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COMPACTNESS OF THE CANONICAL SOLUTION OPERATOR

ON LIPSCHITZ q-PSEUDOCONVEX BOUNDARIES

SAYED SABER

Communicated by Jerome A. Goldstein

Abstract. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain that
admit good weight functions. We shall prove that the canonical solution op-

erator for the ∂-equation is compact on the boundary of Ω and is bounded in

the Sobolev space Wk
r,s(Ω) for some values of k. Moreover, we show that the

Bergman projection and the ∂-Neumann operator are bounded in the Sobolev
space Wk

r,s(Ω) for some values of k. If Ω is smooth, we shall give sufficient

conditions for compactness of the ∂-Neumann operator.

1. Introduction

Pseudoconvex domains are central objects in several complex variables analysis
as they are natural domains for existence of holomorphic functions. It turns out that
boundaries of domains play a leading role in the theory of several complex variables.
In this article, we discuss the existence of a compact canonical solution operator

∂
∗
N to the ∂-equation on the boundary of a Lipschitz q-pseudoconvex domain that

admits a good weight function. The connection between finite type and good weight
functions was first observed by Catlin [8, 9]. Straube [41] showed that Catlin’s result
could be used to construct useful weight functions on certain Lipschitz domains.
Harrington-Zeytuncu [26] showed that on bounded Lipschitz pseudoconvex domains

that admit good weight functions, the ∂-Neumann operators N , ∂N and ∂
∗
N are

bounded on Lp spaces, for some values of p greater than 2. Shaw [40] constructed
a solution to the tangential Cauchy-Riemann operator ∂b that is regular on L2 on
Lipschitz domains with plurisubharmonic defining functions. In [39], the author
extended this result to Lipschitz q-pseudoconvex domains. The first main result in
this article proves the compactness of this solution.

Theorem 1.1. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and let
1 ≤ q ≤ n. Let ρ be a defining function of Ω satisfying

i∂∂ρ ≥ i(−ρ)φ(−ρ)∂∂|z|2

on Ω, for some positive function φ ∈ C(0,∞) satisfying

lim
x→0+

φ(x) = +∞.
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Thus, there exists a compact solution operator S : L2
r,s(bΩ) ∩ ker(∂b)→ L2

r,s−1(bΩ)

such that ∂bS = I, for every s ≥ q.

When Ω has C1-boundary and has a plurisubharmonic defining function on the
boundary bΩ of Ω, Boas-Straube [5] proved that the Bergman projection maps the
Sobolev space W k(Ω) into itself for any k > 0. On C2-pseudoconvex domains,
Diederich-Fornaess [15] constructed a global defining function ρ so that −(−ρ)α is
a bounded plurisubharmonic function for some 0 < α < 1. Berndtsson-Charpentier
[3] showed that in such cases the Bergman projection and the canonical solution

operator ∂
∗
N are regular in any Sobolev space W k(Ω), for 0 ≤ k < α/2 (see also

[7]). Harrington [25] showed that the result of Diederich-Fornaess and Berndtsson-
Charpentier still holds when the boundary is only Lipschitz. However, Diederich-
Fornaess [16] used worm domain to show that for any 0 < α < 1, one can find a
smooth pseudoconvex domain where −(−ρ)α is not plurisubharmonic for any global
defining function ρ. Barrett [2] showed that the Bergman projection on a smooth
worm domain does not map W k into W k for some values of k. On C2-weakly q-
convex domains, Herbig-McNeal [28] constructed a global defining function ρ so that
−(−ρ)α is a bounded strictly plurisubharmonic function for some 0 < α < 1. In
[35], the author showed that in such cases the Bergman projection and the canonical

solution operator ∂
∗
N are regular in any Sobolev space W k(Ω), for 0 ≤ k < α/2.

The second main result in this article extends the result of Berndtsson-Charpentier
to all Lipschitz q-pseudoconvex domains.

Theorem 1.2. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and let
1 ≤ q ≤ n. Suppose that there exists a Lipschitz defining function ρ for Ω such that
there exists some 0 < α < 1 with

i∂∂(−(−ρ)α) ≥ 0 on Ω. (1.1)

Thus, for 0 < k < α/2 and for q + 1 ≤ s ≤ n − 1, the Bergman projection and
the canonical solution operator for the ∂-equation are bounded in the Sobolev space
W k
r,s(Ω).

Cao-Shaw-Wang [7] extend Berndtsson-Charpentier’s result to obtain estimates
for the ∂-Neumann operator. In [36] the author proved this result in the case of
log δ-pseudoconvexity in a Kähler manifold for forms with values in a holomorphic
vector bundle.

Theorem 1.3. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and let
1 ≤ q ≤ n. Suppose that there exists a Lipschitz defining function ρ for Ω such
that there exists some 0 < α < 1 satisfies (1.1). Thus, for 0 < k < α/2 and for
q+1 ≤ s ≤ n−1, the ∂-Neumann operator is bounded in the Sobolev space W k

r,s(Ω).

Also, we provide sufficient conditions for compactness of the ∂-Neumann prob-
lem. Our motivation for studying compactness of the ∂-Neumann problem comes
from its connections to the geometry of the boundaries of q-pseudoconvex domains.
There have been two different approaches for compactness of the ∂-Neumann prob-
lem. The first is a potential theory approach. Catlin [8] introduced Property (P )
and showed that it implies the compactness of the ∂-Neumann problem. McNeal
[32] introduced Property (P̃ ) and showed that it still implies compactness of the
∂-Neumann problem. The second approach is geometric in nature. Straube [42]
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introduced a geometric condition that implies compactness of the ∂-Neumann op-
erator on domains in C2. This problem was considered in [18, 19, 20, 32, 24]. Some
recent work on compactness of the ∂-Neumann operator, for non-pseudoconvex
domains, can be found in [37, 38].

Theorem 1.4. Let Ω be a smooth bounded q-pseudoconvex domain in Cn and let
1 ≤ q ≤ n. If Ω satisfies a McNeal’s Property (P̃ ), then N is compact (in particular,
continuous) as an operator from W k

r,s(Ω) to itself, for all k ≥ 0 and for s ≥ q.

2. Preliminaries

Let (z1, . . . , zn) be the complex coordinates for Cn. Let Ω ⊂ Cn be a bounded
domain with C2 boundary and ρ be its C2 defining function. For 0 ≤ r, s ≤ n, an
(r, s)-form u on Ω, can be expressed as

u =

′∑
I,J

uI,J dz
I ∧ dzJ ,

where I = (i1, . . . , ir) and J = (j1, . . . , js) are multi-indices and dzI = dzi1 ∧
· · · ∧ dzir , dz̄J = dz̄j1 ∧ · · · ∧ dz̄js . The notation

∑′
means the summation over

strictly increasing multi-indices. Denote by C∞(Cn) the space of complex-valued
C∞ functions on Cn and C∞r,s(Cn) the space of complex-valued differential (r, s)-

forms of class C∞ on Cn. Let C∞r,s(Ω) = {u
∣∣
Ω

: u ∈ C∞r,s(Cn)} be the subspace

of C∞r,s(Ω) whose elements can be extended smoothly up to the boundary bΩ. Let
D(Cn) be the space of C∞-functions with compact support in Cn. A form u ∈
C∞r,s(Cn) is said to be has compact support in Cn if its coefficients belongs to
D(Cn). The subspace of C∞r,s(Cn) which has compact support in Cn is denoted by
Dr,s(Cn). For u, v ∈ C∞r,s(Cn), the local inner product (u, v) is denoted by

(u, v) =

′∑
I,J

uI,J vI,J .

Let φ : Cn → R+ be a plurisubharmonic C2-weight function and define the space

L2(Ω, φ) = {u : Ω→ C :

∫
Ω

|u|2e−φdV <∞},

where dV denotes the Lebesgue measure. Denote the inner product and the norm
in L2(Ω, φ) by

〈u, v〉φ =

∫
Ω

uve−φdV and ‖u‖φ =

∫
Ω

|u|2e−φdV.

We also have the inner product and norm defined on the boundary:

〈u, v〉bφ = 〈u, v〉L2(bΩ,φ) =

∫
bΩ

uve−φdS,

‖u‖bφ = ‖u‖L2(bΩ,φ) =

∫
bΩ

|u|2e−φdS.

We will typically abbreviate 〈u, v〉0 as 〈u, v〉. Recall that L2
r,s(Ω, φ) the space of

(r, s)-forms with coefficients in L2(Ω, φ). If u, v ∈ L2
r,s(Ω, φ), the L2-inner product
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and norms are defined by

〈u, v〉φ,Ω =

∫
Ω

(u, v)e−φ dV =

∫
Ω

tu ∧ ?ve−φ and ‖u‖2φ,Ω = 〈u, u〉φ,Ω,

where ? : C∞r,s(Cn)→ C∞n−s,n−r(Cn) is the Hodge star operator such that ? u = ?u

(that is ? is a real operator) and ? ? u = (−1)r+su. Set

Q(u, u) = ‖u‖2 + ‖∂u‖2 + ‖∂∗u‖2.

For a form u, the vector of all m-th derivatives of all coefficients of u will be denoted
∇mu (we treat ∇0 as the identity). If ρ is the distance function for bΩ, for any real
number −1 ≤ k ≤ 1 and integer m > 0, one defines

〈u, v〉W (k)(Ω) =

∫
Ω

(u, v)(ρ(z))−2k dV,

‖u‖2W (k)(Ω) = 〈u, u〉W (k)(Ω),

〈u, v〉W (m,k)(Ω) =

{
〈∇mu,∇mv〉W (k)(Ω) + 〈∇m−1u,∇m−1v〉+ 〈u, v〉 when k ≤ 0,

〈∇mu,∇mv〉W (k)(Ω) + 〈u, v〉 when k > 0,

‖u‖2W (m,k)(Ω) = 〈u, u〉W (m,k)(Ω).

The corresponding function spaces are defined by

W (k)
r,s (Ω) = {u ∈ L2

r,s(Ω) : ‖u‖2W (k)(Ω) <∞},

W (m,k)
r,s (Ω) =

{{
u ∈Wm−1

r,s (Ω) : ‖u‖2
W (m,k)(Ω)

<∞
}

when k ≤ 0,

{u ∈Wm
r,s(Ω) : ‖u‖2

W (m,k)(Ω)
<∞} when k > 0.

Let a = (a1, . . . , an) be a multi-index; that is, a1, . . . , an are nonnegative integers.
For x ∈ Rn, one defines xa = xa11 . . . xann and Da is the operator

Da =
(1

i

∂

∂x1

)a1
. . .
(1

i

∂

∂xn

)an
.

Denote by S the Schwartz space of rapidly decreasing smooth functions on Rn; that
is, S consists of all functions u which are smooth on Rn with supx∈Rn |xaDbu(x)| <
∞ for all multi-indices a, b. The Fourier transform û of a function u ∈ S is defined
by

û(ξ) = (2π)−n/2
∫
Rn
u(x)e−ix·ξ dx,

where x · ξ =
∑n
j=1 xjξj and dx = dx1 ∧ · · · ∧ dxn with x = (x1, . . . , xn) and

ξ = (ξ1, . . . , ξn). If u ∈ S, then û ∈ S. The Sobolev space W k(Rn), k ∈ R, is the
completion of S under the Sobolev norm

‖u‖2Wk(Rn) =

∫
Rn

(1 + |ξ|2)k|û|2 dξ.

Denote by W k(Ω), k ≥ 0, the space of the restriction of all functions u ∈W k(Cn) =
W k(R2n) to Ω and

‖u‖Wk(Ω) = inf{‖f‖Wk(Cn), f ∈W k(Cn), f |Ω = u}

the W k(Ω)-norm. Denote by W k
0 (Ω) the completion of D(Ω) under the W k(Ω)-

norm and W k
r,s(Ω), k ∈ R, the Hilbert spaces of (r, s)-forms with W k(Ω)-coefficients
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and their norms are denoted by ‖u‖Wk(Ω). In addition, for any (1, 1)-form Θ =

Θi j dz
i ∧ dzj we have

(u, v)∗Θ = uiIΘi jviI .

The ∗ is used to emphasize that these norms are dual to the norms defined by
Demailly in [13].

Let ∂ : L2
r,s(Ω) → L2

r,s+1(Ω) be the maximal closed extensions of the Cauchy-

Riemann operator ∂ : C∞r,s(Ω)→ C∞r,s+1(Ω) and let ∂
∗

be its Hilbert space adjoint.
Define

H2(Ω) = {u ∈ L2(Ω) : 4u = 0 on Ω},

Hr,s(Ω) = {u ∈ L2
r,s(Ω) : ∂u = ∂

∗
u = 0 on Ω},

where 4 is the real Laplacian operator. The ∂-Neumann operator N : L2
r,s(Ω) →

L2
r,s(Ω) is defined as the inverse of the restriction of the complex Laplacian � =

∂∂
∗

+ ∂
∗
∂ to (Hr,s(Ω))⊥. Note that N may not always exist. The Bergman pro-

jection B is the orthogonal projection from the space of square integrable functions
onto the space of square integrable holomorphic functions on a domain. For any
0 ≤ r ≤ n and 1 ≤ s ≤ n, denote by B : L2

r,s(Ω) → ker ∂ the Bergman projection
operator.

Definition 2.1 ([8]). A domain Ω has Property (P ), if for every positive number
M there exists a smooth plurisubharmonic function λ on Ω such that 0 ≤ λ ≤ 1 on
Ω and i∂∂λ ≥ iM∂∂|z|2 on the boundary bΩ.

McNeal [32] defined Property (P̃ ) (a generalization of Catlin’s Property (P )) as
follows:

Definition 2.2. A domain Ω has the McNeal Property (P̃ ) if for every positive
number M there exists λ = λM ∈ C2(Ω) such that

(1) |∂λ|i∂∂λ ≤ 1;

(2) the sum of any q eigenvalues of the matrix
(

∂2λ
∂zk∂zk

)
(z) ≥M , for all z ∈ bΩ.

A bounded domain is called Lipschitz if locally the boundary of the domain is
the graph of a Lipschitz function. The defining function associated with a Lipschitz
domain is called a Lipschitz defining function.

Definition 2.3. A bounded Lipschitz domain Ω in Cn is said to have a Lipschitz
defining function if there exists a Lipschitz function ρ : Cn → R satisfies ρ < 0 in
Ω, ρ > 0 outside Ω and

C1 < |dρ| < C2 a.e. on bΩ,

where C1, C2 are positive constants.

Lemma 2.4 ([23]). Let Ω ⊂ Cn be a bounded Lipschitz domain. For any 0 < k < 1
2 ,

one obtains W k(Ω) ⊂W (k)(Ω).

Lemma 2.5 ([30]). Let Ω ⊂ Cn be a bounded Lipschitz domain. For some constant
0 ≤ k ≤ 1 and integer m ≥ 0, one obtains

H2(Ω) ∩Wm+k(Ω) = H2(Ω) ∩W (m+1,k−1)(Ω).
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Definition 2.6. Let Ω be an open domain. A function ϕ : Ω → R is called an
exhaustion function for Ω if the closure of {x ∈ Ω|ϕ(x) < c} is compact for all real
c.

Now, we recall the following definition of q-subharmonic functions which has
been introduced by Ahn-Dieu [1] (also see [29]).

Definition 2.7. Let Ω be a bounded domain in Cn and let q be an integer with
1 ≤ q ≤ n. A semicontinuous function η defined in Ω is called a q-subharmonic
function if for every q-dimension space L in Cn, η|L is a subharmonic function on
L∩Ω. This means that for every compact subset K ⊂ L∩Ω and every continuous
harmonic function h on K such that η ≤ h on bK, then η ≤ h on K.

The function η is called strictly q-subharmonic if for every U ⊂ Ω there exists a
constant CU > 0 such that η − CU |z|2 is q-subharmonic.

Proposition 2.8 ([1]). Let Ω be a bounded domain in Cn and let q be an integer
with 1 ≤ q ≤ n. Let η : Ω→ [−∞,∞) be a C2 smooth function. Thus, the following
statements are equivalent:

(1) η is a q-subharmonic function.
(2) For every smooth (r, s)-form f =

∑
I,J fI,J dz

I ∧ dzJ , and for s ≥ q,
′∑

I,K

n∑
j,k=1

∂2η

∂zj∂zk
fI,jKf I,kK ≥ 0. (2.1)

Definition 2.9. A Lipschitz domain Ω ⊂ Cn is said to be (strictly) q-pseudoconvex
if there is a (strictly) q-subharmonic exhaustion Lipschitz function on Ω.

Definition 2.10.

(i) A C2 smooth function u on U ⊂ Cn is called q-plurisubharmonic if its
complex Hessian has at least (n− q) non-negative eigenvalues at each point
of U .

(ii) An n-subharmonic function is just subharmonic function in usual sense. An
upper semicontinuous function on U is plurisubharmonic exactly when it is
1-subharmonic.

Example 2.11 ([22]). Let Ω ⊂ Cn be a bounded domain satisfy the Z(q) condition,
that is, the Levi form of a smooth defining function of Ω has, at every boundary
point of Ω, at least n− q positive or at least q + 1 negative eigenvalues. Thus Ω is
strictly q-pseudoconvex.

Remark 2.12. A domain Ω ⊂ Cn is pseudoconvex if and only if it is 1-pseudo-
convex, since 1-subharmonic function is just plurisubharmonic.

Remark 2.13 ([22]). If Ω ⊂ Cn is a q-pseudoconvex domain, 1 ≤ q ≤ n, then the
following hold

(1) If bΩ is of class C2, thus by (2.1), Ω is weakly q-convex;
(2) if q ≤ q′, Thus q-pseudoconvexity implies q′-pseudoconvexity.

Proposition 2.14 ([22]). Let Ω be a domain in Cn and let 1 ≤ q ≤ n. Thus, one
obtains:

(i) If {ηj}∞j=1 is a decreasing sequence of q-subharmonic functions. Thus η =
limj→+∞ ηj is a q-subharmonic function;
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(ii) let χ be a nonnegative smooth function in Cn vanishing outside the unit ball
and satisfying

∫
Cn χdV = 1. If f is a q-subharmonic function, one defines

fε(z) = (f ∗ χε)(z) =

∫
B(0, ε)

f(z − w)χε(w) dVw, ∀z ∈ Ωε,

where χε(z) = χ(z/ε)/|ε|2n and Ωε = {z ∈ Ω : d(z, bΩ) > ε}. Thus fε is
smooth q-subharmonic on Ωε, and fε ↓ f as ε ↓ 0;

(iii) if η ∈ C2(Ω) such that ∂2η
∂zj∂zk

(z) = 0 for all j 6= k and z ∈ Ω. Thus η

is q-subharmonic if and only if
∑
j,k∈J

∂2η
∂zj∂zk

(z) ≥ 0, for all |J | = s, for
s ≥ q and for all z ∈ Ω.

If Ω is a bounded Lipschitz domain with distance function ρ. We equip the
boundary bΩ with the induced metric from Cn. Let C∞(bΩ) be the space of the
restriction of all smooth functions in Cn to bΩ. L2(bΩ) denote the space of L2

functions on the boundary of Ω, and L̃2
r,s(bΩ) denote the space of (r, s)-forms in

Ω such that the restrictions of the coefficients to bΩ are in L2(bΩ). Fix p ∈ bΩ.
Thus for some neighborhood U of p locally choose an orthonormal coordinate patch
{dz1, . . . , dzn} defined almost everywhere in U ∩Ω such that dzn = −∂ρ a.e. Note
that |∂ρ| = 1

2 because we are using the metric where |dzj | = 1, which is half the

size induced by the usual Euclidean metric on Rn. Define L2
r,s(bΩ) ⊂ L̃2

r,s(bΩ) as

the space of all f ∈ L̃2
r,s(bΩ) such that dzn ∨ f = 0 almost everywhere on bΩ.

Definition 2.15. For u ∈ L2
r,s(bΩ) and f ∈ L2

r,s+1(bΩ), u is in dom ∂b and ∂bu = f
if ∫

bΩ

u ∧ ∂φ dS = (−1)r+s
∫
bΩ

f ∧ φ dS, for every φ ∈ C∞n−r,n−s−1(Cn).

Thus u is said to be in dom ∂b and ∂bu = f .

Since ∂
2

= 0, it follows that ∂
2

b = 0. Thus ∂b is a complex and one obtains

0→ L2
r,0(bΩ)

∂b→ L2
r,1(bΩ)

∂b→ L2
r,2(bΩ)

∂b→ . . .
∂b→ L2

r,n−1(bΩ)→ 0.

The ∂b operator is a closed, densely defined, linear operator from L2
r,s−1(bΩ) to

L2
r,s(bΩ), where 0 ≤ r ≤ n, 1 ≤ s ≤ n− 1.

Definition 2.16. dom ∂
∗
b is the subset of L2

r,s(bΩ) composed of all forms f for
which there exists a constant C > 0 satisfies

|〈f, ∂bu〉L2(bΩ)| ≤ C‖u‖L2(bΩ),

for all u ∈ dom ∂b.

For all f ∈ dom ∂
∗
b , let ∂

∗
bf be the unique form in L2

r,s(bΩ) satisfying

〈∂∗bf, u〉L2(bΩ) = 〈f, ∂bu〉L2(bΩ),

for all u ∈ dom ∂b. The ∂b Laplacian operator �b = ∂b∂
∗
b + ∂

∗
b∂b : dom�b →

L2
r,s(bΩ) is defined on dom�b = {u ∈ L2

r,s(bΩ) : u ∈ dom ∂b ∩ dom ∂
∗
b : ∂bu ∈

dom ∂
∗
b and ∂

∗
bu ∈ dom ∂b}. The ∂b Laplacian operator is a closed, densely defined

self-adjoint operator. The space of harmonic forms Hr,sb (bΩ) is denoted by

Hr,sb (bΩ) = {u ∈ dom�b : ∂bu = ∂
∗
bu = 0}.
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The space Hr,sb (bΩ) is a closed subspace of dom�b since �b is a closed operator.

The ∂b-Neumann operator Nb : L2
r,s(bΩ)→ L2

r,s(bΩ) is defined as the inverse of the

restriction of �b to (Hr,sb (bΩ))⊥.
The Bochner-Martinelli-Koppelman kernel on Lipschitz domains is defined in

[27] for (r, s)-forms as follows. Define

(ζ − z, dζ) =

n∑
j=1

(ζj − zi) dζj ,

(dζ − dz, dζ) =

n∑
j=1

(dζj − dzj) dζj ,

where (ζ − z) = (ζ1 − z1, . . . , ζn − zn), dζ = (dζ1, . . . , dζn). Thus, the Bochner-
Martinelli-Koppelman kernel K(ζ, z) is defined by

K(ζ, z) =
1

(2πi)n
(ζ − z, dζ)

|ζ − z|2
∧
( (dζ − dz, dζ)

|ζ − z|2
)n−1

=

n−1∑
s=0

Ks(ζ, z),

where Ks(ζ, z)is the the component of K(ζ, z); that is, an (r, s) in z and of degree
(n− r, n− s) in ζ. When n = 1, K(ζ, z) = (2πi)−1dζ/(ζ − z) is the Cauchy kernel.
As in the Cauchy integral case, for any f ∈ L2

r,s(bΩ) the Cauchy principal value
integral Kbf is defined as

Kbf(z) = lim
ε→0+

∫
bΩ

|ζ−z|>ε

Ks(ζ, z) ∧ f(ζ),

whenever the limit exists. Denote by νz the outward unit normal to bΩ at z. Since
bΩ is Lipschitz, νz exists almost everywhere on bΩ. Thus, for z ∈ bΩ, one defines

K−b f(z) = lim
ε→0+

∫
bΩ

Ks(·, z − ευz) ∧ f,

K+
b f(z) = lim

ε→0+

∫
bΩ

Ks(·, z + ευz) ∧ f.

The properties of the Bochner-Martinelli-Koppelman kernel and the related trans-
forms are developed on smooth domains in [11], and on Lipschitz domains in [40].
In [23, Lemma 4.1.1] we find the following result.

Lemma 2.17. Let Ω be a bounded domain in Cn. Thus, for any f ∈ L2
r,s(bΩ), one

obtains

K−b f =
1

2
f +Kbf,

K+
b f = −1

2
f +Kbf,

f = K−b f −K
+
b f,

(2.2)

almost everywhere on bΩ and

‖Kbf‖2 . ‖f‖2.



EJDE-2019/48 COMPACTNESS OF THE CANONICAL SOLUTION OPERATOR 9

3. A priori estimates for the the ∂-Neumann operator

In this section, we find a priori estimates that we need in the later sections.

Lemma 3.1 ([43]). Let Ω ⊂ Cn be a bounded domain with C2 boundary and ρ be a
C2 defining function of Ω. Let σ be a real-valued function that is twice continuously

differentiable on Ω, with σ ≥ 0. Then, for f ∈ C∞r,s(Ω)∩dom ∂
?

φ with 1 ≤ s ≤ n−1,
one obtains

‖
√
σ ∂f‖2φ + ‖

√
σ ∂
∗
φf‖2φ

=
∑
I,K

n∑
j, k=1

∫
bΩ

σ
∂2ρ

∂zj∂zk
fI,jKf I,kKe

−φ dS

+
∑
I,J

n∑
k=1

∫
Ω

σ
∣∣∂fI,J
∂zk

∣∣2e−φdV
+ 2 Re

〈∑
I,K

n∑
j=1

∂σ

∂zj
fI,jK dz

I ∧ dzK , ∂∗φf
〉
φ

+
∑
I,K

n∑
j, k=1

∫
Ω

(
σ

∂2φ

∂zj∂zk
− ∂2σ

∂zj∂zk

)
fI,jKf I,kKe

−φ dV.

(3.1)

The case σ ≡ 1 and φ ≡ 0 is the classical Kohn-Morrey formula.

Proposition 3.2 ([39]). Let Ω ⊂ Cn be a q-pseudoconvex domain and let 1 ≤ q ≤ n.
Thus, for any s ≥ q, there exists a bounded linear operator N : L2

r,s(Ω) → L2
r,s(Ω)

satisfies the following properties:

(i) rangeN ⊂ dom�, N� = I on dom�;

(ii) for any f ∈ L2
r,s(Ω), one obtains f = ∂ ∂

∗
Nf ⊕ ∂∗∂Nf ;

(iii) ∂N = N∂ on dom ∂, q ≤ s ≤ n− 1, n ≥ 2;

(iv) ∂
∗
N = N∂

∗
on dom ∂

∗
, q + 1 ≤ s ≤ n;

(v) N , ∂N and ∂
∗
N are bounded operators with respect to the L2-norms. That

is

‖Nf‖ ≤
(e d2

s

)
‖f‖,

‖∂Nf‖+ ‖∂∗Nf‖ ≤ 2

√
e d2

s
‖f‖ ;

(vi) the Bergmann projection B is given by

B = Id− ∂∗N∂.

Corollary 3.3. For every f ∈ L2
r,s(Ω) ∩ ker ∂ and for s ≥ q. Thus u = ∂

∗
Nf

satisfying ∂u = f in the distribution sense in bΩ with

‖u‖ ≤ C‖f‖,
where C depends only on the Lipschitz constant and the diameter of Ω, but is
independent of f . u is the unique solution to ∂u = f that is orthogonal to ker ∂,

u = ∂
∗
Nf = Sf is called the canonical solution operator for the ∂-equation.

Lemma 3.4 ([23]). Let φ ∈ C(0,∞) such that φ(x) > 0 for all x > 0 and

lim
x→0+

φ(x) =∞.
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Thus there exists φ̃ ∈ C1(0,∞) such that

(i) inf(0,∞) φ(x) ≤ φ̃(x) < φ(x) for all x > 0,

(ii) limx→0+ φ̃(x) = +∞,

(iii) limx→0+ φ̃′(x) = −∞,

(iv) limx→0+ xφ̃′(x) = 0.

Lemma 3.5 ([33, Lemma 1.1]). Let Ω be a bounded Lipschitz domain in Rn. Thus
Ω has a Lipschitz defining function ρ. Furthermore, the distance function to the
boundary is comparable to |dρ| for any Lipschitz defining function ρ near the bound-
ary.

Proposition 3.6 ([23, Prop. 3]). Let Ω ⊂ Cn be a C2-domain with a defining
function ρ such that |dρ|bΩ = 1 and a weight function ϕ such that e−ϕ ∈ C2(Ω).
Thus for any g ∈ C2

r,s(Ω), 1 ≤ s ≤ n, one obtains

‖∂g‖2ϕ + 〈∂ϕ ∨ g, ∂ρ ∨ g〉bϕ
= ‖ϑg‖2ϕ − 2 Re〈∂ϑg, g〉ϕ + ‖∇g‖2ϕ + ‖g‖∗2

∂∂ϕ,ϕ
− ‖∂ϕ ∨ g‖2ϕ + ‖g‖∗2

b∂∂ρ,ϕ

+ 〈∂ρ ∨ g, ∂∗g〉bϕ − 〈∂(∂ρ ∨ g, g〉bϕ

(3.2)

Lemma 3.7 ([39]). Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain.
There exists an exhaustion {Ων} of Ω such that

(i) there exists a Lipschitz function ρ : Cn → R such that ρ < 0 in Ω, ρ > 0
outside Ω and satisfies C1 < |dρ| < C2 a.e. on bΩ;

(ii) {Ων} is an increasing sequence of relatively compact subsets of Ω and Ω =
∪νΩν ;

(iii) each Ων , ν = 1, 2, . . . , is strictly q-pseudoconvex domains, i.e., each Ων has
a C∞ strictly q-subharmonic defining function ρν on a neighbourhood of Ω,
such that

′∑
I,K

∑
j, k

∂2ρν

∂zj∂zk
fI,jKf I,kK ≥ C0|f |2,

for f ∈ C∞r,s(Ων)∩ dom ∂
∗
ν with s ≥ q and C0 > 0 is independent of ν;

(iv) there exist positive constants C1, C2 such that C1 ≤ |∇ην | ≤ C2 on bΩν ,
where C1, C2 are independent of ν.

The proof of the following proposition follows the ideas in Bonami-Charpentier
[6] (see also [23, Theorem 3.5.1]).

Proposition 3.8. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and
let 1 ≤ q ≤ n. Let ρ be a defining function of Ω satisfying

i∂∂ρ ≥ i(−ρ)φ(−ρ)∂∂|z|2

on Ω, for some positive function φ ∈ C(0,∞) satisfying

lim
x→0+

φ(x) = +∞.

Thus, for q + 1 ≤ s ≤ n − 1 and for all f ∈ W
1/2
r,s (Ω) ∩ (ker ∂)⊥ such that

‖∂f‖2
W 1/2(Ω)

<∞, one obtains

‖∂∗Nf‖2W 1/2(Ω) . ε‖f‖
2
W 1/2(Ω) + Cε‖f‖2W−1(Ω). (3.3)
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Proof. Let Ω be a strictly q-pseudoconvex domain with smooth boundary. Let δ be
the distance function of Ω. As in [10, Lemma 4.3] (see also [6]), a special extension

operator on bΩ is constructed as follows. Let f ∈ W
1/2
r,s (bΩ) be any form on bΩ

with q+ 1 ≤ s ≤ n− 1, and let f̃ ∈W 1
r,s(Ω) be any extension of f to the interior of

Ω (i.e. f is the boundary trace of f̃). One can define T : W
1/2
r,s (bΩ)→ L2

r,s+1(Ω) by

Tf = −2∂[ϑ,N ](∂δ ∧ f̃).

This definition does not depend on the choice of f̃ , since when f ≡ 0, we have

∂δ ∧ f̃ ∈ dom ∂
∗

and hence [ϑ,N ](∂δ ∧ f̃) = 0. Clearly ∂Tf = 0, and

∂ϑTf = −2(∂ϑ�N − ∂�Nϑ)(∂δ ∧ f̃) = 0.

Together, these imply that �Tf = 0, so Tf must have harmonic coefficients. Using
the boundary conditions for dom� = rangeN , one can also see that

−∂δ ∨ Tf |bΩ = 2∂δ ∨�N(∂δ ∧ f̃)|bΩ = 2∂δ ∨ ∂δ ∧ f

so the boundary value of −∂δ ∨ Tf is identical to the tangential component of

f . The adjoint T ∗ : L2
r,s+1(Ω) → W

−1/2
r,s (bΩ) is precisely the restriction of ∂

∗
N

to the boundary of Ω. The adjoint of the trace of the Bergman projection B is
precisely −ϑT on functions, while on forms −ϑT will be the adjoint of the trace
of 2∂δ ∨ ∂δ ∧ Bf . The properties of T immediately give us −ϑTf ∈ ker ∂ ∩ kerϑ.
Assume that ∂ρ = −|dρ|∂δ. Then, for g ∈ L2

r,s(Ω) and by applying (3.2) with
ρ/|dρ| as our defining function and ϕ = − log(−ρ) to obtain

‖∂g‖2W (−1/2)(Ω) + ‖ |dρ|−1/2∂ρ ∨ g‖2L2(bΩ)

≥ ‖ϑg‖2W (−1/2)(Ω) − 2 Re〈∂ϑg, g〉W (−1/2)(Ω) + ‖
√
ϕ(−ρ) g‖2W (−1/2)(Ω).

(3.4)

Applying to g = Tf gives us

‖ |dρ|−1/2∂ρ ∧ f‖2L2(bΩ) ≥ ‖ϑTf‖
2
W (−1/2)(Ω) + ‖

√
ϕ(−ρ)Tf‖2W (−1/2)(Ω). (3.5)

To prove (3.3), we approximate Ω as Lemma 3.7 by a sequence of subdomains
Ων = {ρ < −εν} such that each Ων is strictly q-pseudoconvex domains with C∞

smooth boundary, i.e., each Ων has a C∞ strictly q-subharmonic defining function
ρν such that (ii) and (iii) in Lemma 3.4. Thus, we can apply (3.4) and (3.5) on
each Ων . We use Tν , T ∗ν and Nν , to denote the corresponding operators on each
Ων . Then, from (3.5), one obtains

‖ |dρν |−1/2∂ρν ∧ f‖2L2(bΩ) ≥ ‖ϑνTνf‖
2
W (−1/2)(Ων) + ‖

√
ϕ(−ρν)Tνf‖2W (−1/2)(Ων).

(3.6)
Passing to the limit, one obtains from (3.6) that

‖ |dρ|−1/2∂ρ ∧ f‖2L2(bΩ) ≥ ‖ϑTf‖
2
W (−1/2)(Ω) + ‖

√
ϕ(−ρ)Tf‖2W (−1/2)(Ω). (3.7)

Using that for harmonic function h,

‖h‖2W−1/2(Ω) & ‖h‖
2
W (−1/2)(Ω),

for a proof see [10, Lemma 2.2], or [11]. Given ε > 0, set

Uε := {z ∈ Ω : ϕ(−ρ) > ε−1}.
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Since Tf has harmonic coefficients, we may use estimate (3.7) and interior regularity
for harmonic functions to obtain

‖∂ρ ∧ f‖2L2(bΩ) ≥ ε
−1‖Tf |Uε‖2W−1/2(Ω) + C−1

ε ‖Tf |U\Uε‖
2
W 1(Ω).

By duality, one obtains

ε‖f‖2W 1/2(Ω) + Cε‖f‖2W−1(Ω) & ‖∂
∗
Nf‖2L2(bΩ).

A result of Dahlberg (see [12]) tells us that for harmonic function h,

‖h‖2
W (1,− 1

2
)(Ω)
& ‖h‖2L2(bΩ) & ‖∇h‖

2
W (−1/2)(Ω).

Combining this with Lemma 2.4, one can show that

ε‖f‖2W 1/2(Ω) + Cε‖f‖2W−1(Ω) & ‖∂
∗
Nf‖2W 1/2(Ω).

�

4. Proof of Theorem 1.1

In this section, we use the estimates in Section 3 to construct a compact solution
operator to the ∂b operator. When the domain satisfies the additional conditions
of Proposition 3.8, one can use the new jump formula for K(ζ, z), to show that we
have a compact solution operator.

Let f ∈ L2
r,s(bΩ) ∩ ker ∂b. Choose a ball D so that Ω ⊂ D. Set Ω+ = D \Ω. By

[11, Lemma 9.3.5], (see also [40, Lemma 4.1]), there exist ∂-closed forms

f+(z) = K+f(z), f+(z) ∈ C1
r,s(Ω

+
) ⊂W 1

r,s(Ω
+),

f−(z) = K−f(z), f−(z) ∈ C1
r,s(Ω) ⊂W 1

r,s(Ω),

such that f = f− − f+ on bΩ (in the sense of traces of the coefficients, but also in
the sense of restrictions of forms: i.e. the normal components of f+ and f− cancel
each other out at points of bΩ). Moreover,

‖f+‖W 1/2(Ω+) ≤ C‖f‖L2(bΩ),

‖f−‖W 1/2(Ω) ≤ C‖f‖L2(bΩ).

Furthermore, f− and f+ have harmonic coefficients with boundary values in L2(bΩ),
so they are both in W 1/2.

On Ω, one can set u− = ∂
∗
Nf−, and for any ε > 0 we have Cε > 0 such that

‖u−‖2W 1/2(Ω) ≤ ε‖f
−‖2W 1/2(Ω) + Cε‖f−‖2W−1(Ω)

≤ ε‖f‖2L2(bΩ) + Cε‖f−‖2W−1(Ω),

where we have used Proposition 3.8. Since Ω+ is a bounded Lipschitz domain, there
exists a continuous linear operator E from W k(Ω+) into W k(Cn), for any k ≥ 0,
such that for any g ∈W k(Ω+),

Eg|Ω+ = g.

First extend f+ from Ω+ to Ef+ componentwise on D such that the following
estimate holds,

‖Ef+‖2W 1/2(D) ≤ C‖f
+‖2W 1/2(Ω+)
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(such an extension exists using [21, Theorem 1.4.3.1]). In fact, one can choose Ef+

so that

‖Ef+‖2Wk(D) ≤ C‖f
+‖2Wk(Ω+)

for all k. For our purposes, it suffices to know that

V =

{
− ? ∂N ? ∂Ef+ on Ω,

0 on D\Ω,

defines a form satisfying ∂V = ∂Ef+ on Cn and V is supported in Ω. Because
the Cauchy-Riemann equations are not affected by forms involving dz, the estimate
in Proposition 3.8 is easily applied to (n, s)-forms. By applying the dual forms of
these estimates, one obtains

‖V ‖W−1/2(Ω) ≤ ε‖∂Ef+‖2W−1/2(Ω) + Cε‖∂Ef+‖2W−1(Ω)

≤ ε‖f+‖2W 1/2(Ω) + Cε‖f+‖2.

Let f̃+ = Ef+ − V so that we have a ∂-closed form on all of Cn that satisfies
f̃+|D\Ω = f+ and

‖f̃+‖2W−1/2(Ω) . ε‖f‖
2
L2(bΩ) + Cε‖f+‖2.

Set u+ = ∂
∗
NDf̃+, where ND denotes the ∂-Neumann operator for the ball D.

If we pick χ ∈ C∞0 (D) such that χ ≡ 1 on some neighborhood of Ω, we may use
interior regularity to obtain

‖χu+‖2W 1/2(Ω) . ‖f̃
+‖2W−1/2(Ω).

On bΩ, one defines u = u− − u+. Thus ∂bu = f and

‖u‖2L2(bΩ) . ‖χu
+‖2W 1/2(Ω) + ‖u−‖2W 1/2(Ω)

≤ ε‖f‖2L2(bΩ) + Cε‖f+‖2 + Cε‖f−‖2.

Since ‖f+‖W 1/2(Ω) and ‖f−‖W 1/2(Ω) are both bounded by ‖f‖L2(bΩ) and ‖.‖ is

compact with respect to ‖ · ‖W 1/2(Ω) by the Rellich lemma, the result follows.

5. Proof of Theorems 1.2 and 1.3

The proof of the regularity in the Sobolev space W k
r,s(Ω) of the Bergman pro-

jection B and the canonical solution operator ∂
∗
N for the ∂-equation is the same

as in Berndtsson-Charpentier [3].

Lemma 5.1. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and let
1 ≤ q ≤ n. Let δ(z) = −ρ(z), where ρ is C2-defining function for Ω. Then, if we
taking φβ = −β log δ, where β ∈ (0, 1) and u is any form which is orthogonal to

L2
r,s−1(Ω, e−φβ ) ∩ ker ∂, q + 1 ≤ s ≤ n− 1, one obtains u such that∫

Ω

|u|2e−φβ dV ≤
∫

Ω

|∂u|2
i∂∂φβ

e−φβ dV. (5.1)

Proof. By using (1.1) and by taking φ = −k log δ, where k is a positive constant,
there exists α ∈ (0, 1) such that (−δα) is strictly plurisubharmonic in Ω and

i∂φ ∧ ∂φ <
( k
α

)
i∂∂φ, on Ω.
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Consequently, for σ ≡ 1, one obtains from (3.1),

‖u‖2φ ≤ ‖∂ u‖2φ + ‖∂∗φu‖2φ,

for any u ∈ C∞r,s(Ω) ∩ dom ∂
∗
φ. Thus, by the same argument of [11, Theorem

4.3.4], for q + 1 ≤ s ≤ n − 1, for every f ∈ L2
r,s(Ω, φ) with ∂f = 0, one can find

u ∈ L2
r,s−1(Ω, φ) satisfies ∂u = f and∫

Ω

|u|2e−φ dV ≤ c
∫

Ω

|∂u|2e−φ dV. (5.2)

One can always select the solution u of (5.2) satisfying the additional property
u ∈ L2

r,s−1(Ω, e−φ) ∩ (ker ∂)⊥, i.e., satisfies∫
Ω

e−φ tu ∧ ?υ = 0, (5.3)

for any ∂-closed form υ ∈ L2
r,s−1(Ω, e−φ). Hence, if we taking φβ = −β log δ, where

β ∈ (0, 1) and u is any form which is orthogonal to L2
r,s−1(Ω, e−φβ ) ∩ ker ∂, one

obtains u such that ∫
Ω

|u|2e−φβ dV ≤
∫

Ω

|∂u|2
i∂∂φβ

e−φβ dV.

�

Proposition 5.2. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and

let 1 ≤ q ≤ n. Let u = ∂
∗
βN

βf be the solution to the equation ∂u = f in L2
r,s(Ω, δ

β).

Then, by taking ψk = −k log δ, k ∈ (0, 1), for f ∈ L2
r,s(Ω, δ

β−k), q+ 1 ≤ s ≤ n− 1,

with ∂f = 0, there exists a constant C1 > 0 such that∫
Ω

|u|2δβ−kdV ≤ C1

∫
Ω

|f |2
i∂∂(ψk+φβ)

δβ−kdV. (5.4)

Proof. Since f ∈ L2
r,s(Ω, δ

β), thus by (5.2) there is a solution u ∈ L2
r,s−1(Ω, δβ) ∩

(ker ∂)⊥. Put g = ueψk = u δ−k. Then∫
Ω

|u|2δβ−kdV =

∫
Ω

|g|2δβ+kdV. (5.5)

Thus, from (5.3), one obtains

0 =

∫
Ω

e−φβ tu ∧ ?υ =

∫
Ω

e−(ψk+φβ) tg ∧ ?υ

=

∫
Ω

δβ+k tg ∧ ?υ.

Thus, g is orthogonal to all ∂-closed forms of L2
r,s−1(Ω, δβ+k), so by (5.1) one

obtains ∫
Ω

|g|2δβ+kdV ≤
∫

Ω

|∂g|2
i∂∂(ψk+φβ)

δβ+kdV.

Thus, from (5.5), one obtains∫
Ω

|u|2δβ−kdV ≤
∫

Ω

|∂g|2
i∂∂(ψk+φβ)

δβ+kdV. (5.6)
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Since, for any two real numbers a and b, and for every ε > 0, one obtains

2|a| |b| ≤ ε|a|2 +
1

ε
|b|2,

and since ∂g = δ−k∂u+ δ−k∂ψk ∧ u. Thus, from (5.6), one obtains∫
Ω

|u|2δβ−kdV ≤
∫

Ω

|∂u+ ∂ψk ∧ u|2i∂∂(ψk+φβ)
δβ−kdV

≤
∫

Ω

|∂u|2
i∂∂(ψk+φβ)

δβ−kdV +

∫
Ω

|∂ψk ∧ u|2i∂∂(ψk+φβ)
δβ−kdV

+ 2

∫
Ω

|∂u|i∂∂(ψk+φβ)|∂ψk ∧ u|i∂∂(ψk+φβ)δ
β−kdV

≤
(

1 +
1

ε

)∫
Ω

|f |2
i∂∂(ψk+φβ)

δβ−kdV

+ (1 + ε)

∫
Ω

|∂ψk ∧ u|2i∂∂(ψk+φβ)
δβ−kdV.

Since
i∂ψk ∧ ∂ψk < t i ∂∂ψk

is valid for 0 < t < 1, the norm of the form ∂ψk, measured in the metric with Kähler
form i∂∂ψk is smaller than t at any point. Also, we can improve the estimate (5.1)
by replacing |f |i∂∂φβe

−φβ by |f |i∂∂(ψk+φβ)e
−φβ without having to change the weight

function from φβ to ψk + φβ . Thus

|∂ψk ∧ u|2i∂∂(ψk+φβ)
≤ |∂ψk|2i∂∂(ψk+φβ)

|u|2 ≤ |∂ψk|2i∂∂ψk |u|
2 ≤ t|u|2. (5.7)

By choosing ε small such that (1 + ε)t < 1, one obtains∫
Ω

|u|2δβ−kdV ≤ C1

∫
Ω

|f |2
i∂∂(ψk+φβ)

δβ−kdV

with C1 = (1 + 1
ε )/[1− (1 + ε)t]. �

Proposition 5.3. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain
and let 1 ≤ q ≤ n. Then, for q + 1 ≤ s ≤ n − 1, the Bergman projection Bβ

maps L2
r,s(Ω, δ

β−k) boundedly to itself, and the operator ∂
∗
βN

β maps L2
r,s(Ω, δ

β−k)
boundedly to itself.

Proof. From the Kohn’s formula, one obtains

Bβ = Id− ∂∗βN
β
r,s+1∂. (5.8)

Then, for u ∈ L2
r,s(Ω, δ

β−k) and for f ∈ L2
r,s(Ω, δ

β−k) ∩ ker ∂, one obtains

〈Bβu, f〉β,Ω = 〈u− ∂∗βNβ∂u, f〉β,Ω
= 〈u, f〉β,Ω − 〈∂

∗
βN

β∂u, f〉β,Ω
= 〈δ−ku, f〉β+k,Ω

= 〈δ−ku, f〉β+k,Ω − 〈∂
∗
β+kN

β+k∂(δ−ku), f〉β+k,Ω

= 〈(I − ∂∗β+kN
β+k∂)(δ−ku), f〉β+k,Ω

= 〈Bβ+k(δ−ku), f〉β+k,Ω

= 〈δkBβ+k(δ−ku), f〉β,Ω.
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Thus

Bβ(δkBβ+k(δ−ku)) = Bβu.

Using (5.8), one obtains

Bβu = Bβ(δkBβ+k(δ−ku))

= (I − ∂∗βNβ∂)δkBβ+k(δ−ku)

= δkBβ+k(δ−ku)− ∂∗βNβ(∂δk ∧Bβ+k(δ−ku))

= δkBβ+k(δ−ku)− k ∂∗βNβ
(∂δ
δ
∧ δkBβ+k(δ−ku)

)
,

(5.9)

because ∂ Bβ+k = 0.
For simplicity, write ξ = δkBβ+k(δ−k u), for u ∈ L2

r,s(Ω, δ
β−k). Then, one

obtains ∫
Ω

|ξ|2δβ−k dV =

∫
Ω

|δk Bβ+k(δ−k u)|2δβ−k dV

=

∫
Ω

|Bβ+k(δ−k u)|2δβ+k dV

≤
∫

Ω

|δ−ku|2δβ+k dV

=

∫
Ω

|u|2δβ−k dV.

(5.10)

Thus, from (5.4), one obtains∫
Ω

∣∣∂∗βNβ(∂ψk ∧ ξ)
∣∣2δβ−k dV ≤ C1

∫
Ω

|∂ψk ∧ ξ|2i∂∂(ψk+φβ)
δβ−k dV. (5.11)

From (5.7), one obtains

|∂ψk ∧ ξ|2i∂∂(ψk+φβ)
≤ |∂ψk ∧ ξ|2i∂∂ψk ≤ t|ξ|

2. (5.12)

Substituting (5.10) and (5.12) into (5.11), one obtains∫
Ω

|∂∗βNβ(∂ψk ∧ ξ)|2δβ−k dV ≤ C1t

∫
Ω

|u|2δβ−k dV. (5.13)

Thus, by using (5.9), (5.10) and (5.13), one obtains

‖Bβ u‖2β−k,Ω ≤ C2‖u‖2β−k,Ω. (5.14)

Thus, the Bergman projection Bβ maps L2
r,s(Ω, δ

β−k) boundedly to itself. Since

Bβu = (I − ∂∗βNβ∂)u and ∂
∗
βN

βu = Nβ∂
∗
βu, then ∂

∗
βN

βu = ∂
∗
βN

βBβu and we

already know that Bβ is bounded on L2
r,s(Ω, δ

β−k) we may as well assume from the

start that ∂f = 0. Then, by using (5.4) and (5.14), one obtains

‖∂∗βNβu‖2β−k,Ω = ‖∂∗βNβBβu‖2β−k,Ω ≤ C1‖Bβu‖2β−k,Ω ≤ C1C2‖u‖2β−k,Ω.

Thus, the operator ∂
∗
βN

β maps L2
r,s(Ω, δ

β−k) boundedly to itself. �

Proposition 5.4. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and
let 1 ≤ q ≤ n. Then, for k0 ∈ (0, 1), the Bergman projection B and the operator

∂
∗
N are exact regular in W k

r,s(Ω) for 0 < k < k0/2 and for q + 1 ≤ s ≤ n− 1.
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Proof. By Theorem [21, 1.4.4.3], the space W k
r,s(Ω) is continuously embedded into

L2
r,s(Ω, δ

−2k). Since any harmonic function in L2
r,s(Ω, δ

−2k) also lies in W k
r,s(Ω),

under the same assumptions (see [21, Theorem 4.2] together with [14, Lemma 1]).
Consider the case of the Bergman projection B on a holomorphic function. Let f
be a harmonic function in W k(Ω). Then, by the embedding result, f belongs to
L2(Ω, δ−2k), so by applying Proposition 5.3 with β = 0, Bf belongs to L2(Ω, δ−2k).
Since Bf is holomorphic, hence harmonic, it follows that Bf belongs to W k(Ω).
Next, let f be a (r, s)-form in W k

r,s(Ω), with q + 1 ≤ s ≤ n − 1. Thus, by the

embedding result f ∈ L2
r,s(Ω, δ

−2k), so by applying Proposition 5.3 with β = 0,

Bf ∈ L2
r,s(Ω, δ

−2k). Note that

∂Bf = 0 and ∂
∗
Bf = ∂

∗
f.

Hence �Bf , which as a differential operator is the Laplacian on each component
of f satisfies

�Bf = ∂∂
∗
f.

Since f ∈W k
r,s(Ω), f = �g with g ∈W k+2

r,s (Ω). (This follows since by [21, Theorem

1.4.3.1] f can be extended to a form with compact support in W k
r,s(Ω) so we may

take g to be the Newtonian potential of this extension.) Hence

�Bf = ∂ ∂
∗
f = �υ

with υ ∈W k
r,s(Ω). Let w = Bf − υ so that w is a form with harmonic coefficients.

Since both Bf and υ lie in L2
r,s(Ω, δ

−2k) by the embedding theorem, so does w.

Since w has harmonic coefficients, then w lies in W k
r,s(Ω), so Bf also belongs to

W k
r,s(Ω) in any degree.

It is only remains to prove that if f is a (r, s)-form in W k
r,s(Ω) then u = ∂

∗
Nf

is also in W k
r,s(Ω). Since ∂u = f and ∂

∗
u = 0. Thus

�u = (∂ ∂
∗

+ ∂
∗
∂)u = ∂

∗
f ∈W k−1

r,s (Ω).

By [30, Theorem 0.5] this implies that one can solve �g = �u with g ∈W k+1
r,s (Ω) ⊂

W k
r,s(Ω). By the embedding theorem both g and f into L2

r,s(Ω, δ
−2k), so by applying

Proposition 5.3 with β = 0, u and u− g also belongs to L2
r,s(Ω, δ

−2k). Since u− g
has harmonic coefficients, it follows that u − g lies in W k

r,s(Ω) and so u lies in

W k
r,s(Ω). �

Corollary 5.5. For k0 ∈ (0, 1), the ∂-Neumann operator N is exact regular in the
Sobolev space W k

r,s(Ω) for 0 < k < k0/2 and for q + 1 ≤ s ≤ n− 1.

Proof. By a result of Boas-Straube [4], the ∂-Neumann operator N is regular if and
only if the Bergman projection B is. Thus the exact regularity of N follows. �

Proposition 5.6. Let Ω ⊂ Cn be a bounded Lipschitz q-pseudoconvex domain and

let 1 ≤ q ≤ n. Then, for q − 1 ≤ s ≤ n− 1, the operators N , ∂
∗
N and B are exact

regular in the Sobolev space W±kr,s (Ω) for 0 < k < k0/2 and s ≥ q.

Proof. If S∗ is the adjoint map of S with respect to the L2-norm, then

‖Sf‖
W
k/2
r,s (Ω)

= sup
g∈L2

〈Sf, g〉Ω
‖g‖

W
k/2
r,s (Ω)
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= sup
g∈L2

〈f,S∗g〉Ω
‖g‖

W
−k/2
r,s (Ω)

≤ ‖S∗‖
W

−k/2
r,s (Ω)

‖f‖
W
k/2
r,s (Ω)

.

Then, using Corollary 5.5, the proof follows. �

6. Proof of Theorem 1.4 and some consequences

In this section, we shall provide sufficient conditions for compactness of the ∂-
Neumann problem. As in [37], one can prove the following result.

Proposition 6.1. Let Ω ⊂ Cn be a smooth bounded q-pseudoconvex domain. Let

ψ,ϕ ∈ C2(Ω) with ψ ≥ 0. Thus, for f ∈ C∞r,s(Ω)∩ dom ∂
∗
ϕ with q ≤ s ≤ n, we have

‖
√
ψ ∂f‖2ϕ +

(
1 +

1

τ

)
‖
√
ψ ∂
∗
ϕf‖2ϕ

≥
′∑
I,J

n∑
k=1

∫
Ω

ψ
∣∣∂fI,J
∂zk

∣∣2e−ϕ dV − ′∑
I,K

∫
Ω

τ
∣∣∣ 1√
ψ

n∑
j=1

∂ψ

∂zj
fI,jK

∣∣∣e−ϕ
+

′∑
I,K

n∑
j,k=1

∫
Ω

(
ψ

∂2ϕ

∂zj∂zk
− ∂2ψ

∂zj∂zk

)
fI,jKf I,kKe

−ϕ dV,

(6.1)

for any positive number τ .

Proposition 6.2. Let Ω be a smooth bounded q-pseudoconvex domain in Cn and
let 1 ≤ q ≤ n. If Ω satisfies a McNeal’s Property (P̃ ), for every ε > 0, there exists
a constant Cε > 0 such that

‖f‖2 ≤ ε(‖∂f‖+ ‖∂∗f‖) + Cε‖f‖2W−1(Ω), (6.2)

for f ∈ dom ∂ ∩ dom ∂
∗
.

Proof. As in [32, Theorem 4.1], let ε > 0 and choose M ≥ 24
ε : For λM given by

Definition 2.2, set ϕ = λM , ψ = e−λM and τ = 1
2 in (6.1). It follows that

1

2

∫
Ω

i∂∂λ(f, f)e−2λ ≤ ‖∂f‖22λ + 3‖∂∗λf‖22λ, (6.3)

for f ∈ D(Ω). Let Gµ = {z ∈ Cn : −µ < ρ(z) ≤ 0} be a strip near bΩ, with M > 0
chosen small enough so that

i∂∂λ(z)(f, f) ≥ M

2
‖f‖2, z ∈ Gµ.

It follows, from (6.3), that

M

2

∫
Gµ

|f |2e−λ ≤ ‖∂f‖2λ + ‖∂∗λf‖2λ,

when f is supported in the strip Gµ. Since λ is continuous, ‖ · ‖2λ is equivalent to
the L2-norm and it follows that

M

2

∫
Gµ

|f |2 ≤ ‖∂f‖2 + ‖∂∗f‖2, (6.4)

when f is supported in the strip Gµ.
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Estimate the integral over Ω\Gµ and choose γµ ∈ D(Ω) so that γµ(z) = 1
whenever ρ(z) ≤ −µ and z ∈ Ω\Gµ. By an interpolation theorem in Sobolev space,
we have for a constant m > 0 still to be determined the inequality

‖γµf‖2 ≤ m‖γµf‖2W 1(Ω) +
1

m
‖γµf‖2W−1(Ω). (6.5)

Also, since Q is elliptic, by G̊arding’s inequality, one obtains

‖γµf‖2W 1(Ω) ≤ Q(γµf, γµf)

≤
(
‖γµ(∂f)‖2 + ‖γµ(∂

∗
f)‖2 + ‖[γµ, ∂] f‖2 + ‖[γµ, ∂

∗
]f‖2 + ‖γµf‖2

)
≤ ‖∂f‖2 + ‖∂∗f‖2 + Cµ‖f‖2.

(6.6)
Because the sum of the commutator terms is bounded by Cµ‖f‖2 for some constant
Cµ dependent of µ, then from (6.5) and (6.6), for a suitable choice of b small, one
obtains

‖γµf‖2 −
1

2
‖f‖2 ≤ b(‖∂f‖2 + ‖∂∗f‖2) +

1

b
‖γµf‖2W−1(Ω). (6.7)

By combining (6.4) and (6.7), one obtains

1

2
‖f‖2 ≤

∫
Gµ

|f |2 dV + ‖γµf‖2 −
1

2
‖f‖2

≤
( 1

M
+ b
)
Q(f, f) +

1

M
‖f‖2 +

1

b
‖γµf‖2W−1(Ω).

For M large enough, we obtain

‖f‖2 ≤ 3
( 1

M
+ b
)
Q(f, f) +

3

b
‖γµf‖2W−1(Ω).

For any ε > 0, if we choose M and b so that ( 1
M + b) < ε and set Cε =

√
3
b γµ, one

gets (6.2). �

We will refer to (6.2) as a global compactness estimate. Compactness of the
∂-Neumann problem can be formulated in several useful ways.

Proposition 6.3. Let Ω ⊂ Cn be a smooth bounded q-pseudoconvex domain and
let 1 ≤ q ≤ n. Thus, for s ≥ q, the following statements are equivalent:

(i) the ∂-Neumann operators N , is compact from L2
r,s(Ω) to itself;

(ii) the embedding of the space dom ∂ ∩ dom ∂
∗
, provided with the graph norm

‖f‖+ ‖∂f‖+ ‖∂∗f‖, into L2
r,s(Ω) is compact;

(iii) the validity of global compactness estimate (6.2);

(iv) the canonical solution operators to ∂ given by ∂
∗
N : L2

r,s(Ω) → L2
r,s−1(Ω)

and N∂
∗

: L2
r,s+1(Ω)→ L2

r,s(Ω) are compact.

Proof. The equivalence of (ii) and (iii) is a result of [31, Lemma 1.1]. The general
L2-theory and the fact that L2

r,s(Ω) embeds compactly into W−1
r,s (Ω) shows that (i)

is equivalent to (ii) and (iii). Finally, the equivalence of (i) and (iv) follows from
the formula

N = (∂
∗
N)∗∂

∗
N + ∂

∗
N(∂

∗
N)∗.

(see [17], [34, p.55], [32]). �
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Lemma 6.4. Let Ω ⊂ Cn be a smooth bounded q-pseudoconvex domain and let
1 ≤ q ≤ n. Let {Uj}Nj=1 be a finite covering of bΩ by a local patching. If compactness
estimates hold in each Uj:

‖f‖2 ≤ cQ(f, f) + C‖f‖2W−1 ,

for f ∈ C∞r,s(Ω ∩ Uj) ∩ dom ∂
∗
. Thus we have global compactness estimate (6.2).

As in [31], one can prove the following theorem.

Theorem 6.5. Let Ω ⊂ Cn be a smooth bounded q-pseudoconvex domain and let
1 ≤ q ≤ n. If N is compact on L2

r,s(Ω) and for s ≥ q, N is compact (in particular,

continuous) as an operator from W k
r,s(Ω) to itself, for all k ≥ 0.

Remark 6.6. If N is a compact operator on W k
r,s(Ω) for some k ≥ 0, thus N is

compact in L2
r,s(Ω).
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