn‖2L2 − ε
∫
RN

v2
ndx− C1,ε

∫
RN
|vn|pdx

≥

{
‖vn‖2λ − εΨ2

rD̂ − C1,εΨ
p
rD̂

p/2 if b ≥ 0,
1
2 (2 + bA2

0βN )‖vn‖2λ − εΨ2
rD̂ − C1,εΨ

p
rD̂

p/2 if − 2A−2
0 β−1

N < b < 0,

which implies that there exists Λ1 := Λ1(a,D) ≥ Λ0 > ΛN such that for each
λ > Λ1,

vn → 0 strongly in Xλ.

This completes the proof. �

Theorem 3.3. Assume that N ≥ 3, δ ≥ 2
N−2 and b > −2A−2

0 β−1
N . In addition,

we assume that conditions (A1)–(A6) are satisfied. Then for each 0 < a < a∗ and

λ > Λ1, Ja,λ has a nonzero critical point u
(1)
a,λ ∈ Xλ such that Ja,λ(u

(1)
a,λ) = cλ > 0.

Proof. By Theorem 2.2, Lemmas 2.3 and 2.4, for every λ > Λ1 and 0 < a < a∗,
there exists a sequence {un} ⊂ Xλ satisfying

Ja,λ(un)→ cλ > 0 and (1 + ‖un‖λ)‖J ′a,λ(un)‖X−1
λ
→ 0, as n→∞.

By Lemma 3.1, one has {un} is bounded in Xλ. Then it follows from Proposition
3.2 and the fact of 0 < η ≤ cλ ≤ c0(Ω) that Ja,λ satisfies the (C)α-condition in Xλ

for all cλ < D and λ > Λ1. This indicates that there exist a subsequence {un} and

u
(1)
a,λ ∈ Xλ such that un → u

(1)
a,λ strongly in Xλ. The proof is complete. �

Lemma 3.4. Suppose that N ≥ 3, δ ≥ 2
N−2 and b > −2A−2

0 β−1
N . In addition,

assume that conditions (A1)-(A4),(F1), (A6) hold. Then for every 0 < a < a∗ and
λ > Λ1 one has

−∞ < θa =: inf{Ja,λ(u) : u ∈ Xλ with ρ < ‖u‖λ < Ra} <
κ

2
< 0. (3.12)

The proof of the above lemma follows directly from Lemmas 2.1 and 2.4.

Theorem 3.5. Suppose that N ≥ 3, δ ≥ 2/(N − 2) and b > −2A−2
0 β−1

N . In
addition, assume that conditions (A1)–(A6) hold. Then for every 0 < a < a∗ and

λ > Λ1, Ja,λ has a nonzero critical point u
(2)
a,λ ∈ Xλ such that

Ja,λ(u
(2)
a,λ) = θa < 0,

where θ̂a is as in (3.12). Furthermore, when δ > 2
N−2 , for every λ > Λ1 it holds

Ja,λ(u
(2)
a,λ)→ −∞ and ‖u(2)

a,λ‖λ →∞ as a→ 0,

Proof. It follows from Lemmas 3.1, 3.4 and the Ekeland variational principle that
there exists a minimizing bounded sequence {un} ⊂ Xλ with ρ < ‖un‖λ < Ra such
that

Ja,λ(un)→ θa and J ′a,λ(un)→ 0 as n→∞.

Similar to the proof of Theorem 3.3, there exist a subsequence {un} and u
(2)
a,λ ∈ Xλ

with ρ < ‖u(2)
a,λ‖λ < Ra such that un → u

(2)
a,λ strongly in Xλ, which implies that

J ′a,λ(u
(2)
a,λ) = 0 and Ja,λ(u

(2)
a,λ) = θa < 0. Furthermore, by Lemmas 2.1 and 2.4 we

have
Ja,λ(u

(2)
a,λ) ≤ Ja,λ(e)→ −∞ as a→ 0.

This implies ‖u(2)
a,λ‖λ →∞ as a→ 0. The proof is complete. �
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We are now ready to prove Theorem 1.1. By Theorems 3.3 and 3.5, for every

0 < a < a∗ and λ > Λ1, there exist two nontrivial solutions u
(1)
a,λ and u

(2)
a,λ of (Ka,λ)

such that

Ja,λ(u
(2)
a,λ) = θa <

κ

2
< 0 < η < cλ = Ja,λ(u

(1)
a,λ),

which implies that u
(1)
a,λ 6= u

(2)
a,λ. Furthermore, when δ > 2

N−2 , for every λ > Λ1 it
holds

Ja,λ(u
(2)
a,λ)→ −∞ and ‖u(2)

a,λ‖λ →∞ as a→ 0.

Since Ja,λ(u) ≥ 0 on {u ∈ Xλ with ‖u‖λ ≤ ρ ∪ ‖u‖λ ≥ Ra} by Lemmas 3.4 and

2.3, we conclude that u
(2)
a,λ is a ground state solution of (Ka,λ). This completes the

proof of Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2. Let u0 be a nontrivial solution
of (Ka,λ). Then

‖u0‖2λ + a‖∇u0‖2(1+δ)
L2 + b‖∇u0‖2L2 −

∫
RN

f(x, u0)u0dx = 0.

We now divide the proof into two separate cases:

Case A: ∫
RN

λV (x)u2
0dx ≥ λc0(

C1,ε

λc0 − ε
)

4
(p−2)(N−2) (S

−1‖∇u0‖L2)
2N
N−2 .

It follows from the condition (A6) and (2.19) that

0 = ‖u0‖2λ + a‖∇u0‖2(1+δ)
L2 + b‖∇u0‖2L2 −

∫
RN

f(x, u0)u0dx

≥ ‖u0‖2λ + a‖∇u0‖2(1+δ)
L2 + b‖∇u0‖2L2 − ε

( 1

λc0

∫
RN

λV (x)u2
0dx

+ S
−2|{V < c0}|

2
N ‖∇u0‖2L2

)
− C1,ε

S
N(p−2)

2

( 1

λc0

∫
RN

λV (x)u2
0dx

+ S
−2|{V < c0}|

2
N ‖∇u0‖2L2

) 2N−p(N−2)
4 ‖∇u0‖

N(p−2)
2

L2

≥ a‖∇u0‖2(1+δ)
L2 +

(
b− εS−2|{V < c0}|2/N

)
‖∇u0‖2L2

− C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2 +

(∫
RN

λV (x)u2
0dx
) 2N−p(N−2)

4

×
[λc0 − ε

λc0

(∫
RN

λV (x)u2dx
) (p−2)(N−2)

4

− C1,ε

S
N(p−2)

2

( 1

λc0

) 2N−p(N−2)
4 ‖∇u0‖

N(p−2)
2

L2

]
≥ a‖∇u0‖2(1+δ)

L2 +
(
b− εS−2|{V < c0}|2/N

)
‖∇u0‖2L2

− C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2 > 0 ,
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provided that

a >
p− 2

2δ

[ 2(δ + 1)− p
2δ(b− εS−2|{V < c0}|2/N )

] 2(δ+1)−p
p−2

(C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N

) 2δ
p−2

.

This is a contradiction.

Case B: ∫
RN

λV (x)u2
0dx < λc0[

C1,ε

(λc0 − ε)
]

4
(p−2)(N−2) (S

−1‖∇u0‖L2)
2N
N−2 .

By (2.19) one has∫
RN
|u0|pdx

≤
( 1

λc0

∫
RN

λV (x)u2
0dx+

|{V < c0}|2/N

S
2 ‖∇u0‖2L2

) 2∗−p
2∗−2

(
S
−1‖∇u0‖L2

)N(p−2)
2

< S
−2∗
( C1,ε

λc0 − ε

) 2N−p(N−2)
(p−2)(N−2) ‖∇u0‖2

∗

L2 + S
−p|{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2 .

Using this and (A6), we have

0 = ‖u0‖2λ + a‖∇u0‖2(1+δ)
L2 + b‖∇u0‖2L2 −

∫
RN

f(x, u0)u0dx

> a‖∇u0‖2(1+δ)
L2 + (b− εS−2|{V < c0}|

2
N )‖∇u0‖2L2

−
C

4
(p−2)(N−2)

1,ε

S
2∗ (λc0 − ε)−

2N−p(N−2)
(p−2)(N−2) ‖∇u0‖2

∗

L2

− C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2 .

If δ = 2/(N − 2), then for

a >
p− 2

2δ

[ 2(δ + 1)− p
2δ(b− εS−2|{V < c0}|2/N )

] 2(δ+1)−p
p−2

(C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N

) 2δ
p−2

+
C1,ε

S
2∗

( C1,ε

λc0 − ε

) 2N−p(N−2)
(p−2)(N−2)

,

we have

0 > a‖∇u0‖2(1+δ)
L2 + (b− εS−2|{V < c0}|

2
N )‖∇u0‖2L2

− C1,ε

S
2∗

( C1,ε

λc0 − ε

) 2N−p(N−2)
(p−2)(N−2) ‖∇u0‖2

∗

L2

− C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2 > 0.

This is a contradiction. If δ > 2/(N − 2), then we consider the following two cases:
(i)

‖∇u0‖2L2 ≥ S
2|{V < c0}|

N−2
N

(λc0 − ε
C1,ε

) 2
p−2

.

Then we have

0 > a‖∇u0‖2(1+δ)
L2 + (b− εS−2|{V < c0}|

2
N )‖∇u0‖2L2
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− C1,ε

S
2∗

( C1,ε

(λc0 − ε)

) 2N−p(N−2)
(p−2)(N−2) ‖∇u0‖2

∗

L2 −
C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2

≥ a‖∇u0‖2(1+δ)
L2 +

(
b− εS−2|{V < c0}|

2
N

)
‖∇u0‖2L2

− 2C1,ε

S
2∗ (

C1,ε

(λc0 − ε)
)

2N−p(N−2)
(p−2)(N−2) ‖∇u0‖2

∗

L2 > 0 ,

provided that

a >
2

2+δ(N−2)
2 C

2δ
p−2

1,ε (λc0 − ε)−
[2N−p(N−2)]δ

2(p−2)

δ(N − 2)S
Nδ

×
[ δ(N − 2)− 2

δ(N − 2)(b− εS−2|{V < c0}|
2
N )

] δ(N−2)−2
2

.

This is a contradiction.
(ii)

‖∇u0‖2L2 < S
2|{V < c0}|

N−2
N (

λc0 − ε
C1,ε

)
2
p−2 .

Then

0 > a‖∇u0‖2(1+δ)
L2 +

(
b− εS−2|{V < c0}|

2
N

)
‖∇u0‖2L2

− C1,ε

S
2∗

( C1,ε

(λc0 − ε)

) 2N−p(N−2)
(p−2)(N−2) ‖∇u0‖2

∗

L2 −
C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2

≥ a‖∇u0‖2(1+δ)
L2 +

(
b− εS−2|{V < c0}|

2
N

)
‖∇u0‖2L2

− 2
C1,ε

S
p |{V < c0}|

2N−p(N−2)
2N ‖∇u0‖pL2 > 0 ,

provided that

a >
p− 2

2δ

[ 2(δ + 1)− p
2δ(b− εS−2|{V < c0}|2/N )

] 2(δ+1)−p
p−2

(2C1,ε|{V < c0}|
2N−p(N−2)

2N

S
p

) 2δ
p−2

.

We also get a contradiction. Therefore, there exists a constant a∗ > 0 such that for
every a > a∗, (Ka,λ) does not admit any nontrivial solution for all λ > ΛN . This
completes the proof of Theorem 1.2.

5. Concentration of solutions

In this section, we investigate the concentration for solutions and give the proof
of Theorem 1.3.

Proof of Theorem 1.3. Following the arguments in [3], we first choose a positive

sequence {λn} such that Λ1 < λ1 ≤ λ2 ≤ ... ≤ λn →∞ as n→∞. Let u
(i)
n := u

(i)
a,λn

with i = 1, 2 be the critical points of Ja,λn obtained in Theorem 1.1. Since

Ja,λn(u(2)
n ) <

κ

2
< 0 < η < cλn = Ja,λn(u(1)

n ) < D, (5.1)

by Lemma 2.1 one has

‖u(i)
n ‖λn ≤ C0, (5.2)
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where the constant C0 > 0 is independent of λn. This implies that ‖u(i)
n ‖λ1

≤ C0.

Thus, there exist u
(i)
∞ ∈ X (i = 1, 2) such that

u(i)
n ⇀ u(i)

∞ weakly in Xλ1 ,

u(i)
n → u(i)

∞ strongly in Lrloc(RN ) for 2 ≤ r < 2∗,

u(i)
n → u(i)

∞ a.e. in RN .
Following the proof of Proposition 3.2, we conclude that

u(i)
n → u(i)

∞ strongly in Xλ1
.

This shows that u
(i)
n → u

(i)
∞ strongly in H2(RN ) by (2.10) and that

‖∇u(i)
n ‖2L2 → ‖∇u(i)

∞ ‖2L2 as n→∞ (5.3)

by (2.11) and (3.1). Fatou’s Lemma leads to∫
RN

V (x)(u(i)
∞ )2dx ≤ lim inf

n→∞

∫
RN

V (x)
(
u(i)
n

)2
dx ≤ lim inf

n→∞

‖u(i)
n ‖2λn
λn

= 0,

which implies that u
(i)
∞ (x) = 0 a.e. in RN\Ω. Moreover, fixing φ ∈ C∞0 (RN\Ω), we

have ∫
RN\Ω

∇u(i)
∞ (x)φ(x)dx = −

∫
RN\Ω

u(i)
∞ (x)∇φ(x)dx = 0.

This indicates that
∇u(i)
∞ (x) = 0 a.e. in RN\Ω.

Since ∂Ω is smooth, u
(i)
∞ ∈ H2(RN\Ω) and ∇u(i)

∞ ∈ H1(RN\Ω), it follows from

Trace Theorem that there are constants C, C̃ > 0 such that

‖u(i)
∞ ‖L2(∂Ω) ≤ C‖u(i)

∞ ‖H2(RN\Ω) = 0,

‖∇u(i)
∞ ‖L2(∂Ω) ≤ C̃‖∇u(i)

∞ ‖H1(RN\Ω) = 0.

These inequalities show that u
(i)
∞ ∈ H2

0 (Ω).

Since 〈J ′a,λn(u
(i)
n ), ϕ〉 = 0 for any ϕ ∈ C∞0 (Ω), combining (5.3), it is not difficult

to check that∫
Ω

∆u(i)
∞∆ϕdx+

[
a(

∫
Ω

|∇u(i)
∞ |2dx)δ + b

] ∫
Ω

∇u(i)
∞ · ∇ϕdx =

∫
Ω

f(x, u(i)
∞ )ϕdx;

that is, u
(i)
∞ are the weak solutions of the equation

∆2u−M(

∫
Ω

|∇u|2dx)∆u = f(x, u) in Ω,

where M(t) = atδ + b. Since u
(i)
n → u

(i)
∞ strongly in X, using (5.1) and the fact

that η and κ are independent of λn gives

1

2

∫
Ω

|∆u(1)
∞ |2dx+

a

2(1 + δ)

(∫
Ω

|∇u(1)
∞ |2dx

)δ+1

+
b

2

∫
Ω

|∇u(1)
∞ |2dx−

∫
Ω

F (x, u(1)
∞ )dx ≥ η > 0

and
1

2

∫
Ω

|∆u(2)
∞ |2dx+

a

2(1 + δ)
(

∫
Ω

|∇u(2)
∞ |2dx)δ+1
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+
b

2

∫
Ω

|∇u(2)
∞ |2dx−

∫
Ω

F (x, u(2)
∞ )dx ≤ κ

2
< 0.

These imply that u
(i)
∞ 6= 0(i = 1, 2) and u

(1)
∞ 6= u

(2)
∞ . The proof is complete. �

6. Appendix A

Consider the biharmonic equation

∆2u+ λV (x)u = |u|p−2u in RN ,

u ∈ H2(RN ),
(6.1)

where N ≥ 3, 2 < p < 2N
N−2 , λ > 0 is a parameter and V (x) satisfies conditions

(A1)–(A3).
Equation (6.1) is variational and its solutions are critical points of the functional

defined in Xλ by

Jλ(u) =
1

2
‖u‖2λ −

1

p

∫
RN
|u|pdx,

where ‖u‖λ is defined as (2.1). It is easily seen that the functional Jλ is of class C1

in Xλ, and that

〈J ′λ(u), v〉 =

∫
RN

[∆u ·∆v + λV (x)uv]dx−
∫
RN
|u|p−2uv dx. (6.2)

We define the Nehari manifold by

N = {u ∈ Xλ\{0} : 〈J ′λ(u), u〉 = 0}.

Clearly, Jλ(u) is bounded below and coercive on N , since p > 2. Following the
standard argument, we conclude that there exists a positive constant Λ1 ≥ ΛN
such that (6.1) admits a positive ground state solution φλ ∈ H2(RN ) for every
λ ≥ Λ1. Similar to the argument in [17, Theorem 22], we obtain that Πλ defined
as (2.20) is achieved and

Πλ =
(
∫
RN |φλ|

pdx)1/p

‖φλ‖λ
> 0 for every λ ≥ Λ1.

Furthermore, similar to the proof of Theorem 1.3, it follows that φλ → φ∞ in
H2(RN ) and in Lp(RN ) as λ→∞, where 0 6= φ∞ ∈ H2

0 (Ω) is the weak solution of
biharmonic equations as follows

∆2u = |u|p−2u in Ω.

This implies that

Πλ → Π∞ :=
(
∫

Ω
|φ∞|pdx)1/p

(
∫

Ω
|∆φ∞|2dx)1/2

> 0 as λ↗∞.

Note that

Πλ = sup
u∈Xλ\{0}

( ∫
RN |u|

pdx
)1/p

‖u‖λ
is decreasing on λ. Hence, we have

Πλ ↘ Π∞ as λ↗∞.
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