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PERIODIC SOLUTIONS OF SECOND-ORDER

NON-AUTONOMOUS DYNAMICAL SYSTEMS WITH

VANISHING GREEN’S FUNCTIONS

YONGXIN JIANG

Abstract. In this article, we study the existence and multiplicity of positive

periodic solutions for second-order non-autonomous dynamical systems when

Green’s functions are non-negative. The proofs are based on a nonlinear alter-
native principle of Leray-Schauder and the fixed point theorem in cones. Some

recent results in the literature are generalized and improved.

1. Introduction

The main purpose of this paper is to study the existence and multiplicity of
positive solutions of the second-order dynamical system

ẍ+ a(t)x = f(t, x),

x(0) = x(T ), x′(0) = x′(T ).
(1.1)

where a(t) ∈ C(R/TZ,RN ) and f(t, x) ∈ C(R/TZ×RN ,RN ). The type of pertur-
bation f(t, x) that we are interested in can be not only superlinear and sublinear,
but also combinations of them. From the physical explanation, The sublinearity of
f(t, x) means that for each i = 1, . . . , N , it holds

f0
i = lim

|x|→0

fi(t, x)

|x|
= +∞ and f∞i = lim

|x|→+∞

fi(t, x)

|x|
= 0 uniformly in t.

The superlinearity of f(t, x) means that

f0
i = lim

|x|→0

fi(t, x)

|x|
= 0 and f∞i = lim

|x|→+∞

fi(t, x)

|x|
= +∞ uniformly in t.

During the previous two decades, some classical tools have been used in the
study of periodic solutions of equation (1.1), including the method of upper and
lower solutions [11, 18], degree theory [7, 22, 23], fixed point theorems in cones for
completely continuous operators [9, 19], Schauder’s fixed point theorem [3, 8, 20]
and a nonlinear alternative principle of Leray-Schauder [4, 5, 12].

In the above mentioned works, when one tried to apply some fixed point theorems
in cones, or the nonlinear alternative principle of Leray-Schauder, to study the
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existence of periodic solutions of equation (1.1), one major assumption is that the
corresponding Green’s function Gi(t, s) for the scalar linear differential equation

x′′ + ai(t)x = 0 (1.2)

is positive (i = 1, 2, . . . , N), which is equivalent to the strict anti-maximum principle
for equation (1.2). Such an assumption plays an important role in constructing the
following cone

K1 = {x ∈ X : min
0≤t≤T

x(t) ≥ σi ‖ x ‖}

where
σi =

mi

Mi
, mi = min

0≤s,t≤T
Gi(t, s), Mi = max

0≤s,t≤T
Gi(t, s).

When the Green’s function vanishes, we know that m = 0 and K1 becomes
the cone of nonnegative functions, which is not effective in obtaining the desired
estimates. For example, when ai(t) = k2 with k > 0 and k 6= 2nπ/T (n ∈ Z+), the
Green’s function is given as [9, 19]

Gi(t, s) =


sin k(t−s)+sin k(T−t+s)

2k(1−cos kT ) , 0 ≤ s ≤ t ≤ T,
sin k(s−t)+sin k(T−s+t)

2k(1−cos kT ) , 0 ≤ t ≤ s ≤ T,
(1.3)

and
1

2k
cot

kT

2
≤ Gi(t, s) ≤

1

2k sin(kT/2)
.

Therefore, the positiveness of Green’s fuction is equivalent to 0 < k2 < λ1 =
(π/T )2. Note that λ1 is the first eigenvalue of the linear problem (1.2) with the
Dirichlet condition x(0) = x(T ) = 0. For the critical case of k = π

T , the Green’s
function vanishes at t = s, and thus the results in [1, 4, 5, 6, 19] cannot be applied
to such a critical case. In this paper, we focus on the case of k ≤ π/T , and we
assume that the following condition holds

(A1) The associated Green’s function Gi(t, s) of (1.2) is non-negative for all
(t, s) ∈ [0, T ]× [0, T ].

Our main motivation comes from the recent works [2, 10, 14, 15], in which the
second order systems have been studied in the case where the associated non-
negative Green’s functions may have zeros. Chu and O’Regan [2] established the
multiplicity results for second order non-autonomous singular Dirichlet systems

ẍ+ q(t)f(t, x) + e(t) = 0, 0 < t < 1,

x(0) = 0, x(1) = 0.

based on a well-known fixed point theorem in cones and Leray-Schauder alternative
principle. Especially, we observe that even when the Green’s function vanishes, the
following fact also holds

ν = min
0≤s≤T

∫ T

0

G(t, s)dt > 0.

Based on this fact, Graef, Kong and Wang [10] introduced the cone

K2 =
{
x ∈ X : x(t) ≥ 0 and

∫ T

0

x(t)dt ≥ ν

M
‖ x ‖

}
.

Using the above cone, it was proved in [10] that equation

x′′ + a(t)x = g(t)f(x)
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has at least one nontrivial T -periodic solution for the superlinear or sublinear case.
Li and Zhang [14] extended this result to a more general case. They proved some
existence and nonexistence results for nonnegative solutions of the following second-
order periodic boundary-value problem with a parameter λ ∈ (0,∞), i = 1, 2, . . . , n,

x′′i + ai(t)xi = λgi(t)f i(x), 0 ≤ t ≤ T,

by using fixed point theorems in a cone under different combinations of superlinear-
ity and sublinearity of functions f i at zero and infinity for an appropriately chosen
parameter λ. Liao [15] showed that the scalar problem (1.1) has at least two pos-
itive solution under the given conditions. In this paper, we will construct a new
cone and establish the existence and multiplicity of nontrivial T -periodic solutions
for equation (1.1) using a nonlinear alternative principle of Leray-Schauder and a
fixed point theorem in cones. We emphasize that in this study the corresponding
nonnegative Green’s function of linear system of (1.1) may have zeros. Hence, we
need to overcome this obstacle for system (1.1).

Our goal is to obtain the existence of positive periodic solutions for the system

ẍ+ a1(t)x =
√

(x2 + y2)α + µ
√

(x2 + y2)β + e1(t),

ÿ + a2(t)y =
√

(x2 + y2)α + µ
√

(x2 + y2)β + e2(t).

with a1, a2, e1, e2 ∈ C[0, T ], 0 < α < 1, β > α, and µ > 0 is a given parameter.
Here we wish to point out that in our results, e1 and e2 may not be positive. Thus,
we generalize and improve some results presented in [8, 16] and even for the scalar
cases in [12].

This articles is organized as follows. In Section 2, some preliminary results and
notations will be introduced. In Section 3, by employing a nonlinear alternative
principle of Leray-Schauder, we state and prove the existence result for (1.1). In
Section 4, we establish the existence result for (1.1) by using the well-known fixed
point theorem in cones.

2. Preliminaries

In this article we use the following notation: RN+ = {x ∈ RN : xi ≥ 0 for i =
1, 2, . . . , N} with the norm |x| = maxi |xi|. For x = (x1, . . . , xN ), y = (y1, . . . , yN ),
we write x ≥ y, if x − y = (x1 − y1, . . . , xN − yN ) ∈ RN+ . We say that a function

ϕ : RN → R is nondecreasing if ϕ(x) ≥ ϕ(y) for x, y ∈ RN with x ≥ y. Given
ψ ∈ L1[0, T ], we write ψ � 0 if ψ ≥ 0 for all t ∈ [0, T ] and it is positive in a set of
positive measure. We take X = C[0, T ]×· · ·×C[0, T ](N copies) with the supremum
norm ‖ · ‖.

We denote by a1, a2, . . . , aN and e1, e2, . . . , eN the components of given functions
a(t), e(t) ∈ C(R/TZ,RN ), respectively. For each i = 1, 2, . . . , N , we consider the
scalar equation

x′′ + ai(t)x = ei(t). (2.1)

with periodic boundary conditions

x(0) = x(T ), x′(0) = x′(T ). (2.2)
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We assume condition (A1). In other words, the anti-maximum principle holds for
(2.1). In this case, the solution of (2.1) is given by

x(t) = (Lei)(t) :=

∫ T

0

Gi(t, s)ei(s)ds.

Some classes of potentials a(t) for (A1) have been presented in [19]. Let K(q)
denote the best Sobolev constant in the inequality

C‖u‖2q ≤ ‖u′‖22 for all u ∈ H1
0 (0, 1).

The explicit formula for K(q) is

K(q) =

 2π
q

(
2

2+q

)1−2/q( Γ( 1
q )

Γ( 1
2 + 1

q )

)2
if 1 ≤ q <∞,

4 if q =∞,

where Γ is the Gamma function [24].

Lemma 2.1 ([19]). For i = 1, 2, . . . , N assume that ai(t) � 0 and ai ∈ Lp[0, T ] for
some 1 ≤ p ≤ ∞. If

‖ai‖p ≤ K(2p̃),

then (A1) holds.

Under assumption (A1), we denote

Mi = max
0≤s,t≤T

Gi(t, s), M = max
0≤i≤N

Mi.

We also use w(t) to denote the unique periodic solution of (2.1) with ei(t) = 1,
i = 1, 2 . . . , N ; i.e.,

wi(t) = (L1)(t) :=

∫ T

0

Gi(t, s) ds,

w∗(t) = min
i,t

w(t), w∗(t) = max
i,t

w(t).

Define

K =
{
x ∈ X : xi(t) ≥ 0 for all t, and

∫ T

0

xi(t)dt ≥
δ

M
‖xi‖

}
,

where

δ = min
0≤i≤N

δi, δi = min
0≤s≤T

∫ T

0

Gi(t, s)dt.

Under condition (A1), we observe that even when the Green’s function vanishes,
we have δi > 0, and δ > 0. One may readily verify that K is a cone in X [17].

Lemma 2.2 ([17]). Assume that Ω is a relatively compact subset of a convex set
K in a normed space X. Let T : Ω→ K be a compact map with 0 ∈ Ω. Then one
of the following two statements hold:

(I) T has at least one fixed point in Ω.
(II) There exist x ∈ ∂Ω and 0 < λ < 1 such that x = λTx.

To obtain a second periodic solution of (1.1), we need the following well known
fixed point theorem in cones [13] and Jensen’s inequality, see [21]. Let K be a cone
in X and D a subset of X, we write DK = D ∩K and ∂KD = (∂D) ∩K.
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Lemma 2.3 ([13, p. 148]). Let X be a Banach space and K be a cone in X. Assume
that Ω1,Ω2 are open subsets of X with Ω1

K 6= ∅, Ω̄1
K ⊂ Ω2

K , and let S : Ω̄2
K → K be

a continuous and completely continuous operator such that

(i) x 6= λSx for λ ∈ [0, 1) and x ∈ ∂KΩ1, and
(ii) there exists v ∈ K \ {0} such that x 6= Sx + λv for all x ∈ ∂KΩ2 and all

λ > 0.

Then S has a fixed point in Ω̄2
K\Ω1

K .

Lemma 2.4 (Jensen’s inequality). Let m be a (positive) measure and let Ω be a
measurable set with m(Ω) = 1. Let I be an interval and suppose that u is a real
function in L1(dm) with u(t) ∈ I for all t ∈ Ω. If f is convex on I, then

f
( ∫

Ω

u(t)dm(t)
)
≤
∫

Ω

f(u(t))dm(t).

3. Existence result (I)

In this section we establish the first existence result by using the nonlinear alter-
native of Leray-Schauder. Define an operator T : X → X by Tx = (T1x, T2x, . . . , T1x)>,
where

(Tix)(t) =

∫ T

0

Gi(t, s)fi(s, x(s))ds, i = 1, 2, . . . , N.

Lemma 3.1. T is well defined and maps X into K. Moreover, T is continuous
and completely continuous.

It is easy to see that finding a fixed point for the operator T is equivalent to
finding a T -periodic solution of system (1.1). For the next theorem we use the
following assumptions:

(A2) There exists a continuous function φi � 0 such that each component fi of
f satisfies fi(t, x) ≥ φi(t) for all (t, x) ∈ [0, T ]× RN+ .

(A3) There exist continuous, non-negative functions gi(x) and hi(x) such that

fi(t, x) ≤ gi(x) + hi(x) for all (t, x) ∈ [0, T ]× RN+ ,

and gi(x) > 0 and hi(x)/gi(x) are non-decreasing in x ∈ RN+ .
(A4) There exist a positive number r such that

gi(r, . . . , r) + hi(r, . . . , r) <
δr

Mω∗T
for i = 1, 2, . . . , N .

Theorem 3.2. Under assumptions (A1)–(A4), equation (1.1) has at least one T -
periodic solution with 0 < |x| < r.

Proof. Consider a family of equations

ẍ+ ai(t)x = λfi(t, x(t)), (3.1)

where λ ∈ [0, 1]. Problem (3.1) is equivalent to the following fixed point problem

xi(t) = λ(Tix)(t) = λ

∫ T

0

Gi(t, s)fi(s, x(s))ds. (3.2)

We claim that for any λ ∈ [0, 1], equation (3.2) has no fixed point x with x ∈ ∂Ω,
where

Ω = {x ∈ X : |x| < r},
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and X = C(R/TZ,RN ) is a Banach space with the norm |x| = maxi |xi|.
Otherwise, assume that x is a solution of (3.2) for some λ0 ∈ [0, 1] such that

|x| = r. Without loss of generality, we assume that |xj | = r for some j = 1, 2, . . . , N .
Thus we have ∫ T

0

xj(t)dt = λ0

∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

= λ0

∫ T

0

fj(s, x(s))

∫ T

0

Gj(t, s) dt ds

≥ λ0δj

∫ T

0

fj(s, x(s))ds

=
δj
Mj

Mjλ0

∫ T

0

fj(s, x(s))ds

≥ δ

M
max
t

{
λ0

∫ T

0

Gj(t, s)fj(s, x(s))ds
}

=
δ

M
‖xj‖.

Thus, for all t we have ∫ T

0

xj(t)dt ≥
δ

M
‖xj‖ =

δ

M
r.

On the other hand, for all t, it follows from condition (A3) that∫ T

0

xj(t)dt = λ

∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

≤
∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

≤
∫ T

0

∫ T

0

Gj(t, s)gj(x(s))
{

1 +
hj(x(s))

gj(x(s))

}
ds dt

≤
∫ T

0

∫ T

0

Gj(t, s)gj(r, . . . , r))
{

1 +
hj(r, . . . , r)

gj(r, . . . , r)

}
ds dt

≤ ω∗Tgj(r, . . . , r))
{

1 +
hj(r, . . . , r)

gj(r, . . . , r)

}
.

Hence,
δ

M
r ≤ ω∗T (gj(r, . . . , r) + hj(r, . . . , r)).

This is a contradiction to condition (A4); thus the claim is proved.
From this claim, the nonlinear alternative principle of Leray-Schauder guarantees

that (3.2) (with λ = 1) has a fixed point, denoted by x, in Ω, that is, equation (3.1)
(with λ = 1) has a periodic solution x with |x| < r.

Finally, by condition (A2), we obtain∫ T

0

xj(t)dt =

∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

≥
∫ T

0

∫ T

0

Gj(t, s)φi(s) ds dt
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=

∫ T

0

φi(s)

∫ T

0

Gj(t, s) dt ds

≥ δj
∫ T

0

φi(s)ds > 0.

This implies that x is a nontrivial T -periodic solution. �

Example 3.3. Suppose that a1(t), a2(t) satisfy (A1) and consider the differential
equations

ẍ+ a1(t)x =
√

(x2 + y2)α + µ
√

(x2 + y2)β + e1(t),

ÿ + a2(t)y =
√

(x2 + y2)α + µ
√

(x2 + y2)β + e2(t).
(3.3)

where ai, ei ∈ X, ei � 0, i = 1, 2, 0 < α < 1, β > α, and µ > 0 is a positive
parameter. Then we have

(i) if β < 1, (3.3) has at least one nontrivial T -periodic solution for each µ > 0;
(ii) if β ≥ 1, (3.3) has at least one nontrivial periodic solution for each 0 < µ <

µ∗, where µ∗ is some positive constant.

Proof. To apply Theorem 3.2, we take

φi(t) = ei(t), i = 1, 2,

g1(x, y) = g2(x, y) =
√

(x2 + y2)α + e∗,

h1(x, y) = h2(x, y) = µ
√

(x2 + y2)β

where e∗ = maxt{e1(t), e2(t)}. Clearly, (A2) is satisfied since e � 0. Moreover,
since 0 < α < β, it is easy to verify that gi(x, y)(i = 1, 2) and

hi(x, y)

gi(x, y)
=

µ
√

(x2 + y2)β√
(x2 + y2)α + e∗

is non-decreasing in x ∈ R2
+. Then (A3) is satisfied. Now the existence condition

(A4) becomes

µ <
δr − 2

α
2 TMω∗rα − e∗TMω∗

2
β
2 TMω∗rβ

, i = 1, 2,

for some r > 0. So equation (3.3) has at least one T -periodic solution for

0 < µ < µ∗ := sup
r>0

δr − 2
α
2 TMω∗rα − e∗TMω∗

2
β
2 TMω∗rβ

.

Note that µ∗ = ∞ if β < 1 and µ∗ < ∞ if β ≥ 1. We have the desired results (i)
and (ii). �

4. Existence result (II)

In this section, we consider system (1.1) by the well-known fixed point theorem
in cones (i.e. Lemma 2.3). For the next theorem we use the following assumptions:

(A5) There exist continuous, non-negative functions g1
i (x) and h1

i (x) on RN+ such
that

fi(t, x) ≥ g1
i (x) + h1

i (x) for all (t, x) ∈ [0, T ]× RN+ ,

and g1
i (x) > 0 is non-decreasing and convex, and h1

i (x)/g1
i (x) is non-

increasing in x ∈ RN+ ;
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(A6) There exists a positive number R > r such that

R

δ
< g1

i

(
0, . . . ,

δR

MT
, . . . , 0

){
1 +

h1
i (R, . . . , R)

g1
i (R, . . . , R)

}
,

where δ and M are the same as in Section 2.

Theorem 4.1. Suppose that (A1) and (A3)–(A6) are satisfied. Then, besides the
periodic solution x constructed in Theorem 3.2, equation (1.1) has another positive
periodic solution x̃ with r < |x̃| ≤ R.

Proof. Define the open sets as

Ω1 = {x ∈ X : |x| < r}, Ω2 = {x ∈ X : |x| < R}

and the operator S : Ω̄2
K\Ω1

K → K is defined by Sx = (S1x, S2x, . . . , S1x)T , where

(Six)(t) =

∫ T

0

Gi(t, s)fi(s, x(s))ds, i = 1, 2, . . . , N.

Using Lemma 3.1, one may readily verify that S : Ω̄2
K\Ω1

K → K is well defined.
Next we claim that:

(i) x 6= λSx for λ ∈ [0, 1) and x ∈ ∂KΩ1, and
(ii) there exists v ∈ K \ {0} such that x 6= Sx + λv for all x ∈ ∂KΩ2 and all

λ > 0.

We start with (i). Suppose there exist x ∈ ∂KΩ1 and λ ∈ [0, 1) such that x = λSx,
We can assume that λ 6= 0. Now since x = λSx we have

ẍ+ a(t)x = λf(t, x(t)),

x(0) = x(T ), x′(0) = x′(T ).

Since x ∈ ∂KΩ1, then |x| = r. Without loss of generality, we assume that |xj | = r
for some j = 1, 2, . . . , N . Thus we have∫ T

0

xj(t)dt = λ

∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

= λ

∫ T

0

fj(s, x(s))

∫ T

0

Gj(t, s) dt ds

≥ λδj
∫ T

0

fj(s, x(s))ds

=
δj
Mj

Mjλ

∫ T

0

fj(s, x(s))ds

≥ δ

M
max
t

{
λ

∫ T

0

Gj(t, s)fj(s, x(s))ds
}

=
δ

M
‖xj‖

Thus, for all t we have ∫ T

0

xj(t)dt ≥
δ

M
‖xj‖ =

δ

M
r.
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On the other hand, for all t, it follows from condition (A3) that∫ T

0

xj(t)dt = λ

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

≤
∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt

≤
∫ T

0

∫ T

0

Gj(t, s)gj(x(s))
{

1 +
hj(x(s))

gj(x(s))

}
ds dt

≤
∫ T

0

∫ T

0

Gj(t, s)gj(r, . . . , r))
{

1 +
hj(r, . . . , r)

gj(r, . . . , r)

}
ds dt

≤ ω∗Tgj(r, . . . , r))
{

1 +
hj(r, . . . , r)

gj(r, . . . , r)

}
.

Therefore,

δ

M
r ≤ ω∗T (gj(r, . . . , r) + hj(r, . . . , r)).

This is a contradiction to the condition (A4) and the claim is proved.
Next we consider (ii). Let v(t) ≡ 1, so v ∈ K\{0}. Next, suppose that there

exist x ∈ ∂KΩ2 and λ > 0 such that x = Sx+ λv. Since x ∈ ∂KΩ2, then |x| = R.
Without loss of generality, we assume that |xj | = R for some j = 1, 2, . . . , N . Thus
we have ∫ T

0

xj(t)dt ≥
δ

M
‖xj‖ =

δR

M
, and xj(t) = (Sjx)(t) + λ.

As a result, it follows from (A5) that∫ T

0

xj(t)dt =

∫ T

0

∫ T

0

Gj(t, s)fj(s, x(s)) ds dt+ λT

=

∫ T

0

fj(s, x(s))

∫ T

0

Gj(t, s) dt ds+ λT

≥ δj
∫ T

0

fj(s, x(s))ds+ λT

≥ δj
∫ T

0

g1
j (x(s))

{
1 +

h1
j (x(s))

g1
j (x(s))

}
ds+ λT

≥ δj
{

1 +
h1
j (R, . . . , R)

g1
j (R, . . . , R)

}∫ T

0

g1
j (x(s))ds+ λT.

Since g1
j is non-decreasing and convex, using the Jensen’s inequality, we have∫ T

0

g1
j (x(s))ds ≥ Tg1

j

( 1

T

∫ T

0

x(s)ds
)

≥ Tg1
j

(
0, 0, . . . ,

1

T

∫ T

0

x(s)ds, 0, . . . , 0
)

≥ Tg1
j

(
0, 0, . . . ,

δR

TM
, 0 . . . , 0

)
.
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Therefore,

|xj | ≥
1

T

∫ T

0

xj(t)dt

≥ δj
T

{
1 +

h1
j (R, . . . , R)

g1
j (R, . . . , R)

}∫ T

0

g1
j (x(s))ds+ λ

≥ δg1
j

{
0, 0, . . . ,

δR

TM
, 0 . . . , 0

}{
1 +

h1
j (R, . . . , R)

g1
j (R, . . . , R)

}
+ λ.

This contradicts with (A6) and so (ii) is proved. �

Example 4.2. Suppose that a1(t), a2(t) satisfy (A1) and consider the differential
equations

ẍ+ a1(t)x =
√

(x2 + y2)α + µ
√

(x2 + y2)β + e1(t),

ÿ + a2(t)y =
√

(x2 + y2)α + µ
√

(x2 + y2)β + e2(t),
(4.1)

where ai, ei ∈ X, ei, i = 1, 2 are nonnegative. 0 < α < 1 < β, and µ > 0 is a
positive parameter. Then (4.1) has at least one nontrivial T -periodic solution for
each 0 < µ < µ∗; where µ∗ is the constant as in Example 3.3.

Proof. To apply Theorem 4.1, we take

g1(x, y) = g2(x, y) =
√

(x2 + y2)α + e∗,

h1(x, y) = h2(x, y) = g1
1(x, y) = g1

2(x, y) = µ
√

(x2 + y2)β ,

h1
1(x, y) = h1

2(x, y) = µ
√

(x2 + y2)α,

where e∗ = maxt{e1(t), e2(t)}. As in Example 3.3, we know that (A3) and (A4)
are satisfied for all 0 < µ < µ∗. Moreover, since β > 1, it is easy to see that (A5)
is satisfied and (A6) becomes

µ ≥ (
√

2MT )βR−
√

2
α
δβ+1Rα

√
2
β
δβ+1Rβ

(4.2)

for some R > 0. Since β > 1, the right-hand side of (4.2) goes to 0 as R → +∞.
Thus, for any given 0 < µ < µ∗, it is always possible to find R > r such that (4.2)
is satisfied. Now all conditions of Theorem (4.1) are satisfied. Thus, equation (4.1)
has a nontrivial T -periodic solution. �

Remark 4.3. In Theorem 3.2, condition (A2) guarantees that the periodic solution
obtained is nontrivial, while (A2) is not required in Theorem 4.1. For system (4.1),
we require that the function e � 0 in Example 3.3, while e is only required to be
nonnegative in Example 4.2.

The next multiplicity result is a direct consequence of Theorems 3.2 and 4.1.

Theorem 4.4. Suppose (A1)–(A6) are satisfied. Then system (1.1) has at least
two nontrivial T -periodic solutions x and x̃ with 0 < |x| < r ≤ |x̃| ≤ R.

Example 4.5. Let us assume that a(t) satisfy (A1), 0 < α < 1 < β and e � 0.
Then system (4.1) has at least two nontrivial T -periodic solutions for each 0 < µ <
µ∗; where µ∗ is the constant as in Example 3.3.
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