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EFFECTS OF CROSS-DIFFUSION FOR A PREY-PREDATOR

SYSTEM IN A HETEROGENEOUS ENVIRONMENT

YAYING DONG, SHANBING LI, YANLING LI

Abstract. This article concerns the stationary problem of a cross-diffusion

prey-predator system with a protection zone for the prey. We first give the

necessary condition and sufficient condition for the existence of coexistence
states of the two species, by applying the bifurcation theory. Furthermore, the

asymptotic behavior of coexistence states is established as the cross-diffusion

coefficient of the prey tends to infinity. We also analyze the corresponding
limiting system.

1. Introduction and statement of main results

In recent decades, the research of reaction-diffusion equations have made great
progress (see, for example, [3, 15, 17, 21, 23, 22] and the references therein). In these
equations, the prey-predator model is an important branch. In most prey-predator
systems, the prey would become extinct when the predation rate is too high. To
human beings, it is necessary to take measures to save the endangered prey species.
From this viewpoint, we study the following cross-diffusion prey-predator system
with a protection zone for the prey,

ut = ∆[(1 + kρ(x)v)u] + u
(
λ− u− b(x)v

1 +mu

)
, x ∈ Ω, t > 0,

vt = ∆v + v
(
− µ+

cb(x)u

1 +mu

)
, x ∈ Ω \ Ω0, t > 0,

∂nu = 0, x ∈ ∂Ω, t > 0,

∂nv = 0, x ∈ ∂Ω ∪ ∂Ω0, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥ 0, x ∈ Ω \ Ω0,

(1.1)

where Ω is a bounded domain in Rn (n ≥ 1) with smooth boundary ∂Ω and
Ω0 ⊂⊂ Ω with smooth boundary ∂Ω0; the parameters k, λ, µ, c,m are positive
constants; ρ(x) and b(x) are smooth functions, ρ(x) > 0 and b(x) > 0 in Ω \ Ω0,
whereas ρ(x) = b(x) = 0 in Ω0, moreover, we assume that ∂nρ(x) = 0 on ∂Ω,
ρ(x)/b(x) and b(x)/ρ(x) are bounded in Ω \Ω0. One can see [2, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 18, 19, 20] and references therein for more studies on this topic.
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In this article, we denote Ω1 = Ω\Ω0, and mainly discuss the stationary problem
associated with (1.1):

∆[(1 + kρ(x)v)u] + u
(
λ− u− b(x)v

1 +mu

)
= 0, x ∈ Ω,

∆v + v
(
− µ+

cb(x)u

1 +mu

)
= 0, x ∈ Ω1,

∂nu = 0, x ∈ ∂Ω,

∂nv = 0, x ∈ ∂Ω1.

(1.2)

Let O be any bounded domain in Rn with smooth boundary. Denote the usual

norm of Lp(O) for p ∈ [1,∞) by ‖ψ‖p,O =
(∫
O
|ψ(x)|pdx

)1/p
. For q(x) ∈ L∞(O),

we denote by λN1 (q(x), O) the first eigenvalue of −∆ + q(x) over a region O, with
Neumann boundary condition.

Now we are ready to present our main results. The first result gives the necessary
condition and the sufficient condition for the existence of positive solutions of (1.2),
and the coexistence region of (1.2) in the λµ-plane is given in Figure 1.

Theorem 1.1. Let n ≥ 1. Then

(1) If λ > 0 and µ ≥ −λN1
(
− cb(x)

m ,Ω1

)
, then (1.2) has no positive solution.

(2) If λ > λ∗(µ) and 0 < µ < −λN1
(
− cb(x)

m ,Ω1

)
, then (1.2) has at least

one positive solution, where λ∗(µ) is uniquely determined by µ = −λN1
(
−

cb(x)λ∗
1+mλ∗

,Ω1

)
.

λ

µ = λN1
(
− cb(x)λ

1+µλ ,Ω1

)µ

Figure 1. Coexistence region of (1.2).

The following theorem gives the asymptotic behavior of positive solutions of
(1.2) as k →∞.

Theorem 1.2. Let n ≤ 3. For any given λ > λ∗(µ) and 0 < µ < −λN1
(
− cb(x)

m ,Ω1

)
.

Let (uk, vk) be any positive solution of (1.2) for each k > 0. Then

lim
k→∞

uk = u uniformly in Ω, lim
k→∞

(vk, kvk) = (0, w) in C1(Ω1)× C1(Ω1),
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where (u,w) is a positive solution of

∆[(1 + ρ(x)w)u] + u(λ− u) = 0, x ∈ Ω,

∆w + w
(
− µ+

cb(x)u

1 +mu

)
= 0, x ∈ Ω1,

∂nu = 0, x ∈ ∂Ω,

∂nw = 0, x ∈ ∂Ω1.

(1.3)

Theorem 1.3. Let n ≤ 3. For any fixed λ > 0, the set of positive solutions
of (1.3) forms an unbounded connected set which joins the semitrivial solution
branch {(µ, u, w) = (µ, λ, 0) : µ > 0} at (µ∗(λ), λ, 0) and remains bounded until µ

approaches 0 where it blows up, where µ∗(λ) = −λN1
(
− cb(x)λ

1+mλ ,Ω1

)
. Moreover,

lim
µ→0

uµ = λ uniformly in Ω0, lim
µ→0

(uµ, wµ) = (0,∞) uniformly in Ω1.

This article is organized as follows. In Section 2, we establish some preliminary
results, including a priori estimates of any positive solution and local bifurcation
result. In Section 3, we complete the proof of main results. Our mathematical
approach is based on elliptic estimates, bifurcation theory and elliptic regularity
theory.

2. Preliminary results

In this section, we establish a priori estimates of any positive solution and the
local bifurcation from semitrivial solution. We define a new unknown function

U = (1 + kρ(x)v)u, (2.1)

and denote

f1(U, v) =
U

1 + kρ(x)v

(
λ− U

1 + kρ(x)v
− b(x)v(1 + kρ(x)v)

1 + kρ(x)v +mU

)
,

f2(U, v) = v
(
− µ+

cb(x)U

1 + kρ(x)v +mU

)
.

Then (1.2) can be written as

∆U + f1(U, v) = 0, x ∈ Ω,

∆v + f2(U, v) = 0, x ∈ Ω1,

∂nU = 0, x ∈ ∂Ω,

∂nv = 0, x ∈ ∂Ω1.

(2.2)

By the maximum principle [17, Proposition 2.2] and Harnack inequality [15,
Lemma 4.3], we derive the following a priori estimates of any positive solution of
(2.2) for any given µ > 0 and k > 0.

Proposition 2.1. For any given µ > 0 and k > 0, there exists a positive constant
C such that any positive solution (U, v) of (2.2) satisfies

‖U‖C1,θ(Ω) ≤ C and ‖v‖C1,θ(Ω1) ≤ C,

where θ ∈ (0, 1).
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Proof. Suppose that (U, v) is any positive solution of (2.2). Denote U(x0) =
maxΩ U with x0 ∈ Ω. When x0 ∈ Ω0, we apply the maximum principle due to
Lou and Ni [17] to obtain

U(x0) ≤ λ. (2.3)

Here we use the assumption that ρ(x) = b(x) = 0 in Ω0. When x0 ∈ Ω \ Ω0, we
apply the maximum principle [17] again to obtain

λ− U(x0)

1 + kρ(x0)v(x0)
− b(x0)v(x0)(1 + kρ(x0)v(x0))

1 + kρ(x0)v(x0) +mU(x0)
≥ 0. (2.4)

This implies

U(x0) ≤ λ(1 + kρ(x0)v(x0)) = λ
(

(1 + k
ρ(x0)

b(x0)
b(x0)v(x0)

)
.

Since ρ(x)/b(x) is bounded in Ω \ Ω0, we only need to check that b(x0)v(x0) is
bounded. By some calculations, (2.4) implies

m
(
U(x0) +

(1−mλ)(1 + kρ(x0)v(x0))

2m

)2

+
(
b(x0)v(x0)− λ− (1−mλ)2

4m

)
(1 + kρ(x0)v(x0))2 ≤ 0.

Therefore

b(x0)v(x0) ≤ λ+
(1−mλ)2

4m
,

and so

U(x0) ≤ λ
(

1 + k
ρ(x0)

b(x0)

(
λ+

(1−mλ)2

4m

))
for x0 ∈ Ω \ Ω0.

Therefore, there exists a positive constant C1 independent of µ such that

U(x0) = max
Ω

U ≤ C1.

By (1.2), we have

µ

∫
Ω1

vdx =

∫
Ω

c(λu− u2)dx ≤ cλ
∫

Ω

udx ≤ cλ
∫

Ω

Udx ≤ cλmax
Ω

U |Ω|,

where |Ω| denotes the volume of Ω. This implies

‖v‖1,Ω1
≤ cC1λ|Ω|

µ
.

We apply Harnack inequality (Lemma 4.3 of [15]) to the v-equation of (1.2) and
obtain

max
Ω1

v ≤ C2 min
Ω1

v ≤ C2

∫
Ω
vdx

|Ω|
≤ C2

cC1λ

µ
=: C3.

Consequently, we show that ‖U‖∞,Ω and ‖v‖∞,Ω1
are bounded. As a result, by

elliptic regularity theory and Sobolev embedding theorem, we obtain the conclusion.
�

The following proposition gives a priori estimates of any positive solution of (2.2)
for large k > 0.
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Proposition 2.2. Let n ≤ 3. For any given µ > 0 and large k(> M), there exists a
positive constant C independent of k such that any positive solution (U, v) of (2.2)
satisfies

‖U‖C1,θ(Ω) ≤ C and ‖v‖C1,θ(Ω1) ≤ C,
where θ ∈ (0, 1).

Proof. Integrating (2.2), and applying the Hölder inequality, we obtain∫
Ω

u2dx =

∫
Ω

u
(
λ− b(x)v

1 +mu

)
dx ≤ λ

∫
Ω

udx ≤ λ|Ω|1/2‖u‖2,Ω.

Thus ‖u‖2,Ω ≤ λ|Ω|1/2. Further we have

|Ω0|1/2 inf
Ω0

u ≤ ‖u‖2,Ω0
≤ ‖u‖2,Ω ≤ λ|Ω|1/2.

This implies

inf
Ω0

u ≤ λ(|Ω|/|Ω0|)1/2.

Denote

m(x) =
1

1 + kρ(x)v

(
λ− U

1 + kρ(x)v
− b(x)v(1 + kρ(x)v)

1 + kρ(x)v +mU

)
.

Then

|m(x)| ≤ | λ

1 + kρ(x)v
|+ | u

1 + kρ(x)v
|+ | b(x)v

(1 + kρ(x)v)(1 +mu)
| ≤ λ+ u+

b(x)

Mρ(x)
.

Thus ‖m(x)‖2,Ω ≤ C1. Then we apply Harnack inequality to obtain

max
Ω

U ≤ C2 min
Ω
U ≤ C2 inf

Ω0

u ≤ C2λ(|Ω|/|Ω0|)1/2 =: C3,

where C3 is independent of µ and k.
The upper bound of v in Ω1 can be obtained by the same argument as in Propo-

sition 2.1. Hence, by elliptic regularity theory and Sobolev embedding theorem, we
have the conclusion. �

For p > n, we define

X1 = W 2,p
n (Ω)×W 2,p

n (Ω1), X2 = Lp(Ω)× Lp(Ω1),

where W 2,p
n (O) = {w ∈W 2,p(O) : ∂nw = 0 on ∂O}. We also define

E = C1
n(Ω)× C1

n(Ω1),

where C1
n(O) = {w ∈ C1(O) : ∂nw = 0 on ∂O}. Hence, it follows from the Sobolev

embedding theorem that X1 ⊂ E. For any λ > 0, system (2.2) has a semitrivial
solution: (λ, 0). Therefore, system (2.2) has a curve of semitrivial solution:

ΓU = {(λ,U, v) = (λ, λ, 0) : λ > 0}.

Then the following local bifurcation property holds.

Proposition 2.3. For any fixed µ > 0, a branch of positive solutions of (2.2)
bifurcates from ΓU if and only if λ = λ∗(µ), moreover, positive solutions of (2.2)
near (λ∗, λ∗, 0) ∈ R×X1 can be expressed as

Γδ = {(λ∗, U, v) = (λ∗(s), s(φ∗ + U(s)), s(ψ∗ + v(s))) : s ∈ (0, δ)}
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for some δ > 0, where

φ∗ = −(∆− λI)−1
[
λ
(
kρ(x)λ− b(x)

1 +mλ

)
ψ∗

]
and ψ∗ is a positive solution of

−∆ψ∗ −
cb(x)λ∗
1 +mλ∗

ψ∗ = −µψ∗ in Ω1, ∂nψ∗ = 0 on ∂Ω1.

Here (λ∗(s), U(s), v(s)) is a smooth function with respect to s and satisfies

(λ∗(0), U(0), v(0)) = (λ∗, 0, 0)

and
∫

Ω1
v(s)ψ∗dx = 0.

Proof. Denote z := U − λ in (2.2) and define an operator Φ : R×X1 → X2 by

Φ(λ, z, v) =

(
∆z + f1(z + λ, v)
∆v + f2(z + λ, v)

)
,

where

f1(z + λ, v) =
z + λ

1 + kρ(x)v

(
λ− z + λ

1 + kρ(x)v
− b(x)v(1 + kρ(x)v)

1 + kρ(x)v +m(z + λ)

)
,

f2(z + λ, v) = v
(
− µ+

cb(x)(z + λ)

1 + kρ(x)v +m(z + λ)

)
.

By direct calculations, we obtain

Φ(z,v)(λ, 0, 0)[φ, ψ] =

∆φ− λφ+ λ
(
kρ(x)λ− b(x)

1+mλ

)
ψ

∆ψ −
(
µ− cb(x)λ

1+mλ

)
ψ

 .

It follows from the Krein-Rutman theorem [24] that Φ(z,v)(λ, 0, 0)[φ, ψ] = (0, 0) has
a solution with ψ > 0 if and only if λ = λ∗(µ). Hence, by further calculations, we
obtain

ker Φ(z,v)(λ∗, 0, 0) = span{(φ∗, ψ∗)},

range Φ(z,v)(λ∗, 0, 0) =
{

(φ, ψ) ∈ X2 :

∫
Ω1

ψ · ψ∗dx = 0
}
,

which imply that dim ker Φ(z,v)(λ∗, 0, 0) = codim range Φ(z,v)(λ∗, 0, 0) = 1. More-
over,

Φλ(z,v)(λ∗, 0, 0)[φ∗, ψ∗]

=

(
−φ∗ + 2kρ(x)λψ∗ − b(x)

(1+mλ)2ψ∗
cb(x)

(1+mλ)2ψ∗

)
6∈ range Φ(z,v)(λ∗, 0, 0).

By applying the local bifurcation theorem [1] to Φ at (λ∗, 0, 0), we can obtain the
result stated in Proposition 2.3. �
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3. Proof of main results

First, we apply the global bifurcation theorem [16, Theorem 6.4.3] for proving
Theorem 1.1.

Proof of Theorem 1.1. We first establish the necessary condition for the existence
of positive solutions of (1.2). Suppose that (u, v) is any positive solution of (1.2).
Then v is a positive solution of the equation

−∆v − cb(x)u

1 +mu
v = −µv, x ∈ Ω1,

∂nv = 0, x ∈ ∂Ω1.

Then

−µ = λN1

(
− cb(x)u

1 +mu
,Ω1

)
> λN1

(
− cb(x)

m
,Ω1

)
⇐⇒ µ < −λN1

(
− cb(x)

m
,Ω1

)
.

Therefore, (1.2) has no positive solution when µ ≥ −λN1
(
− cb(x)

m ,Ω1

)
.

Next, we establish the sufficient condition for the existence of positive solutions
of (1.2). Define an operator

F (λ,U, v) =

(
U
v

)
−
(

(−∆ + I)−1
Ω [U + f1(U, v)]

(−∆ + I)−1
Ω1

[v + f2(U, v)]

)
.

For any fixed λ > 0 and µ > 0, the elliptic regularity theory ensures that the second
term of F is a compact operator.

By the similar argument to [10, Theorem 3.2], we can verify that the conditions
of [16, Theorem] hold. Consequently, it follows from [16, Theorem 6.4.3] that the
local bifurcation branch Γδ obtained in Proposition 2.3 is contained in ΓM which is
a component (i.e., maximal connected subset) of S where S = {(λ,U, v) ∈ R× E :
F (λ,U, v) = 0, (λ,U, v) 6= (λ∗, λ∗, 0)}; that is,

Γδ ⊂ ΓM ⊂ {(λ,U, v) ∈ (R× E)\{(λ∗, λ∗, 0)} : F (λ,U, v) = 0}. (3.1)

Moreover, by [16, Theorem 6.4.3], ΓM satisfies one of the following three alterna-
tives:

(1) ΓM is unbounded in R× E;
(2) ΓM contains a point (λ, λ, 0) and λ 6= λ∗;

(3) ΓM contains a point (λ̂, φ̂, ψ̂) and (λ̂, φ̂, ψ̂) ∈ R× (Y \ {(λ, 0)}), where

Y = {(φ, ψ) ∈ E :

∫
Ω1

ψ · ψ∗ = 0}. (3.2)

We next claim that only case (1) can occur. Define PO = {w ∈ C1
n(O) : w >

0 in O}. We first prove that

ΓM ⊂ R× PΩ × PΩ1
. (3.3)

Assume that (3.3) is not true. Then there exist a point

(λ∞, U∞, v∞) ∈ ΓM ∩ (R× ∂(PΩ × PΩ1
)) (3.4)

and a sequence {(λi, Ui, vi)}∞i=1 ⊂ ΓM ∩ (R× PΩ × PΩ1) such that

lim
i→∞

(λi, Ui, vi) = (λ∞, U∞, v∞) in R× E.

It follows from the maximum principle that (U∞, v∞) satisfies one of the following
three alternatives:
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(a) U∞ ≡ 0 in Ω, v∞ ≡ 0 in Ω1;
(b) U∞ > 0 in Ω, v∞ ≡ 0 in Ω1;
(c) U∞ ≡ 0 in Ω, v∞ > 0 in Ω1.

By integrating the second equation of (2.2) with (U, v) = (Ui, vi), we obtain∫
Ω1

vi

(
− µ+

cb(x)Ui
1 + kρ(x)vi +mUi

)
dx = 0 for all i ∈ N. (3.5)

Suppose that (a) or (c) occurs. Then for sufficiently large i ∈ N , we have

−µ+
cb(x)Ui

1 + kρ(x)vi +mUi
< 0 in Ω1

because of µ > 0. This contradicts (3.5). Suppose that (b) occurs. Then

∆U∞ = U∞(λ∞ − U∞) in Ω, ∂nU∞ = 0 on ∂Ω,

and thus U∞ = λ∞ in Ω. As a result, we must have (λ∞, U∞, v∞) = (λ∗, λ∗, 0) by
Proposition 2.3. This is a contradiction with (3.1) and (3.4). Consequently, (3.3)
is true.

In view of (3.3), case (2) cannot occur. By (3.2), (3.3) and the fact that φ∗ > 0
in Ω1, case (3) cannot occur. Hence, the only possibility is that case (1) occurs;
that is, ΓM is unbounded in R× E. By Proposition 2.1, for any fixed µ > 0, (2.2)
has at least one positive solution if λ > λ∗. �

Proof of Theorem 1.2. We need the following two lemmas.

Lemma 3.1. Let n ≤ 3. For any given λ > λ∗(µ) and 0 < µ < −λN1
(
− cb(x)

m ,Ω1

)
.

Let (uki , vki) be any positive solution of (1.2) with k = ki and limi→∞ ki = ∞,
and denote Uki = (1 +kiρ(x)vki)uki . Then there exists some non-negative function
U ∈ C1(Ω), by passing to a subsequence if necessary, such that

lim
i→∞

(Uki , vki) = (U, 0) in C1(Ω)× C1(Ω1).

Proof. By Proposition 2.2, the standard elliptic regularity theory ensures that there
exists a pair of non-negative functions (U, v) ∈ C1(Ω) × C1(Ω1), by passing to a
subsequence if necessary, such that

lim
i→∞

(Uki , vki) = (U, v) in C1(Ω)× C1(Ω1).

Recall that ρ(x) > 0 for each x ∈ Ω1. Then for each x ∈ Ω1, we have

lim
i→∞

uki(x)vki(x)

1 +muki(x)
= lim
i→∞

Uki(x)

1 + kiρ(x)vki(x)
· vki(x)

1 +muki(x)
= 0.

Hence, we apply the Lebesgue dominated convergence theorem to get

0 = lim
i→∞

∫
Ω1

vki

(
− µ+

cb(x)uki
1 +muki

)
dx =

∫
Ω1

−µvdx.

This means that v ≡ 0 in Ω1. This completes the proof. �

Lemma 3.2. Let n ≤ 3. For any given λ > λ∗(µ) and 0 < µ < −λN1
(
− cb(x)

m ,Ω1

)
.

Let (uki , vki) be any positive solution of (1.2) with k = ki and limi→∞ ki =∞, and
denote Uki = (1 + kiρ(x)vki)uki . If {maxΩ1

kivki}∞i=1 is bounded, then by passing
to a subsequence if necessary,

lim
i→∞

uki = u uniformly in Ω1, lim
i→∞

kivki = w uniformly in C1(Ω1),
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where (u,w) is a positive solution of (1.3).

Proof. Set wki = kivki . Then (uki , wki) satisfies

∆[(1 + ρ(x)wki)uki ] + uki

(
λ− uki −

b(x)vki
1 +muki

)
= 0, x ∈ Ω,

∆wki + wki

(
− µ+

cb(x)uki
1 +muki

)
= 0, x ∈ Ω1,

∂nuki = 0, x ∈ ∂Ω,

∂nwki = 0, x ∈ ∂Ω1.

(3.6)

From the assumption that {maxΩ1
kivki}∞i=1 is bounded, it is clear that vki → 0

uniformly in Ω1. Moreover, the elliptic regularity theory and Lemma 3.1 ensure that
there exists some non-negative function w ∈ C1(Ω1), by passing to a subsequence
if necessary, such that

lim
i→∞

(Uki , vki , wki) = (U, 0, w) in C1(Ω)× C1(Ω1)× C1(Ω1). (3.7)

Therefore,

lim
i→∞

uki =
U

1 + ρ(x)w
=: u ≥ 0 in C1(Ω). (3.8)

By letting i → ∞ in (3.6), together with (3.7) and (3.8), we see that (u,w) is a
non-negative solution of (1.3).

It remains to prove that u > 0 in Ω and w > 0 in Ω1. In view of (1.3) and (3.8),
we have that U is a non-negative solution of

∆U +
U

1 + ρ(x)w

(
λ− U

1 + ρ(x)w

)
= 0 in Ω, ∂nU = 0 on ∂Ω.

It follows from the maximum principle that either U > 0 or U ≡ 0 in Ω. If U ≡ 0
in Ω, by (3.8), then limi→∞ uki = 0 uniformly in Ω1. Due to λ > 0, we see that for
large i, ∫

Ω

uki

(
λ− uki −

b(x)vki
1 +muki

)
dx > 0.

This ia a contradiction. This implies that U > 0 in Ω, and thus u > 0 in Ω.
Similarly, by the maximum principle and the second equation of (1.3), we see that
either w > 0 or w ≡ 0 in Ω1. If w ≡ 0 in Ω1, then u satisfies

∆u+ u(λ− u) = 0 in Ω, ∂nu = 0 on ∂Ω, u > 0 in Ω.

This implies that u ≡ λ in Ω. Then from the equation of vki , we have

0 = λN1

(
µ− cb(x)uki

1 +muki
,Ω1

)
→ λN1

(
µ− cb(x)λ

1 +mλ
,Ω1

)
< λN1

(
µ− cb(x)λ∗(µ)

1 +mλ∗(µ)
,Ω1

)
= 0

by assumption λ > λ∗(µ). This is a contradiction, which means that w > 0 in Ω1.
Consequently, (u,w) is a positive solution of (1.3). �
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Proof of Theorem 1.2. Let (uki , vki) be any positive solution of (1.2) with k = ki
and limi→∞ ki = ∞. We claim that {maxΩ1

kivki}∞i=1 is bounded. Otherwise, we

assume that {maxΩ1
kivki}∞i=1 is unbounded. Note that kivki satisfies

∆(kivki) + (kivki)
(
− µ+

cb(x)uki
1 +muki

)
= 0 in Ω1, ∂n(kivki) = 0 on ∂Ω1.

By Harnack inequality [15], there exists some positive constant C independent of i
such that

max
Ω1

kivki ≤ C min
Ω1

kivki .

This means that {minΩ1
kivki}∞i=1 is unbounded. Then by passing to a subsequence

if necessary, we assume that

lim
i→∞

min
Ω1

kivki =∞. (3.9)

By Proposition 2.2 and (3.9), we have

lim
i→∞

uki = lim
i→∞

Uki
1 + kiρ(x)vki

= 0 uniformly in Ω1. (3.10)

Let ṽki = vki/maxΩ1
vki . Then ṽki satisfies

∆ṽki + ṽki

(
− µ+

cb(x)uki
1 +muki

)
= 0 in Ω1,

∂nṽki = 0 on ∂Ω1,

max
Ω1

ṽki = 1.

By the elliptic regularity theory, we may assume that

lim
i→∞

ṽki = ṽ in C1(Ω1), max
Ω1

ṽ = 1,

where ṽ ∈ C1(Ω1) is some non-negative function. Thus by (3.10), the maximum
principle ensures that ṽ is a positive solution of

∆ṽ − µṽ = 0 in Ω1, ∂nṽ = 0 on ∂Ω1.

However, due to µ > 0, we must derive ṽ ≡ 0 from above equation. This ia a
contradiction. This means that {maxΩ1

kivki}∞i=1 is bounded. Consequently, by
Lemma 3.2, we complete the proof of Theorem 1.2. �

Proof of Theorem 1.3. Set U = (1 + ρ(x)w)u. Then (1.3) is written as

∆U + g1(U,w) = 0, x ∈ Ω,

∆w + g2(µ,U,w) = 0, x ∈ Ω1,

∂nU = 0, x ∈ ∂Ω,

∂nw = 0, x ∈ ∂Ω1,

(3.11)

where

g1(U,w) =
U

1 + ρ(x)w

(
λ− U

1 + ρ(x)w

)
, x ∈ Ω,

g2(µ,U,w) = w
(
− µ+

cb(x)U

1 + ρ(x)w +mU

)
, x ∈ Ω1.
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For any given λ > 0, (3.11) has a semitrivial solution: (λ, 0). Therefore, (3.11)
has a curve of semitrivial solution:

ΓU = {(µ,U,w) = (µ, λ, 0) : µ > 0}.

By fixing λ > 0 and regarding µ as a bifurcation parameter, we show the following
local bifurcation result.

Lemma 3.3. For any fixed λ > 0, a branch of positive solutions of (3.11) bifurcates

from ΓU if and only if µ = µ∗(λ), where µ∗(λ) = −λN1
(
− cb(x)λ

1+mλ ,Ω1

)
, moreover,

positive solutions of (3.11) near (µ∗(λ), λ, 0) ∈ R×X1 can be expressed as

Γδ = {(µ,U,w) = (µ(s), λ+ s(φ+ U(s)), s(ψ∗ + w(s))) : s ∈ (0, δ)}

for some δ > 0, where

φ = (−∆ + λI)−1
Ω [ρ(x)λ2ψ∗].

Here (µ(s), U(s), w(s)) is a smooth function with respect to s and satisfies

(µ(0), U(0), w(0)) = (µ∗(λ), 0, 0)

and
∫

Ω1
ψ∗w(s)dx = 0.

The proof of the above lemma is similar to that of Proposition 2.3, we omit it.
The following lemma gives further information on the bifurcation curve Γδ.

Lemma 3.4. Let n ≤ 3. For any fixed λ > 0, there is an unbounded connected
set ΓM of positive solutions of (3.11) in R×E which bifurcates from {(µ,U,w) =
(µ, λ, 0) : µ > 0} at (µ∗(λ), λ, 0) and remains bounded until µ approaches 0, where

it blows up. Moreover, (0, µ∗(λ)) ⊂ Projµ ΓM ⊂
(
0,−λN1

(
− cb(x)

m ,Ω1

))
, Uµ is

bounded in C1(Ω) and limµ→0 wµ =∞ in C1(Ω1), where (µ,Uµ, wµ) ∈ ΓM .

Proof. Define an operator G : R× E → E by

G(µ,U,w) =

(
U − λ
w

)
−
(

(−∆ + I)−1
Ω [U − λ+ g1(U,w)]

(−∆ + I)−1
Ω1

[w + g2(µ,U,w)]

)
.

It is clear that (3.11) is equivalent to G(µ,U,w) = 0. It follows from [16, Theorem
6.4.3] that the local bifurcation branch Γδ is extended into a global curve. Let
ΓM ⊂ R× E be the maximal connected set satisfying

Γδ ⊂ ΓM ⊂
{

(µ,U,w) ∈ R× E\{(µ∗(λ), λ, 0)} : G(µ,U,w) = 0
}
.

Similar to Theorem 1.1, we can show that ΓM is unbounded in R× E.
We show that ‖Uµ‖C1(Ω) < C, where C is independent of µ. Let (µ,Uµ, wµ) ∈

ΓM . Integrating the first equation of (3.11) over Ω, we get∫
Ω

( Uµ
1 + ρ(x)wµ

)2

dx = λ

∫
Ω

Uµ
1 + ρ(x)wµ

dx ≤ λ|Ω|1/2‖ Uµ
1 + ρ(x)wµ

‖2,Ω,

and thus

‖ Uµ
1 + ρ(x)wµ

‖2,Ω ≤ λ|Ω|1/2. (3.12)

Hence, we apply Harnack inequality [15, Lemma 4.3] with p = 2 to the first equation
of (3.11) and derive

max
Ω

Uµ ≤ C∗min
Ω
Uµ (3.13)
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for some positive constant C∗ independent of µ. Then (3.12) yields

|Ω0|1/2 min
Ω0

Uµ ≤ ‖Uµ‖2,Ω0 ≤ ‖
Uµ

1 + ρ(x)wµ
‖2,Ω ≤ λ|Ω|1/2.

This means that minΩ0
Uµ ≤ λ(|Ω|/|Ω0|)1/2. By (3.13), we have

max
Ω

Uµ ≤ C∗λ (|Ω|/|Ω0|)1/2
.

This shows that Uµ is bounded in Ω. Then the boundedness of {‖Uµ‖C1(Ω)} is

obtained by elliptic regularity theory and Sobolev embedding theorem.
For any point (µ,Uµ, wµ) ∈ ΓM\{(µ∗(λ), λ, 0)}, Uµ > 0 in Ω and wµ is a positive

solution of

−∆wµ −
c(x)Uµ

1 + ρ(x)wµ +mUµ
wµ = −µwµ in Ω1, ∂nwµ = 0 on ∂Ω1. (3.14)

Thus

λN1

(
− cb(x)

m
,Ω1

)
< −µ = λN1

(
− cb(x)Uµ

1 + ρ(x)wµ +mUµ
,Ω1

)
< 0;

that is,

0 < µ < −λN1
(
− cb(x)

m
,Ω1

)
.

As a result, Projµ ΓM ⊂
(
0,−λN1

(
− cb(x)

m ,Ω1

))
.

According to the unboundedness of ΓM in R × E, we must have {‖wµ‖C1(Ω1)}
is unbounded. Hence, we apply Harnack inequality [15, Lemma 4.3] to (3.14) and
derive that {minΩ1

wµ} is also unbounded. Thus, there exists some µ∞ ∈ [0, µ] and

a sequence {µi}∞i=1 such that

lim
i→∞

µi = µ∞ and lim
i→∞

min
Ω1

wµi =∞.

Let ŵµi = wµi/maxΩ1
wµi . Then

∆ŵµi + ŵµi

(
− µi +

cb(x)Uµi
1 + ρ(x)wµi +mUµi

)
= 0, x ∈ Ω1,

∂nŵµi = 0, x ∈ ∂Ω1,

max
Ω1

ŵµi = 1.

The elliptic regularity theory ensures us to obtain limi→∞ ŵµi = ŵ in C1(Ω1),
where ŵ is a positive solution of

∆ŵ − µ∞ŵ = 0 in Ω1, ∂nŵ = 0 on ∂Ω1, max
Ω1

ŵ = 1.

Here we use the fact that ρ(x) > 0 in Ω1. From above equation, we must have
µ∞ = 0, which implies that (0, µ∗(λ)) ⊂ Projµ ΓM . Thus, (0, µ∗(λ)) ⊂ Projµ ΓM ⊂(
0,−λN1

(
− cb(x)

m ,Ω1

))
. �

Proof of Theorem 1.3. By Lemma 3.4, it remains to show the convergence result of
uµ. Since ρ(x) > 0 in Ω1 and limµ→0 minΩ1

wµ =∞, we have

lim
µ→0

uµ = lim
µ→0

Uµ
1 + ρ(x)wµ

= 0 uniformly in Ω1. (3.15)
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Dividing the first equation of (3.11) with (U, v) = (Uµ, vµ) by Uµ and integrating
the resulting equation over Ω, we get∫

Ω

(λ− uµ)

1 + ρ(x)wµ
dx = −

∫
Ω

|∇Uµ|2

U
2

µ

dx ≤ 0.

Thus ∫
Ω0

(λ− uµ)dx ≤ −
∫

Ω\Ω0

λ− uµ
1 + ρ(x)wµ

dx.

Passing µ→ 0 in above inequality, we obtain∫
Ω0

(λ− u0)dx ≤ 0. (3.16)

On the other hand, we integrate the first equation of (3.11) with (U, v) = (Uµ, vµ)
to derive ∫

Ω0

uµ(λ− uµ)dx+

∫
Ω\Ω0

uµ(λ− uµ)dx = 0.

Letting µ→ 0, together with (3.15), we obtain∫
Ω0

u0(λ− u0)dx = 0. (3.17)

By (3.16) and (3.17), it is obvious that∫
Ω0

(λ− u0)2dx = λ

∫
Ω0

(λ− u0)dx−
∫

Ω0

u0(λ− u0)dx ≤ 0.

Hence, u0 ≡ λ in Ω0. The proof of Theorem 1.3 is complete. �
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