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QUASILINEARIZATION METHOD FOR FIRST-ORDER

IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS

PEIGUANG WANG, CHONGRUI LI, JUAN ZHANG, TONGXING LI

Abstract. In this article we study first-order impulsive integro-differential

equations with integral boundary conditions, employing the method of quasi-
linearization with reversed ordering upper and lower solutions. We obtain

two monotone sequences of iterates converging uniformly and quadratically to

the unique solution of the problem. Two examples are given to illustrate the
applications of the established results.

1. Introduction

Integral differential equations arise in several engineering and scientific disciplines
as the mathematical modelling of systems and processes, such as physics, mechan-
ics, biology, economics and engineering [2, 7]. In consequence, the qualitative theory
of integral differential equations creates an important branch of nonlinear analysis.
Over the last twenty years, there are some results on the existence, uniqueness,
continuation and other properties of solutions and extremal solutions for various
boundary value problem involving integral boundary conditions, such as the mono-
graphs [5, 15, 17], the papers for differential equations [1, 2, 6, 8, 10, 12, 22, 27], for
functional integro-differential equations [11, 25], for impulsive integro-differential
equations [3, 9, 11, 13, 19, 20, 21, 24], for integro-differential equations of fractional
order [3, 4], for integral boundary value problems with causal operators [26], and
references given therein. However, we noticed that the previous studies mainly
focused on the existence and uniformly convergence results for extremal solutions
via the method of upper and lower solutions coupled with the monotone itera-
tive technique, which gives a constructive procedure for approximation solutions,
and offers monotone sequences uniformly converging to extremal solutions (see the
monograph [17]). In terms of applications, it is important to pay attention to
the high-order convergence of sequences of approximate solutions. Quasilineariza-
tion combined with the technique of upper and lower solutions is an effective and
fruitful technique for obtaining approximate solutions to a wide variety of nonlin-
ear problems. The main advantages of the method are the practicality of finding
successive approximations of the unknown solution as well as the quadratic conver-
gence rate. A systematic development of the quasilinearization method to ordinary
differential equations has been provided by Lakshmikantham and Vatsala [18], and

2010 Mathematics Subject Classification. 34D20, 34A37.
Key words and phrases. Impulsive integro-differential equations; quasilinearization;

integral boundary conditions; quadratic convergence; upper and lower solutions.
c©2019 Texas State University.

Submitted February 26, 2018. Published March 30, 2019.

1



2 P. WANG, C. LI, J. ZHANG, T. LI EJDE-2019/46

there are some generalized results for various types of differential systems, see the
monographs [15, 16, 17].

The goal of this paper is to investigate the convergence of solutions for a class
of first-order impulsive integro-differential equations with integral boundary condi-
tions,

u′(t) = f(t, u(t), (Su)(t)), t 6= tk, t ∈ J,
∆u(tk) = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) + µ

∫ T

0

u(s)ds = θu(T ),

(1.1)

where f ∈ C(J ′ × R2, R), J = [0, T ], J ′ = J\{t1, t2, . . . , tm}, 0 < t1 < t2 <

· · · < tm = T . S is a Volterra operator defined by (Su)(t) =
∫ t
0
r(t, s)u(s)ds,

r ∈ C(D,R+), r0 = max(t,s)∈J×J r(t, s), D = {(t, s) ∈ J×J : t ≥ s}, R+ = [0,∞).

Ik ∈ C(R,R), ∆u(tk) = u(t+k )− u(t−k ) denotes the jump of u at t = tk, u(t+k ) and

u(t−k ) represent the right and left limits of u(t) at t = tk respectively, k = 1, 2, . . . ,m.
µ ≤ 0, θ = 1 or −1 are constants.

By employing the method of quasilinearization with reversed ordering upper
and lower solutions, we obtain the two monotone sequences of iterates converging
uniformly and quadratically to the unique solution of the problem. Two examples
are given to illustrate the applications of the established results. The impulsive
integro-differential equation (1.1) has a lot of special types. For example, if µ = 0,
θ = 1, problem (1.1) reduces to a periodic boundary value problem. If µ = 0,
θ = −1, problem (1.1) reduces to an anti-periodic boundary value problem.

This article is organized as follows. In Section 2, we give the new definitions of
reversed ordering upper and lower solutions and establish comparison theorems for
the case of θ = 1 and θ = −1 in order to discuss the existence and uniqueness of
the solutions for first-order impulsive integral boundary value problem. Then, we
obtain its accelerated rate of convergence by using the technique of quasilineariza-
tion in section 3. Finally, we give two examples to illustrate the applications of the
established results in Section 4.

2. Preliminaries

Firstly, we introduce the notation, definitions and a lemma. Let

PC(J) =
{
u : J → R, u is continuous for t ∈ J ′ and u(t+k ), u(t−k ) exist with

u(t−k ) = u(tk), for k = 1, 2, . . . ,m
}

;

PC1(J) =
{
u ∈ PC(J) : u is continuously differentiable for t ∈ J ′, u′(t+k ), u′(t−k )

exist and u′is left continuous at t = tk for k = 1, 2, . . . ,m
}
.

Note that PC(J) and PC1(J) are Banach spaces with the norms

‖u‖PC(J) = sup{|u(t)| : t ∈ J}, ‖u‖PC1(J) = max{‖u(t)‖PC(J), ]; ‖u′(t)‖PC(J)}.

A function u ∈ PC1(J) is called a solution of the integral boundary value problem
(1.1) if it satisfies (1.1).
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Definition 2.1. A function α ∈ PC1(J) is called a lower solution of (1.1), if the
following inequalities hold:

α′(t) ≤ f(t, α(t), (Sα)(t)), t 6= tk, t ∈ J,
∆α(tk) ≤ Ik(α(tk)), k = 1, 2, . . . ,m,

α(0) + µ

∫ T

0

α(s)ds ≤ θα(T ).

(2.1)

Definition 2.2. A function β ∈ PC1(J) is called an upper solution of the integral
boundary value problem (1.1), if the following inequalities hold:

β′(t) ≥ f(t, β(t), (Sβ)(t)), t 6= tk, t ∈ J,
∆β(tk) ≥ Ik(β(tk)), k = 1, 2, . . . ,m,

β(0) + µ

∫ T

0

β(s)ds ≥ θβ(T ).

(2.2)

For the next lemma we use the following assumptions:

(A1) the sequence {tk} satisfies 0 < t1 < t2 < · · · < tk < · · · < tm = T with
limk→∞tk = +∞;

(A2) m ∈ PC1(R+, R) is left continuous at tk for k = 1, 2 . . . , and

m′(t) ≥ p(t)m(t) + q(t), t 6= tk, t ∈ J,
m(t+k ) ≥ dkm(tk) + bk, k = 1, 2, . . . ,m,

where p, q ∈ C(R+, R), dk ≥ 0 and bk are constant.

Lemma 2.3 (See [14]). Assume (A1), (A2). Then

m(t) ≥ m(t0)
∏

t0<tk<t

dk exp
(∫ t

t0

p(s)ds
)

+

∫ t

t0

∏
s<tk<t

dk exp
(∫ t

s

p(σ)dσ
)
q(s)ds

+
∑

t0<tk<t,

∏
tk<tj<t

dj exp
(∫ t

tk

p(s)ds
)
bk .

To study problem (1.1), we need to establish a comparison theorem and obtain
its solution for the associated linear impulsive integral boundary value problem.

Lemma 2.4. Assume that m ∈ PC1(J) satisfies the following inequalities

m′(t) ≥M1m(t) +M2(Sm)(t), t ∈ J ′,
∆m(tk) ≥ Lkm(tk), k = 1, 2, . . . ,m,

m(0) ≥ m(T ) .

(2.3)

If
m∏
k=1

(1 + Lk)−1 ≥M2

∫ t

0

[ ∫ s

0

r(s, σ)e−M1(s−σ)dσ
]
ds, (2.4)

then m(t) ≤ 0 on J , where M1 > 0, M2 > 0 and Lk ≥ 0 are constants, k =
1, 2, . . . ,m.
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Proof. Setting u(t) = m(t)e−M1t, we have u ∈ PC1(J), and

u′(t) ≥M1(S̄u)(t), t ∈ J ′,
∆u(tk) ≥ Lku(tk), k = 1, 2, . . . ,m,

u(0) ≥ u(T )eM1T ,

(2.5)

where (S̄u)(t) =
∫ t
0
r(t, s)e−M1(t−s)u(s)ds.

We now prove that u(t) ≤ 0 for any t ∈ J . Suppose on the contrary, that u(t) > 0
for some t ∈ J . Then there are two cases:

Case 1: There exists a t∗1 ∈ J such that u(t∗1) > 0 and u(t) ≥ 0 for t ∈ J . Then
(2.5) implies that

u′(t) ≥ 0, t ∈ J ′; ∆u(tk) ≥ 0, k = 1, 2, . . . ,m.

This means that u(t) is nondecreasing in J . Therefore, u(T ) ≥ u(t∗1) > 0 and
u(T ) ≥ u(0) ≥ u(T )eM1T , which is a contradiction.

Case 2: There exist t∗1, t
∗
2 ∈ J such that u(t∗1) > 0 and u(t∗2) < 0. Let inft∈J u(t) =

−λ, then λ > 0, and there exists a ti < t∗0 ≤ ti+1 for some i such that u(t+0 ) = −λ
or u(t+i ) = −λ. We may assume that u(t+0 ) = −λ. The case of u(t+i ) = −λ can be
proved similarly.

Consider the inequalities:

u′(t) ≥ −λM2

∫ t

0

r(t, s)e−M1(t−s)ds, t ∈ J ′,

u(t+k ) ≥ (1 + Lk)u(tk), k = 1, 2, . . . ,m.

(2.6)

By Lemma 2.3, we have

u(t) ≥ u(0)
∏

0<tk<t

(1 + Lk) +

∫ t

0

∏
s<tk<t

(1 + Lk)
[
− λM2

∫ s

0

r(s, σ)e−M1(t−σ)dσ
]
ds.

Letting t = t∗0, we have

u(0) ≤ −λ
∏

0<tk<t∗0

(1+Lk)−1+λM2

∫ t∗0

0

∏
0<tk<s

(1+Lk)−1
[ ∫ s

0

r(s, σ)e−M1(s−σ)dσ
]
ds.

If u(0) > 0, then∏
0<tk<t∗0

(1 + Lk)−1 < M2

∫ t∗0

0

∏
0<tk<s

(1 + Lk)−1
[ ∫ s

0

r(s, σ)e−M1(s−σ)dσ
]
ds

< M2

∫ t∗0

0

[ ∫ s

0

r(s, σ)e−M1(s−σ)dσ
]
ds;

that is, ∏
0<tk<t∗0

(1 + Lk)−1 < M2

∫ T

0

[ ∫ s

0

r(s, σ)e−M1(s−σ)dσ
]
ds,

which contradicts with (2.4). Thus u(0) ≤ 0. Furthermore, by (2.5), we can obtain
u(T ) ≤ u(0)e−M1T < 0, then 0 < t∗1 < T .
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Let tj < t∗1 ≤ tj+1 for some j. We first assume that t∗1 < t∗0. Consider the
inequalities

u′(t) ≥ −λM2

∫ t

0

r(t, s)e−M1(t−s)ds, t ∈ J ′,

u(t+k ) ≥ (1 + Lk)u(tk), k = 1, 2, . . . ,m.

Similar to the process above, using Lemma 2.3, we can also find a contradiction
with (2.4). Similarly, we can prove the case of t∗0 < t∗1. The proof is complete. �

Lemma 2.5. Assume that x ∈ PC1(J), σ ∈ PC(J). If

M−11 M2r0T +
eM1T

eM1T − 1

m∑
k=1

Lk < 1. (2.7)

Then the linear impulsive boundary value problem

x′(t) = M1x(t) +M2(Sx)(t) + σ(t), t ∈ J ′,
∆x(tk) = Lkx(tk) + dk, k = 1, 2, . . . ,m,

x(0) + d = x(T ), d ∈ R
(2.8)

has a unique solution, where M1 > 0, M2 > 0 and Lk ≥ 0 are constants.

Proof. We define a map A : PC(J)→ PC(J) by

(Ax)(t) = − eM1T

eM1T − 1
d+

∫ T

0

G(t, s)
[
σ(s)+M2(Sx)(s)

]
ds+

m∑
k=1

G(t, tk)
[
Lkx(tk)+dk

]
,

where

G(t, s) =


eM1(t−s)

eM1T−1 , 0 ≤ s ≤ t ≤ T,
eM1(T+t−s)

eM1T−1 , 0 ≤ t ≤ s ≤ T.

It is easy to verify that x(t) is a solution of (2.8), if and only if x(t) is a fixed point
of A. For any u, v ∈ PC1(J), we have

|(Au)(t)− (Av)(t)|

≤
∫ T

0

G(t, s)
∣∣M2

[
(Su)(s)− (Sv)(s)

]∣∣ds+

m∑
k=1

G(t, tk)|Lk(u(tk)− v(tk))|

≤M−12 M2r0T +
eM1T

eM1T − 1

m∑
k=1

Lk‖u− v‖ .

Then

‖Au−Av‖ ≤
(
M−11 M2r0T +

eM1T

eM1T − 1

m∑
k=1

Lk

)
‖u− v‖,

which means that (2.7) implies that A is a contradiction mapping. Consequently,
employing the Banach’s Fixed Point Theorem, the map A has an unique fixed point.
Thus (2.8) has an unique solution. The proof is complete. �

Similar to the proof Lemma 2.4 and Lemma 2.5, for the case of θ = −1, we have
the following Lemmas.
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Lemma 2.6. Assume that m ∈ PC1(J) satisfies the inequalities

m′(t) ≥M1m(t) +M2(Sm)(t), t ∈ J ′,
∆m(tk) ≥ Lkm(tk), k = 1, 2, . . .m,

m(0) ≥ −m(T ).

(2.9)

If
m∏
k=1

(1 + Lk)−1 ≥M2

∫ t

0

[ ∫ s

0

r(s, σ)e−M1(s−σ)dσ
]
ds , (2.10)

then m(t) ≤ 0 on J , where M1 > 0, M2 > 0 and Lk ≥ 0 are constants, k =
1, 2, . . . ,m.

Lemma 2.7. Assume that u ∈ PC1(J) and σ ∈ PC(J). If

M−11 M2r0T +
eM1T

eM1T − 1

m∑
k=1

Lk < 1 , (2.11)

then the impulsive differential equation

x′(t) = M1x(t) +M2(Sx)(t) + σ(t), t ∈ J ′,
∆x(tk) = Lkx(tk) + dk, k = 1, 2, . . . ,m,

x(0) + d = −x(T ), d ∈ R,
(2.12)

has a unique solution, where M1 > 0, M2 > 0, Lk ≥ 0 are constants.

3. Main results

In this section, we give the results which converge uniformly and quadratically
to the unique solution of the integral boundary value problem (1.1). Consider the
sets:

Ω = {(t, x) : β(t) ≤ x(t) ≤ α(t), t ∈ J},
Dk = {x ∈ R : β(tk) ≤ x(tk) ≤ α(tk), 1 ≤ k ≤ m}.

For the next theorem we the following assumptions:

(A3) There exist constants M1 > 0 and M2 > 0 such that

f(t, u, v)− f(t, ū, v̄) ≤M1(u− ū) +M2(v − v̄),

for β ≤ ū ≤ u ≤ α and Tβ ≤ v̄ ≤ v ≤ Tα;
(A4) there exist constants Lk ≥ 0, k = 1, 2 . . .m, such that

Ik(x)− Ik(y) ≤ Lk(x− y), for β ≤ y ≤ x ≤ α.

Theorem 3.1. Let α, β be lower and upper solutions respectively for problem
(1.1) with β ≤ α on J . Assume that (A3), (A4), (2.4) and (2.7) hold. Then
there exist two monotone sequences {αn}, {βn} with α0 = α, β0 = β such that
limn→∞αn = ρ(t), limn→∞βn = γ(t) uniformly on J , where ρ(t), γ(t) are the
maximal and minimal solutions of (1.1) respectively, satisfying

β0 ≤ β1 ≤ β2 ≤ . . . βn ≤ γ(t) ≤ u(t) ≤ ρ(t) ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0

in which u(t) is any solution of (1.1) such that β(t) ≤ u(t) ≤ α(t) on J .
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Proof. For any η ∈ [β, α], consider the linear impulsive integral boundary value
problem

u′(t) = f(t, η, Sη) +M1(u− η) +M2(Su− Sη), t ∈ J ′,
∆u(tk) = Ik(η(tk)) + Lk(u(tk)− η(tk)), k = 1, 2, . . . ,m,

u(0) + µ

∫ T

0

η(s)ds = u(T ).

(3.1)

By Lemma 2.5, problem (3.1) has a unique solution u ∈ PC1(J). Now we define
an operator A by u = Aη, then the operator has the following properties:

(i) β ≤ Aβ, Aα ≤ α;
(ii) A is a monotone nondecreasing on [β, α], i.e., for any η1, η2 ∈ C[β, α], η1 ≤

η2, implies Aη1 ≤ Aη2.
To prove (i), setting m = β0 − β1, where β1 = Aβ0. Then from β(t) ≤ α(t) and
(2.7), we have

m′(t) ≥ f(t, β0, Sβ0)− f(t, β0, Sβ0)−M1(β1 − β0)−M2(Sβ1 − Sβ0)

≥M1m(t) +M2(Sm)(t),

and

∆m(tk) ≥ Ik(β0(tk))− Ik(β0(tk))− Lk(β1(tk)− β0(tk)) = Lkm(tk).

Thus, by Lemma 2.4, we have m(t) ≤ 0 on J , that is β0 ≤ β1 = Aβ0. Similarly, we
can prove that Aα0 = α1 ≤ α0.

To prove (ii), setting u1 = Aη1, u2 = Aη2, where η1 ≤ η2 with η1, η2 ∈ [β, α].
Let m(t) = u1 − u2, then

m′(t) = f(t, η1, Sη1) +M1(Aη1 − η1) +M2(S(Aη1)− Sη1)− f(t, η2, Sη2)

−M1(Aη2 − η2)−M2(S(Aη2)− Sη2)

≥M1(Aη1 −Aη2) +M2(S(Aη1)− S(Aη2))

= M1m(t) +M2Tm(t),

and

∆m(tk) = Ik(η1(tk)) + Lk((Aη1)(tk)− η1(tk))− Ik(η2(tk))

− Lk((Aη2)(tk)− η2(tk))

≥ Lk((Aη1)(tk)− (Aη2)(tk))

= Lkm(tk).

Furthermore,

m(T ) = (Aη1)(0) + µ

∫ T

0

η1(s)ds− (Aη2)(0)− µ
∫ T

0

η2(s)ds

= m(0) + µ

∫ T

0

(η1(s)− η2(s))ds

≤ m(0).

In view of Lemma 2.4, we have m(t) ≤ 0 on J . Consequently, it is easy to define
the sequences {αn}, {βn} with α0 = α, β0 = β such that αn+1 = Aαn, βn+1 =
Aβn. From (i) and (ii), the sequences {αn}, {βn} satisfying

β0 ≤ β1 ≤ β2 ≤ · · · ≤ βn ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0 on J,
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and there exist ρ, γ such that limn→∞αn = ρ(t), limn→∞βn = γ(t) uniformly on J .
Clearly, ρ, γ satisfy the integral boundary value problem (1.1) such that u ∈ [β, α]
and that there exists a positive integer n such that βn ≤ αn.

Then setting m = βn+1 − u, we have

m′(t) = f(t, βn, Sβn) +M1(Aβn+1 − βn) +M2(S(Aβn+1)− Sβn)− f(t, u, Su)

≥M1m(t) +M2Sm(t),

and

∆m(tk) = Ik(βn(tk)) + Lk(βn+1(tk)− βn(tk))− Ik(u(tk)) ≥ Lkm(tk).

Furthermore,

m(T ) = βn+1(0) + µ

∫ T

0

βn(s)ds− u(0)− µ
∫ T

0

u(s)ds

= m(0) + µ

∫ T

0

(βn(s)− u(s))ds

≤ m(0).

By Lemma 2.4, m(t) ≤ 0 on J , i.e., βn+1 ≤ u on J . Similarly, we get u(t) ≤ αn+1(t)
on J . Noticing that β0(t) ≤ u(t) ≤ α0(t) on J , by induction, we can obtain
βn(t) ≤ u(t) ≤ αn(t) on J for every n. Therefore, γ(t) ≤ u(t) ≤ ρ(t) on J by taking
limit as n→∞. The proof is complete. �

For the next theorem we use the following assumptions:

(A5) fx, fy, fxx, fyy ∈ C[Ω, R], and fx ≤ 0, fy ≤ 0, fxx ≥ 0, fyy ≥ 0;
(A6) Ik ∈ C2[Dk, R], I ′k ≥ 0, k = 1, 2, . . . ,m. If

1−
m∏
k=1

(1 + µk) exp
(∫ T

0

λ(s)ds
)
> 0,

1 + µT
(

1−
m∏
k=1

(1 + µk) exp{
∫ T

0

λ(s)ds}
)
> 0,

where µk = supx∈Dk I
′
k, λ(t) = supx∈Dt{fx + fyTr0}, Dt = [β(t), α(t)],

t ∈ J .

Theorem 3.2. Assume (A5), (A6) and the conditions of Theorem 3.1. Then there
are two monotone sequences {αn}, {βn} satisfying:

(1) β0 ≤ β1 ≤ β2 ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0 on J ;
(2) {αn}, {βn} converging uniformly and quadratically to the unique solution

of (1.1).

Proof. Since fxx ≥ 0, fyy ≥ 0, then for any (t, x1, y1), (t, x2, y2) ∈ Ω, we have

f(t, x2, y2) ≥ f(t, x1, y1) + fx(t, x1, y1)(x2 − x1) + fy(t, x1, y1)(y2 − y1).

Similarly, for any x, y ∈ Dk, we have

Ik(y) ≥ Ik(x) + I ′k(x)(y − x), 1 ≤ k ≤ m.
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Setting α0 = α, β0 = β, we consider the integral boundary value problem

u′(t) = f(t, α(t), (Sα)(t)) + fx(t, α, Sα)(u− α) + fy(t, α, Sα)(Su− Sα)

= H0(t, u, Su),

∆u(tk) = Ik(α(tk)) + I ′(α(tk))(u(tk)− α(tk)) = Γ0(u(tk)),

u(0) + µ

∫ T

0

u(s)ds = u(T ).

(3.2)

Since α and β are the lower and upper solutions of (1.1), we have

α′(t) ≤ f(t, α(t), (Sα)(t)) = H0(t, α, Sα),

∆α(tk) ≤ Ik(α(tk)) = Γ0(α(tk)),

α(0) + µ

∫ T

0

α(s)ds ≤ α(T ),

and

β′(t) ≥ f(t, β(t), (Sβ)(t)) ≥ H0(t, β, Sβ),

∆β(tk) ≥ Ik(β(tk)) ≥ Γ0(β(tk)),

β(0) + µ

∫ T

0

β(s)ds ≥ β(T ).

Hence, α, β are the lower and upper solutions of (3.2) respectively.
By Theorem 3.1, there exists a solution α1(t) of the integral boundary value

problem (3.2) such that β(t) ≤ α1(t) ≤ α(t). Similarly, consider the integral
boundary value problem:

u′(t) = f(t, β(t), (Sβ)(t)) + fx(t, β, Sβ)(u− β) + fy(t, β, Sβ)(Su− Sβ)

= H0(t, u, Su),

∆u(tk) = Ik(β(tk)) + I ′(β(tk))(u(tk)− β(tk)) = Γ0(u(tk)),

u(0) + µ

∫ T

0

u(s)ds = u(T ),

(3.3)

we can also get a solution β1(t) of (3.3) such that β(t) ≤ β1(t) ≤ α(t).
Next, we prove that β1(t) ≤ α1(t). Since

α′1(t) = H0(t, α1, Sα1) ≤ f(t, α1(t), (Sα1)(t)),

∆α1(tk) = Γ0(α1(tk)) ≤ Ik(α1(tk)),

α1(0) + µ

∫ T

0

α1(s)ds = α1(T ),

(3.4)

thus, α1 is a lower solution of (1.1). In the same manner, we can also prove that
β1 is an upper solution of (1.1). Therefore, it follows that β1(t) ≤ α1(t) on J .
Consequently, we have {αn}, {βn} such that

β0 ≤ β1 ≤ β2 ≤ . . . βn · · · ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0 on J,

where

α′n(t) = f(t, αn−1(t), (Sαn−1)(t)) + fx(t, αn−1(t), (Sαn−1)(t))(αn − αn−1)

+ fy(t, αn−1(t), (Sαn−1)(t))(Sαn − Sαn−1)

= Hn−1(t, αn, Sαn),
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∆αn(tk) = Ik(αn−1(tk)) + I ′(αn−1(tk))(αn(tk)− αn−1(tk))

= Γn−1(αn(tk)),

αn(0) + µ

∫ T

0

αn(s)ds = αn(T ),

and

β′n(t) = f(t, βn−1(t), (Sβn−1)(t)) + fx(t, βn−1(t), (Sβn−1)(t))(βn − βn−1)

+ fy(t, βn−1(t), (Sβn−1)(t))(Sβn − Sβn−1)

= Hn−1(t, βn, Sβn),

∆βn(tk) = Ik(βn−1(tk)) + I ′(βn−1(tk))(βn(tk)− βn−1(tk))

= Γn−1(βn(tk)),

βn(0) + µ

∫ T

0

βn(s)ds = βn(T ).

Since the sequences {αn(t)} and {βn(t)} are monotonically bounded on [0, T ],
then, it is easy to conclude that the sequences {αn(t)} and {βn(t)} converge uni-
formly and monotonically to ρ(t) and γ(t), respectively, where

ρ′(t) = f(t, ρ(t), Sρ(t)), ∆ρ(tk) = Ik(ρ(tk)), ρ(0) + µ

∫ T

0

ρ(s)ds = ρ(T );

γ′(t) = f(t, γ(t), Sγ(t)), ∆γ(tk) = Ik(γ(tk)), γ(0) + µ

∫ T

0

γ(s)ds = γ(T ).

Thus, we get ρ(t) = u(t) = γ(t) by Lemma 2.5, where u(t) is the unique solution of
(1.1). This proves that the sequences {αn(t)} and {βn(t)} converge uniformly and
monotonically to the unique solution u(t) of (1.1).

Finally, we have to prove the quadratic convergence. Set

pn+1(t) = u(t)− βn+1(t) ≥ 0, qn+1(t) = αn+1(t)− u(t) ≥ 0.

Now, using the mean value theorem, we have

p′n+1(t) = f(t, u(t), (Su)(t))−H0(t, βn+1(t), (Sβn+1)(t))

= fx(t, ξ1(t), (Sξ1)(t))pn(t) + fy(t, ξ2(t), (Sξ2)(t))(Spn)(t)

− fx(t, βn(t), (Sβn)(t))pn(t)− fy(t, βn(t), (Sβn)(t))(Spn)(t)

+ fx(t, βn(t), Sβn(t))pn+1(t) + fy(t, βn(t), Sβn(t))Spn+1(t)

≤ fxx(t, τ1(t), (Sτ1)(t))p2n(t) + fyy(t, τ2(t), (Sτ2)(t))[(Spn)(t)]2

+ fx(t, βn(t), (Sβn)(t))pn+1(t) + fy(t, βn(t), (Sβn)(t))(Spn+1)(t)

≤ λ(t)pn+1(t) + (A+BT 2r20)‖pn‖2,

(3.5)

where A = sup fxx, B = sup fyy. In the same way, we can obtain

∆pn+1(tk) = Ik(u(tk))− Ik(βn(tk))− I ′k(βn(tk))(βn+1(tk)− βn(tk))

= I ′k(η(tk))pn(tk) + I ′k(βn(tk))pn+1(tk)− I ′k(βn(tk))pn(tk)

≤ I ′′k (θ(tk))‖pn‖2 + µkpn+1(tk)

≤ ck‖pn‖2 + µkpn+1(tk),

(3.6)
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where ck = sup I ′′k . By Lemma 2.3, we have

pn+1(t) ≤ pn+1(0)

m∏
k=1

(1 + µk) exp
(∫ t

0

λ(s)ds
)

+

m∏
k=1

(1 + µk)

m∑
k=1

ck‖pn‖2

+

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2.
(3.7)

Applying the boundary conditions of (1.1) and pn+1(0)+µ
∫ T
0
pn+1(s)ds = pn+1(T ),

we obtain

pn+1(T ) ≤ pn+1(0)

m∏
k=1

(1 + µk) exp{
∫ t

0

λ(s)ds}
m∏
k=1

(1 + µk)

m∑
k=1

ck‖pn‖2

+

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2,

and

pn+1(0) ≤
(

1−
m∏
k=1

(1 + µk) exp{
∫ T

0

λ(s)ds}
)−1[ m∏

k=1

(1 + µk)

m∑
k=1

ck‖pn‖2

+

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2 − µ
∫ T

0

pn+1(s)ds
]
.

(3.8)

Furthermore,

pn+1(t) ≤
(

1−
m∏
k=1

(1 + µk) exp{
∫ T

0

λ(s)ds}
)−1[ m∏

k=1

(1 + µk)

m∑
k=1

ck‖pn‖2

+

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2 − µ
∫ T

0

pn+1(s)ds
]

×
m∏
k=1

(1 + µk) exp
(∫ t

0

λ(s)ds
)

+

m∏
k=1

(1 + µk)

m∑
k=1

ck‖pn‖2

+

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2.

Thus

‖pn+1‖ ≤
[
1 + µT

(
1−

m∏
k=1

(1 + µk)e
∫ T
0
λ(s)ds

)−1]−1
×
{(

1−
m∏
k=1

(1 + µk) exp{
∫ T

0

λ(s)ds}
)−1

×
[ m∏
k=1

(1 + µk)

m∑
k=1

ck‖pn‖2 +

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2
]

×
m∏
k=1

(1 + µk) exp{
∫ t

0

λ(s)ds}+

m∏
k=1

(1 + µk)

m∑
k=1

ck‖pn‖2

+

m∏
k=1

(1 + µk)T (A+BT 2r20)‖pn‖2
}

;

(3.9)
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that is,
‖pn+1‖ ≤ Q1‖pn‖2,

where Q1 ≥ 0. Similarly, there exists a Q2 ≥ 0 such that

‖qn+1‖ ≤ Q2‖qn‖2.
This proves the quadratic convergence. �

Similar results can be obtained for θ = −1, we omit their proof.

Theorem 3.3. Assume that the conditions of Theorem 3.1 hold. Then there exist
two monotone sequences {αn}, {βn} with α0 = α, β0 = β such that limn→∞αn =
ρ(t), limn→∞βn = γ(t) uniformly on J , where ρ(t), γ(t) are the maximal and
minimal solutions of integral boundary value problem (1.1) respectively, satisfying

β0 ≤ β1 ≤ β2 ≤ . . . βn ≤ γ(t) ≤ u(t) ≤ ρ(t) ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0

in which u(t) is any solution of (1.1) such that β(t) ≤ u(t) ≤ α(t) on J .

Theorem 3.4. Assume that the conditions of Theorem 3.2 hold. Then there exist
two monotone sequences {αn}, {βn} satisfying:

(1) β0 ≤ β1 ≤ β2 ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0 on J ;
(2) {αn}, {βn} converging uniformly and quadratically to the unique solution

of (1.1).

4. Examples

In this section, we give two examples to illustrate the results established in the
previous section.

Example 4.1. Consider the impulsive integro-differential equation

u′(t) = −t
(

cosu(t) + sinu(t)
)
−
∫ t

0

u(s)

(s+ 1)2 − 1
ds, t ∈ J = [0,

π

4
], t 6= π

8
,

∆u(
π

8
) =

1

6
(u(

π

8
)),

u(0)− 1

4

∫ π
4

0

u(s)ds = u(
π

4
).

(4.1)
It is easy to check that α0 = 3π/4 and β0 = 0 are lower and upper solutions of
(4.1) respectively, satisfy α0 > β0, and fx ≤ 0, fy < 0, fxx ≥ 0, fyy = 0. Problem
(4.1) satisfies all the conditions of Theorem 3.2. Then there exist two monotone
sequences {αn}, {βn} converging uniformly to the unique solution of (4.1).

Example 4.2. Consider the impulsive integro-differential equation

u′(t) = −t cosu(t)− u(t)−
∫ t

0

u(s)

(s+ 1)2 − 1
ds, t ∈ [0, 1], t 6= 1

2
,

∆u(
1

2
) =

1

6
(u(

1

2
)),

u(0)− 2

∫ 1

0

u(s)ds = −u(1).

(4.2)

It is easy to check that α0 = 1 − t and β0 = 0 are lower and upper solutions of
(4.2) respectively, and satisfying α0 > β0. Meanwhile, problem (4.2) satisfies all
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the conditions of Theorem 3.4. Thus, we can apply the quasilinesrization method
to find two monotone sequences {αn}, {βn} converging uniformly to the unique
solution of (4.2).
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