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REGULARITY OF THE LOWER POSITIVE BRANCH FOR

SINGULAR ELLIPTIC BIFURCATION PROBLEMS

TOMAS GODOY, ALFREDO GUERIN

Abstract. We consider the problem

−∆u = au−α + f(λ, ·, u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

where Ω is a bounded domain in Rn, λ ≥ 0, 0 ≤ a ∈ L∞(Ω), and 0 < α < 3.

It is known that, under suitable assumptions on f , there exists Λ > 0 such

that this problem has at least one weak solution in H1
0 (Ω) ∩C(Ω) if and only

if λ ∈ [0,Λ]; and that, for 0 < λ < Λ, at least two such solutions exist. Under

additional hypothesis on a and f , we prove regularity properties of the branch

formed by the minimal weak solutions of the above problem. As a byproduct
of the method used, we obtain the uniqueness of the positive solution when

λ = Λ.

1. Introduction and statement of main results

Let Ω be a bounded domain in Rn, and let a, and f be functions defined on Ω
and [0,∞) × Ω × [0,∞) respectively. For λ ≥ 0 and α > 0, consider the singular
semilinear elliptic problem:

−∆u = au−α + f(λ, ·, u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(1.1)

Singular elliptic problems like (1.1) appear in the study of many nonlinear phe-
nomena, for instance in models of heat conduction in electrical conductors, in the
study of chemical catalysts reactions, and in models of non Newtonian flows (see
e.g., [10, 6, 16, 20]).

Fulks and Maybee [20], Crandall, Rabinowitz and Tartar [11], Lazer and McKenna
[35], Dı́az, Morel and Oswald [16], Del Pino [14], and Bougherara, Giacomoni and
Hernández [3], addressed, under different assumptions on a, the existence of solu-
tions to problem (1.1) in the case f ≡ 0. The case when f ≡ 0, and a is a measure,
was treated by Oliva and Petitta [38].

Problem (1.1) was studied by Shi and Yao [43], in the case when Ω and a are
regular enough (with a that may change sign), and f(λ, x, s) = λsp, with 0 < α < 1,

2010 Mathematics Subject Classification. 35J75, 35D30, 35J20.
Key words and phrases. Singular elliptic problems; positive solutions; bifurcation problems;

implicit function theorem; sub and super solutions.
c©2019 Texas State University.

Submitted August 7, 2018. Published April 12, 2019.

1



2 T. GODOY, A. GUERIN EJDE-2019/49

and 0 < p < 1. Dávila and Montenegro [13] considered free boundary singular
elliptic problems of the form −∆u = χ{u>0}(−u−α + λg(·, u)) in Ω, u = 0 on ∂Ω,
u ≥ 0 in Ω, u 6≡ 0 in Ω (that is: |{x ∈ Ω : u(x) > 0}| > 0).

Singular problems of the form

−∆u = g(x, u) + h(x, λu) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.2)

were studied by Coclite and Palmieri in [9]. They proved that, if g(x, u) = au−α,

a ∈ C1(Ω), a > 0 in Ω, h ∈ C1(Ω × [0,∞)), and infΩ×[0,∞)
h(x,s)
1+s > 0, then there

exists λ∗ > 0 such that, for any λ ∈ [0, λ∗), (1.2) has a positive classical solution
u ∈ C2(Ω) ∩ C(Ω); and, for λ > λ∗, (1.2) has no positive classical solution.

Papageorgiou and Rădulescu [39] investigated the existence and nonexistence of
positive weak solutions to problems of the form

−∆u = −u−γ + λf(x, u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.3)

in the case where Ω is a bounded domain in Rn with C2 boundary, γ > 0, λ >
0, and f is a Carathéodory function satisfying some further assumptions. They
proved that, if 0 < γ < 1, then there exists λ∗ > 0 such that (1.3) has a solution
u ∈ H1

0 (Ω)∩L∞(Ω) when λ > λ∗, and has no solution in H1
0 (Ω)∩L∞(Ω) for λ < λ∗.

They also proved that, when γ ≥ 1, (1.3) has no solutions in H1
0 (Ω) ∩ L∞(Ω).

Godoy and Guerin ([28], [29] and [30]) obtained existence results for weak solu-
tions in H1

0 (Ω) to problems of the form

−∆u = χ{u>0}g(·, u) + f(·, u) in Ω,

u = 0 on ∂Ω,

u ≥ 0 u 6≡ 0 in Ω,

where s → g(x, s) is singular at the origin, and f : Ω × [0,∞) → R is sublinear at
∞. While in [28] and [29] the singular part g was of the form au−α, a more general
singular term g was allowed in [30].

Ghergu and Rădulescu [25] proved existence and nonexistence theorems for pos-
itive classical solutions of singular biparametric bifurcation problems of the form
−∆u = g(u) + λ|∇u|p + µh(·, u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, in the case where
Ω is a smooth bounded domain in Rn, 0 < p ≤ 2, λ, µ ≥ 0, h(x, s) is nondecreasing
with respect to s, g is unbounded around the origin, and both are positive Hölder
continuous functions. They also established the asymptotic behavior of the solu-
tion around the bifurcation point, provided that g(s) behaves like s−α around the
origin, for some α ∈ (0, 1).

Dupaigne, Ghergu and Rădulescu [19] studied Lane-Emden-Fowler equations
with convection term and singular potential; and Rădulescu [40] investigated the
existence of blow-up boundary solutions for logistic equations, and also for Lane-
Emden-Fowler equations with a singular nonlinearity and a subquadratic convection
term.

The existence of positive solutions to the problem −∆u = ag(u) + λh(u) in Ω,
u = 0 on ∂Ω, u > 0 in Ω was considered by Ĉırstea, Ghergu and Rădulescu [12]
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under the assumptions that Ω is a smooth bounded domain in Rn, 0 ≤ a ∈ Cβ(Ω),
0 < h ∈ C0,β [0,∞) for some β ∈ (0, 1), h is nondecreasing on [0,∞), h(s)/s is
nonincreasing for s > 0, g is non-increasing on (0,∞), lims→0+ g(s) = ∞; and
sups∈(0,σ0) s

αg(s) <∞ for some α ∈ (0, 1) and σ0 > 0.

Ghergu and Rădulescu [22], studied the Lane-Emden-Fowler singular equation
−∆u = λf(u) + a(x)g(u) in Ω, u = 0 on ∂Ω, when Ω is a bounded and smooth
domain in Rn, λ is a positive parameter, f is a nondecreasing function such that
s−1f(s) is nondecreasing, a ∈ Cα(Ω) for some α ∈ (0, 1), and g is singular at the
origin. Under suitable additional assumptions on a, f , and g, they proved that, for
some explicitly characterized λ∗ > 0:

(i) For any λ ∈ [0, λ∗), there exists a unique solution uλ ∈ E (whose behavior
near ∂Ω was established), where

E := {u ∈ C2(Ω) ∩ C1,1−α(Ω) such that ∆u ∈ L1(Ω)}.

(ii) For λ ≥ λ∗ the problem has no solution in E .
Ghergu and Rădulescu [24], established the existence of a ground state solution

of the following problem involving the singular Lane-Emden-Fowler equation with
convection term:

−∆u = p(x)(g(u) + f(u) + |∇u|α) in Rn,
u > 0 in Rn,
lim
|x|→∞

u(x) = 0,

where n ≥ 3, 0 < α < 1, p positive in Rn, f positive, nondecreasing, with sublinear
growth, and g positive, decreasing and singular at the origin.

Ghergu and Rădulescu [23], proved existence and nonexistence results for the two
parameter singular problem −∆u+K(x)g(u) = λf(x, u)+µh(x) in Ω, u = 0 on ∂Ω,
when Ω is a smooth bounded domain in Rn, λ and µ are positive parameters, h is a
positive function, f has sublinear growth, K may change sign, and g is nonnegative
and singular at the origin.

Aranda and Godoy [2] found a multiplicity result for positive solutions in the

space W 1,p
loc (Ω) ∩ C(Ω) to problems of the form −∆pu = g(u) + λh(u) in Ω, u = 0

on ∂Ω, when Ω is a C2 bounded and strictly convex domain in Rn, 1 < p ≤ 2;
and g, h are locally Lipschitz functions on (0,∞) and [0,∞) respectively, with g
nonincreasing, possibly singular at the origin; and h nondecreasing, with subcritical
growth, and such that infs>0 s

−p+1h(s) > 0.
Kaufmann and Medri [34] proved existence and nonexistence results for positive

solutions to one dimensional singular problems of the form −(|u′|p−2u′)′ = m(x)u−γ

in Ω, u = 0 on ∂Ω, in the case where Ω ⊂ R is a bounded open interval, p > 1,
γ > 0, and m : Ω→ R is a function that may change sign in Ω.

Chhetri, Drábek and Shivaji [8] studied the problem −∆pu = K(x)f(u)u−δ in
Rn \Ω, u = 0 on ∂Ω, lim|x|→∞ u(x) = 0, under the assumptions that Ω is a simply
connected bounded and smooth domain in Rn, 0 ∈ Ω, n ≥ 2, 1 < p < n, and
0 ≤ δ < 1. Under a decay assumption on K at infinity, and a growth restriction
on f , they proved the existence of a weak solution u ∈ C1(Rn \ Ω). Also, under
an additional condition on K, the uniqueness of such a solution was proved. The
existence of radial solutions in the case when Ω is a ball centered at the origin was
also addressed.
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Saoudi, Agarwal and Mursaleen [41] considered singular elliptic problems of the
form −div(A(x)∇u) = u−α + λup in Ω, u = 0 on ∂Ω, with 0 < α < 1 < p < n+2

n−2 ,

and A uniformly elliptic on Ω. They proved that, for λ positive and small enough,
at least two positive weak solutions in H1

0 (Ω) exist.
Giacomoni, Schindler and Takac [26] studied the existence of weak solutions in

W 1,p
0 (Ω) of the problem −∆pu = λu−α + uq in Ω, u = 0 on ∂Ω, u > 0 in Ω, in the

case where 0 < α < 1, 1 < p <∞, q <∞ and p− 1 < q ≤ p# − 1, with p# defined
by 1

p# = 1
p−

1
n if p < n, p# =∞ if p > n, and where p# ∈ (p,∞) is arbitrarily large

if p = n. They proved the existence of Λ ∈ (0,∞) such that: a solution exists if
λ ∈ (0,Λ], no solution exists if λ > Λ, and at least two solutions exist if λ ∈ (0,Λ).

Additional references, and a comprehensive treatment of the subject, can be
found in [21] and [40]; see also [15].

Finally, in [31] and [33], existence and multiplicity results were obtained for
positive solutions of problem (1.1) for 0 < α < 3, 0 ≤ a ∈ L∞(Ω), a 6≡ 0 in Ω,
and for some nonlinearities f satisfying that f(λ, x, .) is superlinear with subcritical
growth at ∞.

Our aim in this work is to complement the results obtained in [31] and [33]
(see also [32]). To do that, we assume, from now on, that α, a, and f satisfy the
following conditions:

(H1) 0 < α < 3
(H2) 0 ≤ a ∈ L∞(Ω), and there exists δ > 0 such that infAδ a > 0, where

Aδ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} and, for any measurable E ⊂ Ω, infE
means the essential infimum on E.

(H3) 0 ≤ f ∈ C([0,∞)× Ω× [0,∞)), and f(0, ·, ·) = 0 on Ω× [0,∞).
(H4) There exist numbers η0 > 0, q ≥ 1, and a nonnegative function b ∈ L∞(Ω),

such that b 6≡ 0 and f(λ, ·, s) ≥ λbsq a.e. in Ω whenever λ ≥ η0 and s ≥ 0.
(H5) There exist p ∈ (1, n+2

n−2 ), and h ∈ C((0,∞)×Ω) that satisfy inf [η,∞)×Ω h > 0

for any η > 0, and such that, for every σ > 0,

lim
(λ,s)→(σ,∞)

s−pf(λ, ·, s) = h(σ, ·) uniformly on Ω.

(H6) For any (λ, x) ∈ (0,∞)×Ω, the function f(λ, x, ·) is nondecreasing on [0,∞)
and, for any (x, s) ∈ Ω× (0,∞), the function f(·, x, s) is strictly increasing
on [0,∞).

(H7) For any (λ, x, s) ∈ (0,∞) × Ω × (0,∞), ∂f
∂λ (λ, x, s) exists and it is finite

and positive, and for any (λ, x) ∈ (0,∞) × Ω, the function ∂f
∂λ (λ, x, ·) is

nondecreasing on (0,∞).
(H8) f(·, x, ·) ∈ C2([0,∞) × [0,∞)) for almost all x ∈ Ω; and, for any M > 0,

‖∂f∂s (λ, ·,M)‖∞ <∞ whenever λ ∈ [0,M ], and both ∂f
∂λ |(0,M)×Ω×(0,M) and

∂f
∂s |(0,M)×Ω×(0,M) belong to L∞((0,M)× Ω× (0,M)).

(H9) For almost all x ∈ Ω, ∂f
∂s (·, x, ·) > 0 in [0,∞) × [0,∞), and ∂2f

∂s2 (·, x, ·) > 0
in [0,∞)× [0,∞).

Since our results rely heavily on those in [33], the next remark summarize the main
results given there.

Remark 1.1 (See [33, Theorems 1.2 and 1.3]). Let Ω be a bounded domain in Rn
with C2 boundary, and assume that (H1)–(H6) hold. Then there exists Λ > 0 such
that:
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(i) For λ = 0, (1.1) has a unique weak solution in H1
0 (Ω) ∩ L∞(Ω), and it

belongs to C(Ω),
(ii) For λ = Λ, (1.1) has at least one weak solution in H1

0 (Ω) ∩ C(Ω),
(iii) For λ ∈ (0,Λ), problem (1.1) has at least two positive weak solutions in

H1
0 (Ω) ∩ C(Ω),

(iv) For λ > Λ, there is no weak solution of (1.1) in H1
0 (Ω) ∩ L∞(Ω).

(v) For any λ ∈ [0,Λ], problem (1.1) has a minimal weak solution uλ ∈ H1
0 (Ω)∩

L∞(Ω), in the sense that uλ ≤ v for any weak solution v ∈ H1
0 (Ω)∩L∞(Ω)

of (1.1). Also, uλ ∈ C(Ω) and, if 0 ≤ λ1 < λ2 ≤ Λ, then there exists a
positive constant c such that uλ1 +cdΩ ≤ uλ2 in Ω; where dΩ := dist(·, ∂Ω).

(vi) If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a weak solution of (1.1) for some λ ∈ [0,Λ], then

u ∈ C(Ω), and there exists a positive constant c′, independent of λ and u,
such that u ≥ c′dταΩ in Ω, with τα := 1 if 0 < α < 1, and τα := 2

1+α if
1 ≤ α < 3.

In the previous remark and below, by a weak solution, we mean a weak solution
in usual sense:

Definition 1.2. Let h : Ω → R be a measurable function such that hϕ ∈ L1(Ω)
for any ϕ ∈ H1

0 (Ω). We say that u : Ω→ R is a weak solution of the problem

−∆u = h in Ω,

u = 0 on ∂Ω,
(1.4)

if u ∈ H1
0 (Ω) and

∫
Ω
〈∇u,∇ϕ〉 =

∫
Ω
hϕ for any ϕ ∈ H1

0 (Ω).

For u ∈ H1(Ω), and h as above, we will write −∆u ≥ h in Ω (respectively
−∆u ≤ h in Ω) to mean that

∫
Ω
〈∇u,∇ϕ〉 ≥

∫
Ω
hϕ (resp.

∫
Ω
〈∇u,∇ϕ〉 ≤

∫
Ω
hϕ) for

any nonnegative ϕ ∈ H1
0 (Ω).

Let us state our results.

Theorem 1.3. Let Ω be a bounded domain in Rn with C2 boundary, and assume
(H1)–(H9). Let Λ be given by Remark 1.1 and, for λ ∈ [0,Λ], let uλ be the minimal
solution given by Remark 1.1 (v). Then:

(i) The map λ→ uλ is continuous from [0,Λ] to C(Ω).
(ii) The map λ→ uλ is continuously differentiable from (0,Λ) to C(Ω).
(iii) The map λ→ uλ is continuously differentiable from (0,Λ) to H1

0 (Ω).

Theorem 1.4. Assume the hypothesis of Theorem 1.3, and let Λ be given by Re-
mark 1.1. Then for λ = Λ there exists a unique weak solution u in H1

0 (Ω)∩L∞(Ω)
to problem (1.1), and (according to Remark 1.1) it belongs to C(Ω).

To prove Theorems 1.3 and 1.4 we follow an implicit function theorem approach.
We rewrite (1.1) as T (λ, u) = 0, where

T (λ, u) := u− (−∆)−1(au−α + f(λ, ·, u)).

In Section 2, we define a suitable Banach spaceXα, and an open subsetDα ⊂ Xα,
such that uλ ∈ Dα for any λ ∈ [0,Λ]. We prove that T ((0,∞) × Dα) ⊂ Xα and
that T : (0,∞)×Dα → Xα is a continuously Fréchet differentiable map.

In Section 3, we consider, for u ∈ Dα, and for a nonnegative and not identically
zero m ∈ L∞(Ω), the following principal eigenvalue problem with singular potential
αau−α−1, and weight function m :

−∆w + αau−α−1w = µm,umw in Ω,
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w = 0 on ∂Ω,

w > 0 in Ω.

We prove that this problem has a positive principal eigenvalue µm,u, with a positive
associated eigenfunction w ∈ Dα. A corresponding maximum principle with weight
is also proved.

In Section 4, we prove that, if λ ∈ (0,Λ) and mλ := ∂f
∂s (λ, ·, uλ), then µmλ,uλ > 1,

with uλ given by Remark 1.1 (v); and that, if (1.1) had at least two solutions for
λ = Λ, then the same assertion would hold for λ = Λ. Moreover, we also prove
that, in both cases, T satisfies the hypothesis of the implicit function theorem
for Banach spaces at (λ, uλ). Finally, from these facts, and from some additional
auxiliary results, Theorems 1.3 and 1.4, as well as two results concerning uniformity
properties of the family {uλ}λ∈[0,Λ], are proved in Section 6.

2. Preliminaries

From now on, we We assume, conditions (H1)–(H9). For 1 ≤ p ≤ ∞, let p′

be given by 1
p + 1

p′ = 1, and let p∗ be defined by 1
p∗ = 1

p −
1
n if p < n and by

p∗ := ∞ otherwise. For a measurable function v : Ω → R such that vϕ ∈ L1(Ω)
for any ϕ ∈ H1

0 (Ω), Sv will denote the functional Sv : H1
0 (Ω) → R defined by

Sv(ϕ) :=
∫

Ω
vϕ; and we will write v ∈ (H1

0 (Ω))′ to mean that Sv ∈ (H1
0 (Ω))′.

Remark 2.1. Let us recall the Hardy inequality (see e.g., [4, p. 313]): There exists
a positive constant c such that ‖ ϕdΩ

‖L2(Ω) ≤ c‖∇ϕ‖L2(Ω) for all ϕ ∈ H1
0 (Ω).

Lemma 2.2. If either v ∈ L(2∗)′(Ω) or dΩv ∈ L2(Ω), then:

(i) The functional Sv : H1
0 (Ω) → R is well defined, belongs to (H1

0 (Ω))′,
and there exists a positive constant c, independent of v, such that ‖Sv‖ ≤
c‖v‖(2∗)′ when v ∈ L(2∗)′(Ω), and ‖Sv‖ ≤ c‖dΩv‖2 when dΩv ∈ L2(Ω).

(ii) The problem −∆z = v in Ω, z = 0 on ∂Ω, has a unique weak solution
z ∈ H1

0 (Ω), and it satisfies, for some positive constant c independent of v,

‖z‖H1
0 (Ω) ≤ c‖v‖(2∗)′ if v ∈ L(2∗)′(Ω), and ‖z‖H1

0 (Ω) ≤ c‖dΩv‖2 if dΩv ∈
L2(Ω).

Proof. Let ϕ ∈ H1
0 (Ω). If v ∈ L(2∗)′(Ω) then, from the Hölder and Poincaré

inequalities, there exist positive constants c and c′, independent of v and ϕ, such
that

|Svϕ| ≤
∫

Ω

|vϕ| ≤ c′‖v‖(2∗)′‖ϕ‖2∗ ≤ c‖v‖(2∗)′‖∇ϕ‖2.

If dΩv ∈ L2(Ω) then, applying the Hölder and the Hardy inequalities, we obtain

|Svϕ| ≤
∫

Ω

|vϕ| ≤ c′‖dΩv‖2‖d−1
Ω ϕ‖2 ≤ c‖dΩv‖2‖∇ϕ‖2,

with c′ and c constants independent of v and ϕ. Thus (i) holds, and from i), the
Riesz theorem gives (ii). �

Remark 2.3. Let v : Ω → R be a measurable function such that vϕ ∈ L1(Ω) for
any ϕ ∈ H1

0 (Ω). If Sv ∈ (H1
0 (Ω))′, then, by the Riesz theorem, the problem

−∆z = v in Ω, z = 0 on ∂Ω,

has a unique weak solution z ∈ H1
0 (Ω), and it satisfies ‖z‖H1

0 (Ω) = ‖Sv‖(H1
0 (Ω))′ .
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For δ > 0 let Ωδ := {x ∈ Ω : dΩ(x) > δ}. We will need the following lemma,
which is a variant of [33, Lemma 3.2].

Lemma 2.4. Let u ∈ W 1,2
loc (Ω) ∩ C(Ω) be a solution, in the sense of distributions,

to the problem −∆u = u−1 in Ω, u = 0 on ∂Ω, u > 0 in Ω (respectively to the
problem −∆u = d−1

Ω in Ω, u = 0 on ∂Ω) such that, for some positive constants c1,

c2 and γ, c1dΩ ≤ u ≤ c2d
γ
Ω a.e. in Ω. Then u ∈ H1

0 (Ω) ∩ C1(Ω) ∩ C(Ω), and u is
a weak solution of the respective problem.

Proof. Note that
∫

Ω
〈∇u,∇ϕ〉 =

∫
Ω
u−1ϕ (respectively

∫
Ω
〈∇u,∇ϕ〉 =

∫
Ω
d−1

Ω ϕ) for

any ϕ ∈ H1
0 (Ω) such that supp(ϕ) ⊂ Ω. Indeed, let δ > 0 be such that supp(ϕ) ⊂

Ωδ, and let {ϕj}j∈N be a sequence in C∞c (Ω) satisfying supp(ϕj) ⊂ Ωδ for all j, and
such that {ϕj}j∈N converges to ϕ inH1

0 (Ωδ). Now, ∇u
∣∣
Ωδ
∈ L2(Ωδ,Rn) and u ≥ c1δ

on Ωδ. Also, from the Hardy inequality
∫

Ωδ
|d−1

Ω ϕ| ≤ c‖ϕ‖H1
0 (Ωδ), with c a positive

constant independent of ϕ. Then the maps ϕ →
∫

Ωδ
〈∇u,∇ϕ〉 and ϕ →

∫
Ωδ
u−1ϕ

(resp. ϕ →
∫

Ωδ
〈∇u,∇ϕ〉 and ϕ →

∫
Ωδ
d−1

Ω ϕ) are continuous on H1
0 (Ωδ). Also,∫

Ω
〈∇u,∇ϕj〉 =

∫
Ω
u−1ϕj for all j (respectively

∫
Ω
〈∇u,∇ϕj〉 =

∫
Ω
d−1

Ω ϕj). Then∫
Ω
〈∇u,∇ϕ〉 = limj→∞

∫
Ω
〈∇u,∇ϕj〉 = limj→∞

∫
Ω
u−1ϕj =

∫
Ω
u−1ϕ (respectively∫

Ω
〈∇u,∇ϕ〉 = limj→∞

∫
Ω
〈∇u,∇ϕj〉 = limj→∞

∫
Ω
d−1

Ω ϕj =
∫

Ω
d−1

Ω ϕ ).
For each j ∈ N, let hj : R→ R be defined by

hj(s) :=


0 if s ≤ 1

j ,

−3j2s3 + 14js2 − 19s+ 8
j if 1

j < s < 2
j ,

s if 2
j ≤ s.

Then hj ∈ C1(R), h′j(s) = 0 for s < 1
j , h′j(s) ≥ 0 for 1

j < s < 2
j and h′j(s) = 1 for

2
j < s. Also, 0 < hj(s) < s for all s ∈ (0, 2/j).

Let hj(u) := hj ◦ u. Then, for all j, ∇(hj(u)) = h′j(u)∇u in D′(Ω). Since

u ∈ W 1,2
loc (Ω), it follows that hj(u) ∈ W 1,2

loc (Ω). Since hj(u) has compact sup-
port, hj(u) ∈ H1

0 (Ω). Therefore, for all j,
∫

Ω
〈∇u,∇(hj(u))〉 =

∫
Ω
u−1hj(u) (resp.∫

Ω
〈∇u,∇(hj(u))〉 =

∫
Ω
d−1

Ω hj(u)), i.e.,∫
{u>0}

h′j(u)|∇u|2 =

∫
Ω

u−1hj(u) (resp. =

∫
Ω

d−1
Ω hj(u)). (2.1)

Now, h′j(u)|∇u|2 is nonnegative and limj→∞ h′j(u)|∇u|2 = |∇u|2 a.e. in Ω, and so,
from (2.1) and Fatou’s lemma, we have∫

Ω

|∇u|2 ≤ limj→∞

∫
Ω

u−1hj(u) (resp.

∫
Ω

|∇u|2 ≤ lim inf
j→∞

∫
Ω

d−1
Ω hj(u)).

Since u ≤ c2d
γ
Ω, we have d−1

Ω u ∈ L1(Ω). Now, limj→∞ u−1hj(u) = 1 a.e. in Ω

(resp. limj→∞ d−1
Ω hj(u) = d−1

Ω u a.e. in Ω) and, for any j ∈ N, 0 ≤ u−1hj(u) ≤ 1

in Ω (resp. 0 ≤ d−1
Ω hj(u) ≤ d−1

Ω u in Ω). Then, Lebesgue’s dominated convergence
theorem gives

lim
j→∞

∫
Ω

u−1hj(u) =

∫
Ω

1 <∞ (resp. =

∫
Ω

d−1
Ω u <∞).

Thus
∫

Ω
|∇u|2 <∞, and so u ∈ H1(Ω). Now, −∆u = u−1 in D′(Ω) (resp. −∆u =

d−1
Ω in D′(Ω)), also u ∈ L∞(Ω); and u−1 ∈ L∞loc(Ω) (resp. and d−1

Ω ∈ L∞loc(Ω)).
Now, the inner elliptic estimates in [27, Theorem 8.24] give that u ∈ C1(Ω) and,
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from the assumptions of the lemma u is continuous at ∂Ω, and so u ∈ C(Ω). Thus,
since u ∈ H1(Ω), u ∈ C(Ω) and u = 0 on ∂Ω, we conclude that u ∈ H1

0 (Ω).
Let ϕ ∈ H1

0 (Ω). By the Hardy inequality, ‖u−1ϕ‖1 ≤ c−1
1 ‖d

−1
Ω ϕ‖1 ≤ c‖ϕ‖H1

0 (Ω)

(resp. ‖d−1
Ω ϕ‖1 ≤ c‖ϕ‖H1

0 (Ω)) for some positive constant c independent of ϕ. Then

ϕ→
∫

Ω
u−1ϕ (resp. ϕ→

∫
Ω
d−1

Ω ϕ) is continuous on H1
0 (Ω). Also, u ∈ H1

0 (Ω), and

so ϕ →
∫

Ω
〈∇u,∇ϕ〉 is continuous on H1

0 (Ω). Therefore, since C∞c (Ω) is dense in

H1
0 (Ω), and ∫

Ω

〈∇u,∇ϕ〉 =

∫
Ω

u−1ϕ (resp.

∫
Ω

〈∇u,∇ϕ〉 =

∫
Ω

d−1
Ω ϕ) (2.2)

for any ϕ ∈ C∞c (Ω); we conclude that (2.2) holds for all ϕ ∈ H1
0 (Ω). �

Remark 2.5. Problems of the form

−∆u = ãuα̃ in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

(2.3)

were considered in [37] when α̃ < 1, ã ∈ Cηloc(Ω) for some η ∈ (0, 1), and such that,
for some constants c > 0, and p ≤ 2,

1

c
L(dΩ(x)) ≤ dpΩ(x)ã(x) ≤ cL(dΩ(x)) for all x ∈ Ω, (2.4)

where L(t) = exp
( ∫ ω0

t
z(s)
s ds

)
, with ω0 > diam(Ω), and z ∈ C([0, ω0]) such that

z(0) = 0 and
∫ ω0

0
t1−pL(t)dt <∞. Under the stated assumptions, [37, Theorem 1]

says that problem (2.3) has a unique classical solution u ∈ C2(Ω) ∩ C(Ω) which,
for some positive constant c′, satisfies

1

c′
θp(dΩ(x)) ≤ u(x) ≤ c′θp(dΩ(x)) for all x ∈ Ω,

where

θp(t) :=



(∫ ω0

0
L(s)
s ds

) 1
1−α̃ if p = 2,

t
2−p
1−α̃ (L(t))

1
1−α̃ if 1 + α̃ < p < 2,

t
( ∫ ω0

t
L(s)
s ds

) 1
1−α̃ if p = 1 + α̃,

t if p < 1 + α̃.

In particular, when α̃ = 0, z ≡ 0 (i.e., L ≡ 1), and p = 1 in (2.4),

−∆v = d−1
Ω in Ω,

v = 0 on ∂Ω
(2.5)

has a unique classical solution v ∈ C2(Ω) ∩ C(Ω), and that there exists a positive
constant c such that

c−1 log(
ω0

dΩ
)dΩ ≤ v ≤ c log

(ω0

dΩ

)
dΩ in Ω. (2.6)

Moreover, since d−1
Ω ∈ (H1

0 (Ω))′, from Lemma 2.4, v ∈ H1
0 (Ω), and v is a weak

solution of (2.5).
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Similarly, taking α̃ = −1, L ≡ 1, and p = 0 in (2.4), the problem

−∆w = w−1 in Ω,

w = 0 on ∂Ω

w > 0 in Ω

(2.7)

has a unique classical solution w ∈ C2(Ω) ∩ C(Ω), and (2.6) holds with w instead
of v. Also notice that log(ω0

dΩ
)dΩ ∈ (H1

0 (Ω))′; indeed, for ϕ ∈ H1
0 (Ω),∫

Ω

| log(
ω0

dΩ
)dΩϕ| ≤ ‖ log(

ω0

dΩ
)d2

Ω‖∞
∫

Ω

|d−1
Ω ϕ| ≤ c‖ϕ‖H1

0 (Ω)

for some positive constant c independent of ϕ. Then, from Lemma 2.4, w ∈ H1
0 (Ω),

and w is a weak solution of (2.7).

Remark 2.6. The following result is a particular case of [12, Theorem 1]. Let
β ∈ (0, 1) and let E := {u ∈ C2(Ω) ∩ C1,1−β(Ω) : ∆u ∈ L1(Ω)}. Then the problem

−∆u = u−β in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

(2.8)

has a unique classical solution u ∈ E and there exist a positive constant c such that
c−1dΩ ≤ u ≤ cdΩ in Ω.

Let us observe that, since u is a solution of (2.8) in the sense of distributions,
and since u ∈ H1

0 (Ω), and the map ϕ →
∫

Ω
u−βϕ belongs to (H1

0 (Ω))′ (because

u ≥ c−1dΩ in Ω), a standard density argument shows that u is a weak solution of
(2.8).

For ξ ∈ (H1
0 (Ω))′, (−∆)−1ζ will denote, as usual, the unique solution u ∈ H1

0 (Ω)
(given by the Riesz theorem) to the problem −∆u = ζ in Ω, u = 0 on ∂Ω.

Lemma 2.7. If 0 ≤ β < 1, then (−∆)−1(d−βΩ ) ∈ H1
0 (Ω), and d−1

Ω (−∆)−1(d−βΩ ) ∈
L∞(Ω).

Proof. The lemma clearly holds when β = 0, because (−∆)−1(1) ∈ C1(Ω) and
(−∆)−1(1) = 0 on ∂Ω. If β ∈ (0, 1), let ζ ∈ H1

0 (Ω) be the weak solution to (2.8)
given by Remark 2.6. Note that, according to Remark 2.6, c′′dΩ ≤ ζ ≤ c′dΩ in Ω

for some positive constants c′ and c′′; and thus d−βΩ ≤ (c′)βζ−β in Ω. Therefore,
for ϕ ∈ H1

0 (Ω), and some constant c independent of ϕ, we have∣∣ ∫
Ω

d−βΩ ϕ
∣∣ ≤ (c′)β

∫
Ω

ζ−β |ϕ| = (c′)β
∫

Ω

dΩζ
−β | ϕ

dΩ
|

≤ (c′)β(c′′)−β
∫

Ω

d1−β
Ω | ϕ

dΩ
| ≤ c‖ϕ‖H1

0 (Ω),

the above inequality holds, by the Hölder and the Hardy inequalities. Thus d−βΩ ∈
(H1

0 (Ω))′, and so (−∆)−1(d−βΩ ) is a well defined element in H1
0 (Ω). Also, from the

weak maximum principle, and since c′′dΩ ≤ ζ ≤ c′dΩ in Ω, we obtain

0 ≤ (−∆)−1(d−βΩ ) ≤ (c′)−β(−∆)−1(ζ−β) = ζ ≤ c′dΩ in Ω.

which completes the proof. �
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Definition 2.8. For α ∈ (0, 3), let τα be as in Remark 1.1 (vi), let ω0 be as
in Remark 2.5, and let ϑα : Ω → R be defined by ϑα := dταΩ if α 6= 1, and by
ϑ1 := log(ω0

dΩ
)dΩ.

Lemma 2.9. Let α ∈ (0, 3). If g ∈ L∞(Ω), then ϑ−αα g ∈ (H1
0 (Ω))′ (and so

(−∆)−1(ϑ−αα g) ∈ H1
0 (Ω)), and there exists a positive constant c, independent of g,

such that:

(i) ‖(−∆)−1(ϑ−αα g)‖H1
0 (Ω) ≤ c‖g‖∞,

(ii) ‖ϑ−1
α (−∆)−1(ϑ−αα g)‖∞ ≤ c‖g‖∞.

Proof. Note that
∫

Ω
|ϑ−αα gϕ| ≤ ‖g‖∞

∫
Ω
ϑ−αα dΩ|d−1

Ω ϕ| for any ϕ ∈ H1
0 (Ω). If α 6= 1,

we have ϑ−αα dΩ ∈ L2(Ω) (because 2(1 − ατa) > −1), and then, by the Hölder and
the Hardy inequalities, Sϑ−αα g is well defined on H1

0 (Ω), and belongs to (H1
0 (Ω))′.

Moreover, ‖Sϑ−αα g‖(H1
0 (Ω))′ ≤ c‖g‖∞ with c a constant independent of g, and so, by

Remark 2.3, ‖(−∆)−1(ϑ−αα g)‖H1
0 (Ω) ≤ c‖g‖∞. Thus (i) holds when α 6= 1. If α = 1

then ϑ−αα dΩ ∈ L∞(Ω) and so, again now, we obtain (i).
To see (ii), consider the function z := (−∆)−1(ϑ−αα g). We have, in the weak

sense,

− ϑ−αα ‖g‖∞ ≤ −∆z ≤ ϑ−αα ‖g‖∞ in Ω, (2.9)

and then, by the weak maximum principle,

−‖g‖∞(−∆)−1(ϑ−αα ) ≤ z ≤ ‖g‖∞(−∆)−1(ϑ−αα ) a.e. in Ω,

i.e., |z| ≤ ‖g‖∞(−∆)−1(ϑ−αα ) a.e. in Ω.
If 0 < α < 1 then ϑ−αα = d−αΩ , and so, by Lemma 2.7, ‖ϑ−αα z‖∞ ≤ c‖g‖∞, with

c independent of g. Thus (ii) holds when 0 < α < 1
If 1 < α < 3, consider the weak solution w ∈ H1

0 (Ω) to the problem

−∆w = w−α in Ω, w = 0 on ∂Ω, w > 0 in Ω. (2.10)

(such a solution exists and it is unique, for instance, by Remark 1.1, taking there
a = 1 and λ = 0). By [31, Lemmas 2.9 and 2.11], there exist positive constants c1
and c2 such that c1ϑα ≤ w ≤ c2ϑα a.e. in Ω, and then c−α2 ϑ−−αα ≤ w−α ≤ c−α1 ϑ−αα
a.e. in Ω; thus, from (2.9), we have

−cα2 ‖g‖∞(−∆w) = −cα2 ‖g‖∞w−α ≤ −∆z

≤ cα2 ‖g‖∞w−α = cα2 ‖g‖∞(−∆w) in Ω,

and then, from the weak maximum principle, −cα2 ‖g‖∞w ≤ z ≤ cα2 ‖g‖∞w a.e. in
Ω, i.e., |z| ≤ cα2 ‖g‖∞w a.e. in Ω. Since w ≤ c2ϑα a.e. in Ω, we obtain that (ii) holds
also when 1 < α < 3. Consider now the case α = 1. Let w ∈ H1

0 (Ω) be the weak
solution to the problem

−∆w = w−1 in Ω, w = 0 on ∂Ω, w > 0 in Ω. (2.11)

From Remark 2.5, there exist positive constants c1 and c2 such that c1ϑ1 ≤ w ≤
c2ϑ1 a.e. in Ω, and then c−1

2 ϑ−1
1 ≤ w−1 ≤ c−1

1 ϑ−1
1 a.e. in Ω; thus, from (2.11), in

the weak sense, we have

−c2‖g‖∞(−∆w) = −c2‖g‖∞w−1 ≤ −∆z

≤ c2‖g‖∞w−1 = c2‖g‖∞(−∆w) in Ω,
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and then, from the weak maximum principle, −c2‖g‖∞w ≤ z ≤ c2‖g‖∞w a.e. in
Ω, i.e., |z| ≤ c2‖g‖∞w a.e. in Ω. Since w ≤ c2ϑ1 a.e. in Ω, we obtain (ii) also when
α = 1. �

3. Towards an application of the implicit function theorem

Definition 3.1. Let Xα, ‖ · ‖Xα : Xα → [0,∞), and Dα, be defined by

Xα := {u ∈ H1
0 (Ω) : ϑ−1

α u ∈ L∞(Ω)},
‖u‖Xα := ‖∇u‖2 + ‖ϑ−1

α u‖∞,
Dα := {u ∈ Xα : inf

Ω
ϑ−1
α u > 0}.

Note that Xα and R×Xα, equipped with the norms ‖ · ‖Xα and | · |+ ‖cdot‖Xα
respectively, are Banach spaces.

Recall that λ ∈ R is called a principal eigenvalue for −∆ in Ω, with homogeneous
Dirichlet boundary condition, if the problem −∆φ = λφ in Ω, φ = 0 on ∂Ω has a
solution φ (called a principal eigenfunction) such that φ > 0 in Ω. It is a well known
fact that this problem has a unique positive principal eigenvalue, noted λ1(b) (see
e.g., [17]).

Lemma 3.2. Dα is a nonempty open set in Xα.

Proof. Let ϕ1 be the positive principal eigenfunction for−∆ in Ω with homogeneous
Dirichlet boundary condition, normalized by ‖ϕ1‖∞ = 1. Then (see e.g. [17]),

ϕ1 ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) for any p ∈ [1,∞) (in particular ϕ1 ∈ C1(Ω)), and there

exist positive constants c1, c2 such that

c1dΩ ≤ ϕ1 ≤ c2dΩ in Ω. (3.1)

Therefore ϕ1 ∈ Dα for each α ∈ (0, 1). If α ∈ (1, 3) then 2
1+α > 1/2 and so

ϕ
2

1+α

1 ∈ H1
0 (Ω). Also, c

2
1+α

1 dτ̃αΩ ≤ ϕ
2

1+α

1 ≤ c
2

1+α

2 dτ̃αΩ , which gives ϕ
2

1+α

1 ∈ Dα.
If α = 1 note that log(ω0

ϕ1
)ϕ1 ∈ H1

0 (Ω) and that, for some positive constant c,

c−1ϑ1 ≤ log(ω0

ϕ1
)ϕ1 ≤ cϑ1 in Ω, and so log(ω0

ϕ1
)ϕ1 ∈ D1.

To see that Dα is open in Xa, observe that if u0 ∈ Dα, then, for some positive
constant c, u0 ≥ cϑα in Ω. Let ε := c

2 and let u ∈ Xα such that ‖u − u0‖Xα ≤ ε.

Then ‖ϑ−1
α (u − u0)‖∞ ≤ ε, and so −εϑα ≤ u − u0 ≤ εϑα a.e. in Ω. Then

u ≥ u0 − εϑα ≥ c
2ϑα a.e. in Ω, therefore u ∈ Dα. �

Lemma 3.3. For any (λ, u) ∈ (0,∞) × Dα, au−α + f(λ, ·, u) ∈ (H1
0 (Ω))′, and

(−∆)−1(au−α + f(λ, ·, u)) ∈ Xα.

Proof. Let (λ, u) ∈ (0,∞)×Dα. Since u ∈ Dα ⊂ Xα, and ϑα ∈ L∞(Ω), we have u ∈
L∞(Ω). Then f(λ, ·, u) ∈ L∞(Ω). Also, since u ∈ Dα, we have u ≥ cϑα a.e. in Ω for
some positive constant c. Therefore au−α+f(λ, ·, u) ≤ c−α‖a‖∞ϑ−αα +‖f(λ, ·, u)‖∞
a.e. in Ω. Also, for some constant c′,

c−α‖a‖∞ϑ−αα + ‖f(λ, ·, u)‖∞ ≤ c′ϑ−αα in Ω. (3.2)

Then 0 ≤ au−α + f(λ, ·, u) ≤ c′ϑ−αα ; and the lemma follows from Lemma 2.9. �

Lemma 3.4. If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a weak solution of (1.1), then there exists

a positive constant c such that u ≥ cϑα in Ω.
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Proof. When α 6= 1, Remark 1.1 proves the lemma. Consider the case α = 1. Let
δ be as in (H2). From Remark 1.1 we know that u ∈ C(Ω), and that, for some
positive constant c1, u ≥ c1dΩ in Ω. Thus there exists a positive constant c2 such
that

u ≥ c′′ϑ1 a.e. in Ω \Aδ/8. (3.3)

Let U be a C1,1 domain such that A3δ/4 ⊂ U ⊂ Aδ. As shown in [32], we have
∂U \ ∂Ω ⊂ Ω \Aδ/2 and

dU = dΩ in Aδ/8, (3.4)

where dU := dist(·, ∂U).
Since U ⊂ Aδ, from (H2) we have a := infU a > 0. Let v ∈ H1

0 (Ω)∩C2(Ω)∩C(Ω)
be the weak solution, given by Remark 2.5, to the problem

−∆v = v−1 in U,

v = 0 on ∂U,

v > 0 in U.

Let ω0 be as in Remark 2.5, and let ϑ̃1 : U → R be defined by ϑ̃1 := log( ω0

dU
)dU .

Thus, by Remark 2.5, there exists a positive constant c3 such that v ≥ c3ϑ̃1 in
U . Observe that −∆((a)1/2v) = a((a)1/2v)−1 ≤ a((a)1/2v)−1 in U , and that, in
weak sense, −∆u ≥ au−1 in Ω. Then −∆(u − (a)1/2v) ≥ a(u−1 − ((a)1/2v)−1) in
(H1

0 (U))′; and clearly u ≥ (a)1/2v in ∂U . Then, taking (u − (a)1/2v)− as a test
function, we obtain u ≥ (a)1/2v in U . Thus there exists a positive constant c4 such

that u ≥ c4ϑ̃1 in U . Moreover, since dU = dΩ in Aδ/8, we have ϑ̃1 = ϑ1 in Aδ/8,
and so

u ≥ c4ϑ1 in Aδ/8 . (3.5)

From (3.3), (3.5), and (3.4), we obtain u ≥ cϑ1 in Ω, with c := min{c2, c4}, which
completes the proof. �

Lemma 3.5. If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a weak solution of (1.1), then u ∈ Dα.

Proof. From Lemma 3.4 there exists a positive constant c such that u ≥ cϑα in
Ω. Since u ∈ L∞(Ω) we have f(λ, ·, u) ∈ L∞(Ω). Thus, for some constant c′,
0 ≤ au−α + f(λ, ·, u) ≤ c−α‖a‖∞ϑ−αα + ‖f(λ, ·, u)‖∞ ≤ c′ϑ−αα . Since

u = (−∆)−1(au−α + f(λ, ·, u)),

from Lemma 2.9 we obtain u ≤ c′′ϑα, and so u ∈ Xα. Let w ∈ H1
0 (Ω) ∩ L∞(Ω)

be the weak solution of −∆w = aw−α in Ω, w = 0 on ∂Ω (given by Remark 1.1).
Then, by Remark 1.1, w ≥ cϑα. Also we have

−∆(u− w) ≥ a(u−α − w−α) in Ω, and u− w = 0 on ∂Ω . (3.6)

Now, taking (u− w)− as a test function in (3.6), we obtain u ≥ w. Thus u ≥ cϑα
and so u ∈ Dα �

Definition 3.6. Let T : (0,∞)×Dα → Xα be the operator defined by

T (λ, u) = u− (−∆)−1(au−α + f(λ, ·, u)) (3.7)

Lemma 3.7. T : (0,∞) ×Dα → Xα is Fréchet differentiable, and its differential
at (λ, u) ∈ (0,∞)×Dα, noted DT(λ,u), is given by

DT(λ,u)(τ, ψ) = ψ − (−∆)−1(−αaψu−α−1 + τ
∂f

∂λ
(λ, ·, u) + ψ

∂f

∂s
(λ, ·, u)), (3.8)
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for any (τ, ψ) ∈ R×Xα.

Proof. Let (λ, u) ∈ (0,∞)×Dα and let r > 0 be such that λ > 4r and ϑ−1
α u > 4r

a.e. in Ω. Note that

N := {(τ, ψ) ∈ R×Xα : |τ | < r and ‖ψ‖Xα < r}

is an open neighborhood of (0, 0) in R ×Xα, and that (λ, u) + N ⊂ (0,∞) ×Dα.
For (τ, ψ) ∈ N we have

T (λ+ τ, u+ ψ) = T (λ, u) + ψ − (−∆)−1(hτ,ψ), (3.9)

where hτ,ψ := a(u + ψ)−α + f(λ + τ, ·, u + ψ) − au−α − f(λ, ·, u). A computation
gives

hτ,ψ = a

∫ 1

0

d

dt
(u+ tψ)−α dt

+

∫ 1

0

[
τ
∂f

∂λ
(λ+ tτ, ·, u+ tψ) + ψ

∂f

∂s
(λ+ tτ, ·, u+ tψ)

]
dt.

(3.10)

Also,

a

∫ 1

0

d

dt
(u+ tψ)−α dt

= −αaψ
∫ 1

0

[u−α−1 +

∫ t

0

d

dσ
(u+ σψ)−α−1dσ]dt

= −αaψu−α−1 +R1(ψ),

(3.11)

where

R1(ψ) := α(α+ 1)aψ2

∫ 1

0

∫ t

0

(u+ σψ)−α−2 dσ dt. (3.12)

Also,∫ 1

0

[
τ
∂f

∂λ
(λ+ tτ, ·, u+ tψ) + ψ

∂f

∂s
(λ+ tτ, ·, u+ tψ)

]
dt

=

∫ 1

0

∫ t

0

d

dσ

[
τ
∂f

∂λ
(λ+ στ, ·, u+ σψ) + ψ

∂f

∂s
(λ+ στ, ·, u+ σψ)

]
dσ dt

+ τ
∂f

∂λ
(λ, ·, u) + ψ

∂f

∂s
(λ, ·, u)

= τ
∂f

∂λ
(λ, ·, u) + ψ

∂f

∂s
(λ, ·, u) +R2(τ, ψ),

(3.13)

where

R2(τ, ψ) := τ2

∫ 1

0

∫ t

0

∂2f

∂λ2
(λ+ στ, ·, u+ σψ) dσ dt

+ 2τψ

∫ 1

0

∫ t

0

∂2f

∂λ∂s
(λ+ στ, ·, u+ σψ) dσ dt

+ ψ2

∫ 1

0

∫ t

0

∂2f

∂s2
(λ+ στ, ·, u+ σψ) dσ dt.

(3.14)

Thus T (λ+ τ, u+ ψ) = T (λ, u) + Lλ,u(τ, ψ)− (−∆)−1(R1(ψ) +R2(τ, ψ)), where

Lλ,u(τ, ψ) := ψ − (−∆)−1(−αaψu−α−1 + τ
∂f

∂λ
(λ, ·, u) + ψ

∂f

∂s
(λ, ·, u)).
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Then, to conclude the proof of the lemma, it is sufficient to prove the following two
assertions: (a) Lλ,u(R×Xα) ⊂ Xα and Lλ,u : R×Xα → Xα is continuous; (b)

‖(−∆)−1(R1(ψ))‖Xα + ‖(−∆)−1(R2(τ, ψ))‖Xα ≤ c‖(τ, ψ)‖2Xα
for some positive constant c, independent of τ and ψ.

Let us prove (a). Since u ∈ Dα, we have, for some positive constant c′, u ≥ c′ϑα
in Ω; then, taking into account that |ϑ−1

α ψ| ≤ ‖ψ‖Xα , for some positive constant
c independent of (τ, ψ), we have |αau−α−1ψ| ≤ cϑ−αα ‖(τ, ψ)‖R×Xα in Ω. Also,

u ∈ Xα implies u ∈ L∞(Ω), and so, by (H8)–(H9), ∂f∂λ (λ, ·, u) and ∂f
∂s (λ, ·, u) belong

to L∞(Ω). Then, for some positive constants c′′ and c′′′ independent of (τ, ψ), we
have

|τ ∂f
∂λ

(λ, ·, u) + ψ
∂f

∂s
(λ, ·, u)| ≤ c′′(|τ |+ |ψ|)

= c′′(|τ |+ ϑα|
ψ

ϑα
|)

≤ c′′′ϑ−αα ‖(τ, ψ)‖R×Xα a.e. in Ω.

(3.15)

Then, for some positive constant c independent of (τ, ψ), it holds

| − αaψu−α−1 + τ
∂f

∂λ
(λ, ·, u) + ψ

∂f

∂s
(λ, ·, u)| ≤ cϑ−αα ‖(τ, ψ)‖R×Xαa.e. in Ω,

Lemma 2.9 now implies that (a) holds.
Let us prove (b). Let ρ := max{λ+ r, (‖u‖Xα + r)‖ϑα‖∞}, and let

M := ‖|∂
2f

∂λ2
|+ | ∂

2f

∂λ∂s
|+ |∂

2f

∂s2
|‖L∞((0,ρ)×Ω×(0,ρ)).

Note that, for any (τ, ψ) ∈ N and σ ∈ [0, 1], we have 0 < λ+ στ < λ+ r ≤ ρ and

0 ≤ u+ σψ ≤ (‖ϑ−1
α u‖∞ + ‖ϑ−1

α ψ‖∞)ϑα ≤ (‖u‖Xα + r)‖ϑα‖∞ ≤ ρ.

Then, for such a (τ, ψ), and for some positive constant c independent of (τ, ψ), the
following inequalities hold:∣∣τ2

∫ 1

0

∫ t

0

∂2f

∂λ2
(λ+ στ, ·, u+ σψ) dσ dt

∣∣ ≤ 1

2
Mτ2 ≤ c‖(τ, ψ)‖2R×Xα ,∣∣2τψ ∫ 1

0

∫ t

0

∂2f

∂λ∂s
(λ+ στ, ·, u+ σψ) dσ dt

∣∣ ≤M |τ ||ψ| ≤Mϑα|τ ||
ψ

ϑα
|

≤ c‖(τ, ψ)‖2R×Xα ,∣∣ψ2

∫ 1

0

∫ t

0

∂2f

∂s2
(λ+ στ, ·, u+ σψ) dσ dt

∣∣ ≤ 1

2
Mψ2 ≤ c‖(τ, ψ)‖2R×Xα .

Therefore, from (3.14), |R2(τ, ψ)| ≤ c‖(τ, ψ)‖2R×Xα ≤ c′‖(τ, ψ)‖2R×Xαϑ
−α
α , with c

and c′ constants independent of (τ, ψ). Then, by Lemma 2.9, (−∆)−1(R2(τ, ψ)) ∈
Xα and ‖(−∆)−1(R2(τ, ψ))‖Xα ≤ c‖(τ, ψ)‖2R×Xα , where c is a constant independent
of (τ, ψ).

Consider now R1(ψ). Since u ≥ cϑα a.e. in Ω, from (3.12), for a constant c′

independent of (τ, ψ), we have

|R1(ψ)| ≤ c′ϑ−(α+2)
α ψ2 = c′ϑ−αα (

ψ

ϑα
)2 ≤ c′ϑ−αα ‖(τ, ψ)‖2R×Xα
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and so, by Lemma 2.9, we have (−∆)−1(R1(ψ)) ∈ Xα and ‖(−∆)−1(R1(ψ))‖Xα ≤
c‖(τ, ψ)‖2R×Xα , with c a positive constant independent of (τ, ψ). Thus (b) holds.

Then T is Fréchet differentiable at (λ, u), and its differential is given by (3.8). �

Corollary 3.8. For (λ, u) ∈ R×Dα, the partial derivative D2T(λ,u) at (λ, u) (i.e.
the Fréchet differential, at u, of v → T (λ, v)) is given by

(D2T(λ,u))(ψ) = ψ − (−∆)−1
((
− αau−α−1 +

∂f

∂s
(λ, x, u)

)
ψ
)

for any ψ ∈ Xα.

Lemma 3.9. T : (0,∞)×Dα → Xα is continuously Fréchet differentiable.

Proof. Let (λ, u) ∈ (0,∞)×Dα, and let {(λj , uj)}j∈N ⊂ (0,∞)×Dα be a sequence
that converges to (λ, u) in R × Xα. Thus {uj}j∈N converges to u in H1

0 (Ω), and
{ϑ−1

α uj}j∈N converges to ϑ−1
α u in L∞(Ω). In particular, {uj}j∈N converges to u in

L∞(Ω). For (τ, ψ) ∈ R×Xα and j ∈ N, we have

DT(λj ,uj)(τ, ψ)−DT(λ,u)(τ, ψ)

= (−∆)−1(αaψ(u−α−1
j − u−α−1))

+ τ(−∆)−1
(∂f
∂λ

(λ, ·, u)− ∂f

∂λ
(λj , ·, uj)

)
+ (−∆)−1

(
ψ
(∂f
∂s

(λ, ·, u)− ∂f

∂s
(λj , ·, uj)

))
.

(3.16)

Let c0 > 0 be such that ϑ−1
α u ≥ c0 a.e. in Ω. Since {ϑ−1

α uj}j∈N converges to ϑ−1
α u

in L∞(Ω), there exists j0 ∈ N such that ϑ−1
α uj ≥ 1

2c0 a.e. in Ω for any j ≥ j0.
Then there exists a positive constant c1 such that, for j ≥ j0, and for a.a. x ∈ Ω,

t−α−2 ≤ c1ϑ
−(α+2)
α whenever t lies on the line segment with endpoints u(x) and

uj(x). Thus, for j ≥ j0, and for some positive constant c, independent of (τ, ψ) and
j, we have

|a(u−α−1
j − u−α−1)ψ| = (α+ 1)

∣∣aψ ∫ uj

u

t−α−2dt
∣∣

≤ c|uj − u||ψ|ϑ−(α+2)
α

≤ c|ϑ−1
α (uj − u)||ϑ−1

α ψ|ϑ−αα
≤ c‖uj − u‖Xα‖(τ, ψ)‖R×Xαϑ−αα ,

(3.17)

Then, by Lemma 2.9, (−∆)−1(a(u−α−1
j − u−α−1)ψ) ∈ Xα, and, for some constant

c independent of (τ, ψ) and j, we have

‖(−∆)−1(αa(u−α−1
j − u−α−1)ψ)‖Xα ≤ c‖uj − u‖Xα‖(τ, ψ)‖R×Xα ,

which gives

‖(−∆)−1(αa(u−α−1
j − u−α−1))‖L(R×Xα,Xα) ≤ c‖uj − u‖Xα . (3.18)

Consider now the second term of the sum in the right-hand side of (3.16), i.e., the

term τ(−∆)−1(∂f∂λ (λ, ·, u)− ∂f
∂λ (λj , ·, uj)). As ϑ−1

α u ∈ L∞(Ω), {ϑ−1
α uj}j∈N converges

to ϑ−1
α u in L∞(Ω), and {λj}j∈N converges to λ in R, there exists ρ > 0 such that

ϑα ≤ ρ in Ω, ‖uj‖∞ ≤ ρ, |λj | ≤ ρ for any j ∈ N, ‖u‖∞ ≤ ρ, and |λ| ≤ ρ. Then, by
the mean value theorem, and by (H8), (H9), there exists M > 0 such that, for all
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j, ∣∣τ(
∂f

∂λ
(λ, ·, u)− ∂f

∂λ
(λj , ·, uj))

∣∣
≤M |τ |(|uj − u|+ |λj − λ|)
≤M |τ |(‖ϑα‖∞‖ϑ−1

α uj − ϑ−1
α u‖∞ + |λj − λ|)

≤ c‖(τ, ψ)‖R×Xα‖(λj − λ, uj − u)‖R×Xα
≤ c′‖(τ, ψ)‖R×Xα‖(λj − λ, uj − u)‖R×Xαϑ−αα a.e. in Ω,

(3.19)

where c and c′ are positive constants independent of (τ, ψ) and j. Then, from
Lemma 2.9, we have

‖τ(−∆)−1(
∂f

∂λ
(λ, ·, u)− ∂f

∂λ
(λj , ·, uj))‖Xα

≤ c′′‖(τ, ψ)‖R×Xα‖(λj − λ, uj − u)‖R×Xα ,

where c′′ is a positive constant independent of (τ, ψ) and j. Thus we obtain, for a
constant c independent of j,

‖τ(−∆)−1(
∂f

∂λ
(λ, ·, u)− ∂f

∂λ
(λj , ·, uj))‖L(R×Xα,Xα)

≤ c‖(λj − λ, uj − u)‖R×Xα .
(3.20)

Consider now the third term of the sum in the right-hand side of (3.16), i.e., the

term (−∆)−1(ψ(∂f∂s (λ, ·, u)− ∂f
∂s (λj , ·, uj))). We now have the following inequality,

which is analogous to (3.19),

∣∣ψ(
∂f

∂s
(λ, ·, u)− ∂f

∂s
(λj , ·, uj))

∣∣
≤M |ψ|(‖uj − u‖∞ + |λj − λ|)
≤M‖ϑα‖∞|ϑ−1

α ψ|(‖ϑα‖∞‖ϑ−1
α uj − ϑ−1

α u‖∞ + |λj − λ|)
≤ c‖(τ, ψ)‖R×Xα‖(λj − λ, uj − u)‖R×Xα
≤ c′‖(τ, ψ)‖R×Xα‖(λj − λ, uj − u)‖R×Xαϑ−αα a.e. in Ω.

(3.21)

where c and c′ are positive constants independent of (τ, ψ) and j. Thus, from
Lemma 2.9, we obtain∥∥(−∆)−1

(
ψ
(∂f
∂s

(λ, ·, u)− ∂f

∂s
(λj , ·, uj)

))∥∥
Xα

≤ c′′‖(τ, ψ)‖R×Xα‖(λj − λ, uj − u)‖R×Xα

which implies that, for some constant c independent of j,∥∥(τ, ψ)→ (−∆)−1
(
ψ
(∂f
∂s

(λ, ·, u)− ∂f

∂s
(λj , ·, uj)

))
‖L(R×Xα,Xα)

≤ c‖(λj − λ, uj − u)
∥∥
R×Xα

.
(3.22)

Then, from (3.18), (3.20) and (3.22), it follows that {DT(λj ,uj)}j∈N converges to
DT(λ,u) in L(R×Xα, Xα), which completes the proof. �
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4. An operator with singular potential and a related principal
eigenvalue problem with weight

Lemma 4.1. For any u ∈ Dα, it holds that αau−α−1wϕ ∈ L1(Ω) whenever w and
ϕ belong to H1

0 (Ω). Moreover, there exists a positive constant, independent of w
and ϕ, such that

‖αau−α−1wϕ‖1 ≤ c‖w‖H1
0 (Ω)‖ϕ‖H1

0 (Ω). (4.1)

Proof. If 0 < α ≤ 1, then either ϑα = dΩ or ϑα = log(ω0

dΩ
)dΩ. In both cases

there exists a positive constant c such that u ≥ cdΩ in Ω. Thus, for some positive
constant c′, independent of w and ϕ,

0 ≤ αau−α−1wϕ = αad2
Ωu
−α−1 w

dΩ

ϕ

dΩ
≤ c′d1−α

Ω

w

dΩ

ϕ

dΩ
in Ω.

If 1 < α < 3, then ϑα = d
2

1+α

Ω in Ω, and so there exists a positive constant c such

that u ≥ cd
2

1+α

Ω in Ω. Thus, for some positive constant c′ independent of w and ϕ,
we have

0 ≤ αau−α−1wϕ = αad2
Ωu
−α−1 w

dΩ

ϕ

dΩ
≤ c′d2− 2(α−1)

α+1

Ω

w

dΩ

ϕ

dΩ
= c′d

4
α+1

Ω

w

dΩ

ϕ

dΩ
,

and the lemma follows from the Hölder and the Hardy inequalities. �

Definition 4.2. For any u ∈ Dα, and for any nonnegative m ∈ L∞(Ω) such that
m 6≡ 0 in Ω, we define

µm,u := inf
{w∈H1

0 (Ω):
∫
Ω
mw2>0}

∫
Ω

(|∇w|2 + αau−α−1w2)∫
Ω
mw2

(4.2)

or, equivalently,

µm,u := inf
w∈Wm

∫
Ω

(|∇w|2 + αau−α−1w2), (4.3)

where Wm := {w ∈ H1
0 (Ω) :

∫
Ω
mw2 = 1}.

From Lemma 4.1, αau−α−1w2 ∈ L1(Ω) for any w ∈ H1
0 (Ω). Thus µm,u is well

defined and finite.

Lemma 4.3. For any u ∈ Dα, and for any nonnegative m ∈ L∞(Ω) such that
m 6≡ 0 in Ω, the following statements hold:

(i) The infimum in (4.3) is achieved at some nonnegative w ∈Wm.
(ii) µm,u > 0.

(iii) If w ∈Wm is a nonnegative minimizer for (4.3) then αau−α−1wϕ ∈ L1(Ω)
for any ϕ ∈ H1

0 (Ω), and w satisfies, in weak sense,

−∆w + αau−α−1w = µm,umw in Ω,

w = 0 on ∂Ω.
(4.4)

(iv) If w ∈ Wm is a nonnegative minimizer for (4.3) then, for any positive δ
such that Ωδ 6= ∅, there exists a positive constant c such that w ≥ cdΩδ a.e.
in Ωδ. In particular, w > 0 a.e. in Ω.
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Proof. To prove (i), consider a minimizing sequence {wj}j∈N ⊂Wm for (4.3). Note
that {wj}j∈N is bounded in H1

0 (Ω), and so, taking a subsequence if necessary, we
can assume that, for some w ∈ H1

0 (Ω), {wj}j∈N converges, strongly in L2(Ω), and
a.e. in Ω, to w; and that {∇wj}j∈N converges to ∇w weakly in L2(Ω,Rn). Now,
|
∫

Ω
mw2 − 1| = |

∫
Ω
m(w2 − w2

j )| ≤ ‖m‖∞‖w − wj‖2‖w + wj‖2. Since the last
expression converges to zero as j tends to ∞, we obtain that w ∈ Wm. Then
µm,u ≤

∫
Ω

(|∇w|2 + αau−α−1w2). On the other hand, from Fatou’s lemma, and

from the fact that {wj}j∈N converges to w weakly in H1
0 (Ω), we have∫

Ω

|∇w|2 +

∫
Ω

αau−α−1w2

=

∫
Ω

|∇w|2 +

∫
Ω

lim inf
j→∞

αau−α−1w2
j

≤ lim inf
j→∞

∫
Ω

|∇wj |2 +

∫
Ω

lim inf
j→∞

αau−α−1w2
j

≤ lim inf
j→∞

∫
Ω

|∇wj |2 + lim inf
j→∞

∫
Ω

αau−α−1w2
j

≤ lim inf
j→∞

∫
Ω

(
|∇wj |2 + αau−α−1w2

j

)
= µm,u.

Then
∫

Ω
|∇w|2 +

∫
Ω
αau−α−1w2 ≤ µm,u. Since w ∈Wm, the reverse inequality also

holds. Thus the infimum in (4.3) is achieved at w. Since the infimum in (4.3) is
also achieved at |w|, (i) holds.

To prove (ii), observe that, since µm,u =
∫

Ω
(|∇w|2 + αau−α−1w2) for some

w ∈ Wm, then µm,u ≥ 0. If µm,u = 0, we would have
∫

Ω
|∇w|2 = 0, and so w = 0

a.e. in Ω, which would contradict
∫

Ω
mw2 = 1.

To prove (iii), consider a minimizer w ∈ Wm for (4.3). Let ϕ ∈ H1
0 (Ω), and let

t ∈ R. Note that, by Lemma 4.1, αau−α−1(w + tϕ)2 ∈ L1(Ω). Also observe

µm,u

∫
Ω

m(w + tϕ)2 ≤
∫

Ω

(|∇(w + tϕ)|2 + αau−α−1(w + tϕ)2). (4.5)

Indeed, since, by ii), µm,u ≥ 0, (4.5) clearly holds when
∫

Ω
m(w + tϕ)2 ≤ 0. If∫

Ω
m(w + tϕ)2 > 0, (4.5) follows from (4.2). Now, since w ∈ Wm and µm,u =∫

Ω
(|∇w|2 + αau−α−1w2), from (4.5) we obtain

µm,u

∫
Ω

m(2twϕ+ t2ϕ2)

≤
∫

Ω

(
t2|∇ϕ|2 + 2t〈∇w,∇ϕ〉+ au−α−1(2twϕ+ t2ϕ2)

)
.

Suppose t > 0, divide by t both sides of the last inequality, and take the limit
as t → 0+; using that au−α−1wϕ and au−α−1ϕ2 belong to L1(Ω), Lebesgue’s
dominated convergence theorem gives µm,u

∫
Ω
mwϕ ≤

∫
Ω

(〈∇w,∇ϕ〉+au−α−1wϕ).
When t < 0, a similar procedure gives the reverse inequality. Then

µm,u

∫
Ω

mwϕ =

∫
Ω

(〈∇w,∇ϕ〉+ au−α−1wϕ), (4.6)

whenever ϕ ∈ H1
0 (Ω), i.e., w is a weak solution of problem (4.4) .

Finally, note that it is enough to prove iv) when δ is positive and small enough.
Let Ωδ be a domain with C2 boundary such that Ωδ ⊂ Ωδ ⊂ Ωδ/2. Since u ∈ Dα
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we have 0 ≤ αau−α−1 ∈ L∞(Ωδ). Since m ≥ 0, w ≥ 0 and
∫

Ω
mw2 = 1, we

have mw ≥ 0 and |{mw > 0}| > 0. Then, for δ and ε small enough, there exists
a measurable set E ⊂ Ωδ, with |E| > 0, such that µm,umw ≥ εχE in Ωδ. Let
ζ ∈ ∩1≤p<∞W

2,p(Ωδ) be the solution to the problem −∆ζ + αau−α−1ζ = εχE in

Ωδ, ζ = 0 on ∂Ωδ. Then ζ ∈ C1(Ωδ), and the Hopf boundary lemma (as stated in

[42, Theorem 1.1]) gives ∂ζ
∂ν < 0 on ∂Ωδ, where ν denotes the outward unit normal

at ∂Ωδ. Moreover, the strong maximum principle (see [27, Theorem 9.6]) gives
w ≥ ζ and also ζ > 0 in Ωδ. Thus, for some positive constant c, ζ ≥ cdΩδ in Ωδ,
and iv) holds. �

For ζ ∈ (H1
0 (Ω))′, we write ζ ≥ 0 to mean that ζ(ϕ) ≥ 0 for any nonnegative

ϕ ∈ H1
0 (Ω).

Lemma 4.4. Let u ∈ Dα, let m ∈ L∞(Ω) be nonnegative and nonidentically zero,
and let µ ∈ [0, µu,m). Then, for any ζ ∈ (H1

0 (Ω))′:

(i) There exists a unique weak solution z ∈ H1
0 (Ω) of the problem

−∆z + αau−α−1z = µmz + ζ, (4.7)

i.e., z satisfies mzϕ ∈ L1(Ω) and
∫

Ω
〈∇z,∇ϕ〉 = µ

∫
Ω
mzϕ + ζ(ϕ) for any

ϕ ∈ H1
0 (Ω).

(ii) If, in addition, ζ ≥ 0, then z ≥ 0.
(iii) If ζ = Sv for some measurable v : Ω → R such that |v| ≤ cϑ−αα , then

z ∈ Xα.

Proof. To prove (i), consider the symmetric bilinear form A : H1
0 (Ω)×H1

0 (Ω)→ R
defined by A(u, v) :=

∫
Ω

(〈∇u,∇v〉+αau−α−1uv−µmuv). By Lemma 4.1, we have

au−α−1uv ∈ L1(Ω), and |
∫

Ω
αau−α−1uv| ≤ c‖u‖H1

0 (Ω)‖v‖H1
0 (Ω) for some positive

constant c independent of u and v; clearly a similar estimate holds for |
∫

Ω
µmuv|.

Thus, A is well defined and continuous on H1
0 (Ω) × H1

0 (Ω). Taking into account
(4.2), we have

A(v, v) =

∫
Ω

(|∇v|2 + αau−α−1v2 − µmv2)

≥
(
1− µ

µu,m

) ∫
Ω

(|∇v|2 + αau−α−1v2);

then, since µu,m > µ, A is coercive on H1
0 (Ω). Thus, by the Lax Milgram Theorem

(as stated in [4, Corollary 5.8]), there exists a unique weak solution z ∈ H1
0 (Ω) to

problem (4.7). Moreover, z minimizes the functional J : H1
0 (Ω)→ R given by

J(v) :=
1

2

∫
Ω

(|∇v|2 + αau−α−1v2 − µmv2)− ζ(v).

Thus (i) holds.
To prove (ii), observe that, if ζ ≥ 0, taking −z− as a test function in (4.7), we

obtain
∫

Ω
(|∇(z−)|2 + αau−α−1(z−)2) = µ

∫
Ω
m(z−)2 − ζ(z−), and thus∫

Ω

(|∇(z−)|2 + αau−α−1(z−)2) = µ

∫
Ω

m(z−)2 − ζ(z−)

≤ µ

µu,m

∫
Ω

(|∇(z−)|2 + αau−α−1(z−)2);

which (since µ < µu,m), implies z− = 0 in Ω. Thus (ii) holds.
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To prove (iii), we consider first the case when ζ = Sv, with v ≥ 0 a.e. in Ω. We
claim that, for any k ∈ N ∪ {0}, there exists a positive constant ck such that

z ≤ q2k(−∆)−2kz + ckϑα in Ω, (4.8)

where (−∆)−2j := ((−∆)−1)2j . We prove (4.8) by induction on k. As m ∈ L∞(Ω),
there exists q ∈ (0,∞) such that

−∆z ≤ qz + cϑ−αα in Ω. (4.9)

By Lemma 2.9, (−∆)−1(ϑ−αα ) ∈ H1
0 (Ω), and there exists a positive constant c′ such

that (−∆)−1(ϑ−αα ) ≤ c′ϑα a.e. in Ω. Thus, from (4.9), the weak maximum principle
gives z ≤ q(−∆)−1z+c(−∆)−1(ϑ−αα ) ≤ q(−∆)−1z+c0ϑα in Ω, with c0 = cc′. Then
(4.8) holds for k = 0. Now suppose that (4.8) holds for k = j, i.e., that for some
positive constant cj ,

z ≤ q2j (−∆)−2jz + cjϑα in Ω. (4.10)

Then, since (−∆)−2j is a positive operator on H1
0 (Ω), from (4.10) we obtain

z ≤ q2j (−∆)−2j (q2j (−∆)−2jz + cjϑα) + cjϑα

= q2j+1

(−∆)−2j+1

z + q2jcj(−∆)−2j (ϑα) + cjϑα in Ω;
(4.11)

note that, for some positive constant c′′, dΩ ≤ c′′ϑα in Ω. Also, since 0 ≤ ϑα ∈
L∞(Ω), there exist a positive constant c′′′j such that (−∆)−2j (ϑα) ≤ c′′′j dΩ in Ω.
Thus (4.11) implies that (4.8) holds for k = j+ 1. Then (4.8) holds for any k ∈ N∪
{0}. By a bootstrap argument we have, for k large enough, (−∆)−2kz ∈ C1(Ω), and

so, for such a k we have, for some positive constant c̃k, (−∆)−2kz ≤ c̃kdΩ ≤ c̃kc′′ϑα
in Ω. Then, from (4.8), we obtain, for some positive constant c, z ≤ cϑα in Ω.
Thus z ∈ Xα.

Consider now the general case ζ = Sv, with v non necessarily nonnegative.
Write v = v+ − v−, and consider the solution z1 (respectively z2) of the problem
−∆z1 = µmz1 + v+ in Ω, z1 = 0 on ∂Ω (resp. −∆z2 = mz2 + v− in Ω, z2 = 0 on
∂Ω). Thus z := z1 − z2 is the solution of −∆z = µmz + ζ in Ω, z = 0 on ∂Ω, and
the general case of (iii) follows from the previous one. �

Lemma 4.5. Let u ∈ Dα and let h ∈ L(2∗)′(Ω). Then:

(i) There exists a unique weak solution z ∈ H1
0 (Ω) to the problem

−∆z + αau−α−1z = h in Ω,

z = 0 on ∂Ω.
(4.12)

(ii) If h ≥ 0 in Ω, then z ≥ 0 in Ω.
(iii) If h ≥ 0 in Ω and h 6≡ 0 in Ω, then, for any δ positive and small enough,

there exists a positive constant c such that z ≥ cdΩδ in Ωδ.

Proof. (i) and (ii) follow from Lemma 4.4. To prove (iii), suppose h ≥ 0 in Ω and
h 6≡ 0 in Ω. Then, there exist ε > 0, and a measurable set E ⊂ Ω such that |E| > 0
and h ≥ ε in E. Thus h ≥ εχE in Ω. Let z̃ ∈ H1

0 (Ω) be the solution (given by the
part (i) of the lemma) to the problem

−∆z̃ + αau−α−1z̃ = εχE in Ω,

z̃ = 0 on ∂Ω.
(4.13)
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By (ii), z̃ ≥ 0 a.e. in Ω. Also, −∆z̃ ≤ εχE in Ω, z̃ = 0 on ∂Ω, and so z̃ ≤
(−∆)−1(εχE) a.e. in Ω, and thus z̃ ∈ L∞(Ω). Moreover, since, for some positive
constants c and c′, u ≥ c′ϑα ≥ cdΩ in Ω, we have also that εχE − αau−α−1z̃ ∈
L∞loc(Ω). Then, for δ positive and small enough (such that Ωδ 6= ∅), the inner

elliptic estimates (as stated in [27, Theorem 8.24]) give that z̃ ∈ C1(Ωδ). Since
−∆z̃ + αau−α−1z̃ = εχE in D′(Ωδ) and 0 ≤ (αau−α−1)

∣∣
Ωδ
∈ L∞(Ωδ), the strong

maximum principle, and the Hopf boundary lemma (as stated in [27, Theorem 9.6],
and in [42, Theorem 1.1], respectively) imply that, for some positive constant c′,
z̃ ≥ c′dΩδ in Ωδ. Now, since h ≥ εχE in Ω, (ii) implies z ≥ z̃ a.e. in Ω. Then
z ≥ c′dΩδ in Ωδ. �

Lemma 4.6. Let u ∈ Dα and let m ∈ L∞(Ω) such that 0 ≤ m 6≡ 0 in Ω. Let ρ be
a nonnegative function in L∞loc(Ω) such that ρϕ ∈ L1(Ω) for any ϕ ∈ H1

0 (Ω), and
let h ∈ H1

0 (Ω) be a weak solution of the problem

−∆h+ αau−α−1h = λmh+ ρ in Ω,

h = 0 on ∂Ω,
(4.14)

such that, for δ positive and small enough, there exists a positive constant c such
that h ≥ cdΩδ in Ωδ. Then λ ≤ µm,u. If in addition, ρ 6≡ 0 in Ω, then λ < µm,u.

Proof. Let v := − log(h), and let ψ ∈ C∞c (Ω). Since, for δ positive and small
enough, h ≥ cdΩδ in Ωδ, and since ψ has compact support, we have h−1ψ2 ∈ H1

0 (Ω)
and ρh−1ψ2 ∈ H1

0 (Ω). Note that, by Lemma 4.1, αau−α−1hψ ∈ L1(Ω). Now we
proceed as in [31, Remark 2.2 iv]. We take h−1ψ2 as a test function in (4.14) and,
after a computation, we obtain

λ

∫
Ω

mψ2 =

∫
Ω

(|∇ψ|2 + αau−α−1ψ2)−
∫

Ω

ρh−1ψ2 −
∫

Ω

|∇ψ + ψ∇v|2

and so λ
∫

Ω
mψ2 ≤

∫
Ω

(|∇ψ|2 +αau−α−1ψ2). Now, for ϕ ∈Wm, i.e., for ϕ ∈ H1
0 (Ω)

such that
∫

Ω
mϕ2 = 1, consider a sequence {ϕj}j∈N ⊂ C∞c (Ω) such that {ϕj}j∈N

converges to ϕ in H1
0 (Ω). Then {ϕj}j∈N converges to ϕ strongly in L2(Ω) and,

taking a subsequence if necessary, we can assume that {ϕj}j∈N converges to ϕ a.e.
in Ω. Thus, for all j,

λ

∫
Ω

mϕ2
j =

∫
Ω

(|∇ϕj |2 + αau−α−1ϕ2
j )−

∫
Ω

ρh−1ϕ2
j −

∫
Ω

|∇ϕj + ϕj∇v|2.

In particular, λ
∫

Ω
mϕ2

j ≤
∫

Ω
(|∇ϕj |2 + αau−α−1ϕ2

j ), and so

λ

∫
Ω

mϕ2 ≤
∫

Ω

(
|∇ϕ|2 + αau−α−1ϕ2

)
.

Therefore

λ ≤
∫

Ω

(
|∇ϕ|2 + αau−α−1ϕ2

)
,

and thus, since this holds for any ϕ ∈Wm, we conclude that λ ≤ µm,u.
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If λ = µm,u then, for ϕ ∈ H1
0 (Ω) and for {ϕj}j∈N as above, we have, for all j,

µm,u

∫
Ω

mϕ2
j +

∫
Ω

ρh−1ϕ2
j

= λ

∫
Ω

mϕ2
j +

∫
Ω

ρh−1ϕ2
j

≤ λ
∫

Ω

mϕ2
j +

∫
Ω

ρh−1ϕ2
j +

∫
Ω

|∇ϕj + ϕj∇v|2

=

∫
Ω

(|∇ϕj |2 + αau−α−1ϕ2
j ),

(4.15)

and so

µλ,u

∫
Ω

mϕ2
j +

∫
Ω

ρh−1ϕ2
j ≤

∫
Ω

(|∇ϕj |2 + αau−α−1ϕ2
j ). (4.16)

Now, by Lemma 4.1, for all j, we have

|
∫

Ω

αau−α−1ϕ2
j −

∫
Ω

αau−α−1ϕ2| ≤
∫

Ω

αau−α−1|ϕj − ϕ||ϕj + ϕ|

≤ c‖ϕj − ϕ‖H1
0 (Ω)‖ϕj + ϕ‖H1

0 (Ω)

where c is a positive constant independent of j. Thus

lim
j→∞

∫
Ω

αau−α−1ϕ2
j =

∫
Ω

αau−α−1ϕ2. (4.17)

Now we take lim infj→∞ in (4.16), to obtain, from Fatou’s lemma,

µλ,u

∫
Ω

mϕ2 +

∫
Ω

ρh−1ϕ2 ≤
∫

Ω

|∇ϕ|2 +

∫
Ω

αau−α−1ϕ2 (4.18)

for any ϕ ∈ H1
0 (Ω). Let w be as in Lemma 4.3. By taking ϕ = w in (4.18), we

obtain
∫

Ω
ρh−1w2 ≤ 0 and so ρw2 = 0 a.e. in Ω. Since, by Lemma 4.3, w > 0 a.e.

in Ω, it follows that ρ = 0 a.e. in Ω. �

5. An application of the implicit function theorem

Let us recall some results from [31] and [33].

Lemma 5.1 ([31, Lemma 3.5]). For any λ0 > 0 there exists a constant cλ0
> 0

such that ‖u‖∞ < cλ0
whenever λ ≥ λ0 and u ∈ H1

0 (Ω)∩L∞(Ω) is a weak solution
of problem (1.1).

Lemma 5.2 ([31, Lemma 4.8]). Let λ0 > 0, let {λj}j∈N be a sequence in [λ0,∞)
and, for j ∈ N, let wj ∈ H1

0 (Ω) ∩ L∞(Ω) be a weak solution of problem (1.1) with
λ = λj. Then:

(i) {wj}j∈N is bounded in H1
0 (Ω).

(ii) If, additionally, {wj}j∈N converges weakly in H1
0 (Ω) to some w ∈ H1

0 (Ω) ∩
L∞(Ω), and limj→∞ λj = λ for some λ ∈ [λ0,∞); then w is a weak solution
of (1.1), and there exists a positive constant c such that w ≥ cdΩ in Ω.

Remark 5.3. The assertion (ii) of Lemma 5.2 holds also for λ0 = 0, provided that
{wj}j∈N is bounded in H1

0 (Ω) and in L∞(Ω). Indeed, in the proof of [31, Lemma
4.8], the only use of the condition λ0 > 0 is to guarantee that {wj}j∈N be bounded
in L∞(Ω).
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Definition 5.4. Let h : Ω → R be a measurable function such that hϕ ∈ L1(Ω)
for any ϕ ∈ H1

0 (Ω). We say that u : Ω → R is a weak subsolution (respectively a
weak supersolution) of (1.4) if u ≤ 0 on ∂Ω and

∫
Ω
〈∇u,∇ϕ〉 ≤

∫
Ω
hϕ (resp. u ≥ 0

on ∂Ω and
∫

Ω
〈∇u,∇ϕ〉 ≥

∫
Ω
hϕ) for any nonnegative ϕ ∈ H1

0 (Ω).

Lemma 5.5 ([33, Lemma 4]). Let λ > 0, and suppose that u and v are two
nonnegative weak supersolutions in H1

0 (Ω) ∩ L∞(Ω) of problem (1.1). Then there
exists a weak solution z ∈ H1

0 (Ω) ∩ C(Ω) of problem (1.1) such that z ≤ min{u, v}
in Ω.

Lemma 5.6 ([31, Lemma 2.9]). For any nonnegative ζ in L∞(Ω), and for any
positive weak solution u of the problem

−∆u = au−α + ζ in Ω,

u = 0 on ∂Ω,

the following statements hold:

(i) If 1 < α < 3 then there exists a positive constant c such that u ≤ cd
2

1+α

Ω in
Ω.

(ii) If 0 < α ≤ 1 and γ ∈ (0, 1) then there exists a positive constant c such that
u ≤ cdγΩ in Ω.

The next lemma deals with the existence of maximal solutions to problem (1.1).

Lemma 5.7. Let λ ∈ [0,Λ]. Then there exists a weak solution vλ ∈ H1
0 (Ω)∩L∞(Ω)

of problem (1.1) such that, if w ∈ H1
0 (Ω) ∩ L∞(Ω) is a weak solution of problem

(1.1) satisfying w ≥ vλ in Ω, then w = vλ in Ω.

Proof. When λ = 0, the lemma holds because, by Remark 1.1, problem (1.1) has
a unique weak solution u0 ∈ H1

0 (Ω) ∩ L∞(Ω). Let us consider the case when
λ ∈ (0,Λ]. Let Sλ be the set of weak solutions ζ ∈ H1

0 (Ω) ∩ L∞(Ω) to problem
(1.1). Thus Sλ is nonempty and, by Lemma 5.1, there exists a constant C > 0
such that u ≤ C for any u ∈ Sλ. Then Iλ := {

∫
Ω
u : u ∈ Sλ} is bounded. Let

β := sup Iλ. Thus 0 < β < ∞. Let {uj}j∈N ⊂ Sλ be a maximizing sequence for
Iλ, i.e., such that limj→∞

∫
Ω
uj = β. Now, by Lemma 5.2, {uj}j∈N is bounded

in H1
0 (Ω), and so, taking a subsequence if necessary, we can assume that there

exists vλ ∈ H1
0 (Ω) ∩ L∞(Ω) such that {uj}j∈N converges strongly in L2(Ω) to vλ

and {∇uj}j∈N converges weakly in L2(Ω,Rn) to ∇vλ. Since uj ≤ C for all j ∈ N,
vλ ∈ L∞(Ω); and, since {uj}j∈N converges to vλ in L1(Ω),

∫
Ω
vλ = β. By Lemma

5.2, vλ is a weak solution of (1.1). Suppose now that w ∈ H1
0 (Ω)∩L∞(Ω) is a weak

solution of (1.1) such that w ≥ vλ. Then β =
∫

Ω
vλ ≤

∫
Ω
w and, from the definition

of β,
∫

Ω
w ≤ β. Thus

∫
Ω
vλ =

∫
Ω
w; which (since vλ ≤ w) implies vλ = w. �

Remark 5.8. By Remark 1.1, vλ ∈ C(Ω), and there exists a constant c1 > 0 such
that vλ ≥ c1dΩ in Ω.

Remark 5.9. Note that, by Lemma 3.5, uλ and vλ belong to Dα for any λ ∈ [0,Λ].

Lemma 5.10. For λ ∈ (0,Λ], let uλ and vλ be as given by Remark 1.1 v), and
Lemma 5.7 respectively. Then, for any r, t ∈ [0, 1] such that r+ t = 1, ruλ + tvλ is
a weak supersolution of (1.1).
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Proof. As uλ and vλ are weak solutions of (1.1), then, for any ϕ ∈ H1
0 (Ω), both

(au−αλ + f(λ, x, uλ))ϕ and (av−αλ + f(λ, x, vλ))ϕ, belong to L1(Ω), and so

r(au−αλ + f(λ, x, uλ))ϕ+ t(av−αλ + f(λ, x, vλ))ϕ ∈ L1(Ω).

Note that, by (H1), H2) and (H9), s→ as−α + f(λ, x, s) is strictly convex for any
λ ∈ (0,∞) and for a.e. x ∈ Ω. Then

−∆(ruλ + tvλ) = r(au−αλ + f(λ, x, uλ)) + t(av−αλ + f(λ, x, vλ))

≥ a(ruλ + tvλ)−α + f(λ, x, ruλ + tvλ) in Ω,

ruλ + tvλ = 0 on ∂Ω,

ruλ + tvλ > 0 in Ω.

�

From now on, for any λ ∈ [0,Λ], uλ will denote the minimal solution of problem
(1.1) given by Remark 1.1 (v); and vλ will denote a maximal solution, for the same
problem, given by Lemma 5.7. We also set

ψλ := vλ − uλ. (5.1)

Note that, by the multiplicity result given in Remark 1.1 (iii), vλ 6= uλ for any
λ ∈ (0,Λ). Also, note that, if for λ = Λ there exist at least two weak solutions of
problem (1.1), then vΛ 6= uΛ.

Lemma 5.11. Let λ ∈ [0,Λ], and let u ∈ H1
0 (Ω) ∩ L∞(Ω) be a weak solution of

problem (1.1). Then there exist γ ∈ (0, 1), and a positive constant c, such that
u ≤ cdγΩ in Ω.

Proof. The lemma follows from Lemma 5.6, taking ε = 0 and ζ = f(λ, ·, u). �

Lemma 5.12. (i) For any λ ∈ (0,Λ), we have ψλ ≥ 0 in Ω, |{ψλ > 0}| > 0, and

−∆(uλ + tψλ) ≥ a(uλ + tψλ)−α + f(λ, ·, uλ + tψλ) in Ω (5.2)

for any t ∈ [0, 1].
(ii) If for λ = Λ there exist at least two positive solutions of (1.1), then the

assertions made in (i) hold also for λ = Λ.

Proof. To prove (i), note that for any ϕ ∈ H1
0 (Ω), |(uλ + tψλ)−αϕ| ≤ au−αλ |ϕ| ∈

L1(Ω), and also note that, by (H3),

|f(λ, ·, uλ + tψλ)ϕ| ≤ ‖f(λ, ·, .)‖L∞(Ω×[0,M ])|ϕ| ∈ L1(Ω),

with M := ‖uλ‖∞ + ‖ψλ‖∞. Thus
(
a(uλ + tψλ)−α + f(λ, ·, uλ + tψλ)

)
ϕ ∈ L1(Ω).

By Remark 1.1 (v), uλ ≤ vλ; and then ψλ ≥ 0 in Ω. If ψλ is identically zero in Ω,
then uλ = vλ in Ω. If w ∈ H1

0 (Ω)∩L∞(Ω) is a weak solution of (1.1), then uλ ≤ w
in Ω, i.e., vλ ≤ w in Ω, and thus w = vλ in Ω, which, for λ ∈ (0,Λ), contradicts
Remark 1.1 (iii). Also, for t ∈ [0, 1], Lemma 5.10 gives (5.2). Thus (i) holds. The
same argument gives (ii). �

Remark 5.13. Let M > 0, λ ≥ 0. From (H9) we have, for a.a., x ∈ Ω, 0 ≤
∂f
∂s (λ, x, ·) ≤ ∂f

∂s (λ, x,M) on [0,M ]; and from (H8), ‖∂f∂s (λ, ·,M)‖∞ <∞. Therefore

we have ‖∂f∂s (λ, ·, ·)‖L∞(Ω×(0,M)) <∞.
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Lemma 5.14. For λ ∈ [0,Λ], the following statements hold: (i)

(−αau−α−1
λ +

∂f

∂s
(λ, ·, uλ))ψλϕ ∈ L1(Ω)

for any ϕ ∈ H1
0 (Ω).

(ii) −∆ψλ ≥
(
− αau−α−1

λ + ∂f
∂s (λ, x, uλ)

)
ψλ in Ω.

Proof. (i) follows from Lemma 4.1. It is clear that (ii) holds when λ = 0. If
λ ∈ (0,Λ], from Lemma 5.12, we have, for any t ∈ (0, 1) and ε > 0,

−∆(uλ + tψλ) ≥ a(uλ + tψλ)−α + f(λ, ·, uλ + tψλ)

≥ a(uλ + ε+ tψλ)−α + f(λ, ·, uλ + tψλ) in Ω.

Also,

−∆uλ = au−αλ + f(λ, ·, uλ) in Ω,

uλ = 0 on ∂Ω,

and so

−∆(tψλ) ≥ a
(
(uλ + ε+ tψλ)−α − u−αλ

)
+ f(λ, ·, uλ + tψλ)− f(λ, ·, uλ) in Ω

Taking ε = tη with η > 0, and dividing by t, we obtain

−∆ψλ ≥ at−1
(
(uλ + t(η + ψλ))−α − u−αλ

)
+ t−1(f(λ, ·, uλ + tψλ)− f(λ, ·, uλ)),

i.e., for any nonnegative ϕ ∈ H1
0 (Ω), it holds that∫

Ω

〈∇ψλ,∇ϕ〉 ≥
∫

Ω

at−1((uλ + t(η + ψλ))−α − u−αλ )ϕ

+

∫
Ω

t−1(f(λ, ·, uλ + tψλ)− f(λ, ·, uλ))ϕ.

(5.3)

Now, limt→0+ at−1((uλ + t(η + ψλ))−α − u−αλ )ϕ = −αau−α−1
λ ϕ(η + ψλ) a.e. in Ω.

Also, from the mean value theorem,

|at−1
(
(uλ + t(η + ψλ))−α − u−αλ

)
ϕ| = |αa(uλ + θ(η + ψλ))−α−1ϕ(η + ψλ)|

for some θ such that 0 ≤ θ ≤ t; and so, taking into account Lemma 4.1,

|at−1((uλ + t(η + ψλ))−α − u−αλ )ϕ| ≤ αau−α−1
λ ϕ(η + ψλ) ∈ L1(Ω).

Then the Lebesgue dominated convergence theorem gives

lim
t→0+

∫
Ω

at−1
(
(uλ + t(η + ψλ))−α − u−αλ

)
ϕ = −

∫
Ω

αau−α−1
λ ϕ(η + ψλ).

On the other hand, limt→0+ t−1(f(λ, ·, uλ + tψλ) − f(λ, ·, uλ))ϕ = ∂f
∂s (λ, ·, uλ)ϕψλ

a.e. in Ω. Let M := ‖uλ+ψλ‖∞. Then, by Remark 5.13, ‖∂f∂s (λ, ·, .)‖L∞(Ω×(0,M)) <

∞. Thus, the mean value theorem gives, for some θ̃ such that 0 ≤ θ̃ ≤ t,

|t−1(f(λ, ·, uλ + tψλ)− f(λ, ·, uλ))ϕ| =
∣∣∂f
∂s

(λ, ·, uλ + θ̃ψλ)ϕψλ
∣∣

≤ ‖∂f
∂s

(λ, ·, ·)‖L∞(Ω×(0,M))|ϕψλ| ∈ L1(Ω),

where in the last inequality we have used Remark 5.13. The Lebesgue dominated
convergence theorem now gives

lim
t→0+

∫
Ω

t−1(f(λ, ·, uλ + tψλ)− f(λ, ·, uλ))ϕ =

∫
Ω

∂f

∂s
(λ, ·, uλ)ψλϕ.
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Now we take the limit as t→ 0+ in (5.3), to obtain

−∆ψλ ≥ −αau−α−1
λ (ψλ + η) +

∂f

∂s
(λ, ·, uλ)ψλ in Ω. (5.4)

Since (5.4) holds for any η > 0, the lemma follows. �

For λ ∈ [0,Λ], let mλ := ∂f
∂s (λ, ·, uλ). Since uλ ∈ C(Ω), Remark 5.13 gives

mλ ∈ L∞(Ω); and, by (H9), mλ > 0 in Ω. Observe also that uλ ∈ Dα. Thus we
can define µλ := µmλ,uλ .

Definition 5.15. For λ ∈ [0,Λ], let mλ := ∂f
∂s (λ, ·, uλ), and let µλ := µmλ,uλ .

Remark 5.16. Since uλ ∈ C(Ω), Remark 5.13 gives mλ ∈ L∞(Ω); and, by (H9),
mλ > 0 a.e. in Ω. Observe also that uλ ∈ Dα. Thus µλ is well defined.

Lemma 5.17. (i) µλ > 1 for anyλ ∈ (0,Λ).
(ii) If, for λ = Λ, there exist at least two weak solutions of problem (1.1), then

µΛ > 1.

Proof. Suppose that either λ = Λ and there exist at least two weak solutions
of problem (1.1), or λ ∈ (0,Λ). Let ψλ ∈ H1

0 (Ω) be as defined in (5.1). By
Lemma 5.12, ψλ ≥ 0 in Ω and |{x ∈ Ω : ψλ(x) > 0}| > 0. Also, by Lemma 5.14,
αau−α−1

λ ψλϕ ∈ L1(Ω) for any ϕ ∈ H1
0 (Ω), and

−∆ψλ + αau−α−1
λ ψλ ≥ mλψλ in Ω,

ψλ = 0 on ∂Ω.
(5.5)

Let z ∈ H1
0 (Ω) be the weak solution, given by Lemma 4.5, to the problem

−∆z + αau−α−1
λ z = mλψλ in Ω,

z = 0 on ∂Ω.
(5.6)

By (H9), mλψλ ≥ 0 in Ω, and then Lemma 4.5 gives z ≥ 0 in Ω. Now,

−∆(ψλ − z) + αau−α−1
λ (ψλ − z) = hλ in Ω,

ψλ − z = 0 on ∂Ω.
(5.7)

where hλ := αau−α−1
λ ψλ + av−αλ + f(λ, ·, vλ) − (au−αλ + f(λ, ·, uλ)) − mλz. By

Remark 5.9, uλ and vλ belong to Dα and then by Lemma 3.3, av−αλ + f(λ, ·, vλ)

and au−αλ + f(λ, ·, uλ) belong to (H1
0 (Ω))′. Since ψλ ∈ L∞(Ω), Lemma 4.1 gives

αau−α−1
λ ψλ ∈ (H1

0 (Ω))′. Also, z ∈ H1
0 (Ω) and mλ ∈ L∞(Ω). Then hλ ∈ (H1

0 (Ω))′.
From (5.5) and (5.6) we conclude that hλ ≥ 0 a.e. in Ω. Then, taking into account
(5.7), Lemma 4.5 gives ψλ ≥ z in Ω. Also,

−∆z + αau−α−1
λ z = mλz + ρ in Ω,

z = 0 on ∂Ω,
(5.8)

with ρ := mλ(ψλ − z). Since ψλ ≥ z in Ω, and, by (H9), mλ > 0 a.e. in Ω, we have
ρ ≥ 0 a.e. in Ω. We claim that ρ 6≡ 0 in Ω. To see this, by way of contradiction, let
us suppose ρ = 0. From (5.8) we have

−∆z + αau−α−1
λ z = mλz in Ω,

z = 0 on ∂Ω;
(5.9)

which, jointly with (5.6), gives z = ψλ in Ω. Then (5.9) reads

−∆ψλ = −αau−α−1
λ ψλ +mλψλ in Ω,
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ψλ = 0 on ∂Ω;

that is,

−∆(vλ − uλ) = −αau−α−1
λ (vλ − uλ) +mλ(vλ − uλ) in Ω,

vλ − uλ = 0 on ∂Ω.

Now, taking into account the equations satisfied by uλ and vλ, we obtain

av−αλ + f(λ, ·, vλ)− [au−αλ + f(λ, ·, uλ)]

= −αau−α−1
λ (vλ − uλ) +mλ(vλ − uλ)

= −αau−α−1
λ (vλ − uλ) +

∂f

∂s
(λ, ·, uλ)(vλ − uλ) a.e. in Ω,

which contradicts the fact that, by (H9), s→ as−α+f(λ, x, s) is strictly convex on
(0,∞) for a.e. x ∈ Ω; which ends the proof that ρ 6≡ 0 in Ω. Thus 0 ≤ mλz+ ρ 6≡ 0
in Ω, then, since mλz + ρ ∈ (H1

0 (Ω))′ from (5.8) and Lemma 4.5 (iv), we obtain
that, for δ positive and small enough, there exists a positive constant c such that
z ≥ cdΩδ in Ωδ, and so, from (5.8) and Lemma 4.6, µλ > 1. �

Lemma 5.18. Assume that either of the following conditions holds: (i) 0 < λ < Λ.
(ii) λ = Λ and, for λ = Λ, there exist at least two weak solutions of problem (1.1).
Then (DuT )(λ, uλ) : Xα → Xα is bijective.

Proof. Note that, if h ∈ Xα, then (−αau−α−1
λ + mλ)h ∈ (H1

0 (Ω))′. Indeed, for
some positive constants c and c′, we have, for for any ϕ ∈ H1

0 (Ω),∫
Ω

|(−αau−α−1
λ +mλ)hϕ| ≤ c

∫
Ω

ϑ−(α+1)
α |hϕ|+ c

∫
Ω

|hϕ|

= c

∫
Ω

ϑ−αα dΩ|
h

ϑα
|| ϕ
dΩ
|+ c

∫
Ω

ϑαdΩ|
h

ϑα
|| ϕ
dΩ
|

≤ c′‖h‖Xα‖ϕ‖H1
0 (Ω),

where we have used the Holder and the Hardy inequalities, that uλ ∈ Dα, ϑ−αα dΩ ∈
L2(Ω), and ϑαdΩ ∈ L∞(Ω). Similarly, we have

|(−αau−α−1
λ +mλ)h| ≤ cϑ−(α+1)

α |h|+ c|h|

= cϑ−αα |
h

ϑα
|+ cϑα|

h

ϑα
|

≤ c′ϑ−αα ‖h‖Xα .
Then, by Lemma 4.4, the problem

−∆z = (−αau−α−1
λ +mλ)z + (−αau−α−1

λ +mλ)h

has a solution z in Xα. Then ψ := z + h belongs to Xα and satisfies

ψ − (−∆)−1((−αau−α−1
λ +mλ)ψ) = h.

Thus (DuT )(λ, uλ) is surjective.
To see that it is injective, suppose that

ϕ− (−∆)1([−αau−α−1
λ +mλ]ϕ) = η − (−∆)1([−αau−α−1

λ +mλ]η)

for some ϕ and η in Xα. Thus z := η − ϕ is a weak solution of the problem

−∆z = (−αau−α−1
λ +mλ)z in Ω,

z = 0 on ∂Ω.
(5.10)
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By way of contradiction, suppose that z+ is not identically zero on Ω. Taking z+

as a test function in (5.10) we obtain∫
Ω

(|∇z+|2 + αau−α−1
λ (z+)2) =

∫
Ω

mλ(z+)2,

and so µλ ≤ 1, which contradicts Lemma 5.17. Thus z ≤ 0 in Ω; i.e., η ≤ ϕ in Ω.
Interchanging the roles of η and ϕ, we obtain the reverse inequality. Thus η = ϕ
in Ω. �

Lemma 5.19. For any λ ∈ (0,Λ), there exist ε > 0, and a neighborhood V of
uλ in Xα, such that, for any σ ∈ (λ − ε, λ + ε), there is a unique Uλ(σ) ∈ V
such that T (σ, Uλ(σ)) = 0, with Uλ(λ) = uλ. Moreover, Uλ is a C1 mapping from
(λ− ε, λ+ ε) into Xα.

Proof. The lemma follows from lemmas 3.7 and 5.18, and from the implicit function
theorem, as stated in [21, Appendix B, Theorem B.1]. �

6. Proofs of main results

Lemma 6.1. (i) limσ→λ uσ(x) = uλ(x) for any λ ∈ (0,Λ) and x ∈ Ω.
(ii) limσ→Λ− uσ(x) = uΛ(x) for any x ∈ Ω.
(iii) limσ→0+ uσ(x) = u0(x) for any x ∈ Ω.

Proof. Let λ ∈ (0,Λ). As stated in Remark 1.1 (v), the map σ → uσ is strictly
increasing on [0,Λ], and uσ ∈ H1

0 (Ω) ∩ C(Ω) for any σ ∈ [0,Λ]. Then, for any
λ ∈ (0,Λ) and x ∈ Ω, there exist the lateral limits wλ(x) := limσ→λ− uσ(x),
and wλ(x) := limσ→λ+ uσ(x). Moreover, wλ and wλ belong to L∞(Ω) and satisfy
wλ ≤ uλ ≤ wλ in Ω.

Step 1: To see that wλ = uλ in Ω, consider an increasing sequence {σj}j∈N ⊂ [λ2 , λ)
such that limj→∞ σj = λ. By lemma 5.2, there exists a subsequence {σjk}k∈N, and

a weak solution w∗λ ∈ H1
0 (Ω) ∩ L∞(Ω) of problem (1.1), such that {∇uσjk }k∈N

converges weakly in L2(Ω,Rn) to ∇w∗λ and {uσjk }k∈N converges to w∗λ in L2(Ω).

Taking a subsequence if necessary, we can assume that {uσjk }k∈N converges to w∗λ
a.e. in Ω. Thus w∗λ = wλ in Ω, and so wλ is a weak solution in H1

0 (Ω) ∩ L∞(Ω) to
problem (1.1). Then, by the minimality property of uλ stated in Remark 1.1 (v),
we have uλ ≤ wλ in Ω and so, since also wλ ≤ uλ in Ω, we conclude that uλ = wλ
in Ω

Step 2: To see that uλ = wλ, consider a decreasing sequence {σj}j∈N ⊂ (λ,Λ]
such that limj→∞ σj = λ. By lemma 5.2 there exists a subsequence {σjk}k∈N and
a weak solution w∗λ ∈ H1

0 (Ω) ∩ L∞(Ω) of (1.1) such that {∇uσjk }k∈N converges

to ∇w∗λ weakly in L2(Ω,Rn) and {uσjk }k∈N converges to w∗λ in L2(Ω). Taking a

subsequence if necessary, we can assume also that {uσjk }k∈N converges to w∗λ a.e.

in Ω. Thus w∗λ = wλ and so wλ is a weak solution in H1
0 (Ω) ∩ L∞(Ω) of problem

(1.1). Clearly uλ ≤ wλ. We claim that uλ = wλ in Ω. By way of contradiction,
suppose uλ(x) < wλ(x) for some x ∈ Ω. As both are continuous functions, there
exist η > 0 and an nonempty open set E ⊂ Ω such that uλ+η ≤ wλ in E. Let ε and
Uλ be as given by Lemma 5.19. By Using Lemma 5.19 we obtain ε′ ∈ (0, ε) such
that Uλ(λ+ ε′)− uλ ≤ η

2 in Ω. Then uλ+ε′ ≥ wλ ≥ uλ + η > uλ + η
2 ≥ Uλ(λ+ ε′)

in E, which is impossible by the minimality property of uλ+ε′ given by Remark 1.1
(v). Then w∗λ = wλ in Ω, which ends the proof of (i).
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To prove (ii) proceed exactly as in step 1, taking there λ = Λ. To prove (iii),
proceed as in the first part of step 2, to obtain that w0 := limσ→0+ uσ is a weak
solution in H1

0 (Ω) ∩ L∞(Ω) of problem (1.1) for λ = 0. The uniqueness assertion
of Remark 1.1 (i) implies w0 = u0. �

Lemma 6.2. For any λ ∈ (0,Λ), limσ→λ uσ = uλ with convergence in Xα. Also,
limσ→0+ uσ = u0 and limσ→Λ− uσ = uΛ, in both cases with convergence in Xα.

Proof. Fix p > max{n, 2}. For 0 ≤ λ < σ < Λ, by Remark 1.1, 0 ≤ uλ ≤ uσ ≤ uΛ

in Ω, and so, in the weak sense,

−∆(uσ − uλ) = a(u−ασ − u−αλ ) + f(σ, ·, uσ)− f(λ, ·, uλ) (6.1)

≤ Fσ,λ := f(σ, ·, uσ)− f(λ, ·, uλ) in Ω. (6.2)

We claim that

lim
σ→λ+

‖Fσ,λ‖p = 0. (6.3)

Indeed, by (H3), f(λ, ·, uλ) ≥ 0 in Ω, and, so, taking into account (H3) and (H6),
0 ≤ Fσ,λ ≤ f(σ, ·, uσ) ≤ f(Λ, ·, ‖uΛ‖∞) ∈ L∞(Ω). By Lemma 6.1 and (H3),
limσ→λ+ F pσ,λ = 0 a.e. in Ω. Then (6.3) follows from the Lebesgue dominated
convergence theorem.

Since, for some positive constant c′, ϑα ≥ c′dΩ in Ω, and a(u−ασ − u−αλ ) +
f(σ, ·, uσ)− f(λ, ·, uλ) ≥ 0 in Ω; from (6.1) and the standard elliptic estimates, for
some positive constant c′′, independent of λ and σ, we obtain

‖ϑ−1
α (uσ − uλ)‖∞ ≤ (c′)−1‖d−1

Ω (uσ − uλ)‖∞ ≤ (c′)−1‖uσ − uλ‖C1(Ω)

≤ c′′‖a(u−ασ − u−αλ ) + f(σ, ·, uσ)− f(λ, ·, uλ)‖p
≤ c′′‖Fσ,λ‖p.

Thus

lim
σ→λ+

‖ϑ−1
α (uσ − uλ)‖∞ = 0. (6.4)

Similarly, for 0 < σ < λ ≤ Λ, we have

−∆(uλ − uσ) = a(u−αλ − u−ασ ) + f(λ, ·, uσ)− f(σ, ·, uσ) ≤ −Fσ,λ in Ω,

with 0 ≤ −Fσ,λ ≤ f(λ, ·, uλ); and the same arguments used to prove (6.4) apply to
obtain that limσ→λ− ‖Fσ,λ‖ = 0, and that

lim
σ→λ−

‖ϑ−1
α (uλ − uσ)‖∞ = 0. (6.5)

At this point, to prove the lemma, it only remains to prove the following three
facts:

lim
σ→λ
‖uσ − uλ‖H1

0 (Ω) = 0, lim
σ→0+

‖uσ − u0‖H1
0 (Ω) = 0, lim

σ→Λ−
‖uσ − uΛ‖H1

0 (Ω) = 0.

Since, for σ and λ in [0,Λ], uσ − uλ satisfies, in weak sense,

−∆(uσ − uλ) = a(u−ασ − u−αλ ) + f(σ, ·, uσ)− f(λ, ·, uλ) in Ω,

the Hölder and the Poincaré inequalities give

‖uσ − uλ‖2H1
0 (Ω) =

∫
Ω

|∇(uσ − uλ)|2 ≤
∫

Ω

(uσ − uλ)Fσ,λ

≤ c‖uσ − uλ‖H1
0 (Ω)‖Fσ,λ‖2
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where c is a constant independent of both, σ and λ. Since

lim
σ→λ
‖Fσ,λ‖2 = 0 if λ ∈ (0,Λ), lim

σ→0+
‖Fσ,0‖2 = 0, and lim

σ→Λ−
‖Fσ,Λ‖2 = 0,

the lemma follows. �

The next two propositions address uniformity properties of the family {uλ}λ∈[0,Λ].

Proposition 6.3. There exists δ > 0 such that, for each λ ∈ [0,Λ], uλ(x) = ‖uλ‖∞
implies dΩ(x) ≥ δ.

Proof. By Remark 1.1 (v), for each λ ∈ [0,Λ], u0 ≤ uλ ≤ uΛ; since these functions
belong to Xα, there exists c > 0, independent of λ, such that uλ ≤ cϑα in Ω. For
any x ∈ Ω such that uλ(x) = ‖uλ‖∞, we have uλ(x) ≥ ‖u0‖∞. Taking ω0 large
enough in the definition of ϑα, we can assume that the function ϑα defined by
ϑα = ϑα ◦ dΩ is strictly increasing on (0, 1

2diam(Ω)]. Now, ϑα(dΩ(x)) = ϑα(x) ≥
1
cuλ(x) ≥ 1

c‖u0‖∞; which gives dΩ(x) ≥ ϑ−1

α ( 1
c‖u0‖∞). �

Proposition 6.4. The family {uλ}λ∈[0,Λ] is equicontinuous on Ω.

Proof. Let ε > 0. Since uΛ ∈ C(Ω) and uΛ = 0 on ∂Ω, there exists δ1 > 0 such that
uΛ ≤ 1

4ε in Aδ1 =: {x ∈ Ω : dΩ(x) ≤ δ1}. For λ ∈ [0,Λ] we have 0 ≤ u0 ≤ uλ ≤ uΛ

in Ω, and so 0 ≤ uλ ≤ 1
4ε in Aδ1 . Also, since u0 ∈ Dα, au−αλ ≤ ‖a‖∞u−α0 ≤

c0ϑ
−α
α ≤ c1 in Ωδ1/2, with c0 and c1 constants independent of λ. By (H6) and (H3),

0 ≤ f(λ, ·, uλ) ≤ f(Λ, ·, ‖uΛ‖∞) ∈ C(Ω) ⊂ L∞(Ω). Also, ‖uλ‖L∞(Ω) ≤ ‖uΛ‖L∞(Ω).

Let Ω′ be a C1,1 subdomain of Ω such that Ωδ1 ⊂ Ω′ ⊂ Ω′ ⊂ Ω 1
2 δ1

; by the

inner elliptic estimates in [27, Theorem 8.24], for any p ∈ [1,∞), there exists a
positive constant c2, independent of λ, such that ‖uλ‖W 2,p(Ω′′) ≤ c2. Take p > n
to get that, by [27, Theorem 7.26], ‖uλ‖C1(Ω′) ≤ c3 with c3 independent of λ. Let

δ := min{δ1, 1
2c
−1
3 ε}. If x, y ∈ Aδ1 then |uλ(x) − uλ(y)| ≤ 1

2ε. If x, y ∈ Ωδ1 and

|x − y| < δ then |uλ(x) − uλ(y)| ≤ ‖uλ‖C1(Ω′)|x − y| ≤ c3δ ≤ 1
2ε. If x ∈ Aδ1 ,

y ∈ Ωδ1 and |x− y| < δ, then there exists z in the linear segment with endpoints x
and y, such that dΩ(z) = δ1. Now, x and z belong to Aδ1 , z and y belong to Ωδ1 ,
|x−z| ≤ δ, and |z−y| ≤ δ. Thus |uλ(x)−uλ(y)| ≤ |uλ(x)−uλ(z)|+|uλ(z)−uλ(y)| ≤
1
2ε+ 1

2ε = ε. �

Proof of Theorem 1.3. Since uλ ∈ C(Ω) for any λ ∈ [0,Λ], and since the inclusion
i : Xα → L∞(Ω) is continuous, the assertion (i) of the theorem follows from Lemma
6.2. To see (ii) and (iii), consider an arbitrary λ ∈ (0,Λ), and let ε > 0, V , and Uλ
be as in Lemma 5.19. By Lemma 6.2 there exists ε′ ∈ (0, ε) such that uσ ∈ V for any
σ ∈ (λ− ε′, λ+ ε′). Thus, by Lemma 5.19, uσ = Uλ(σ) for any σ ∈ (λ− ε′, λ+ ε′).
Since Uλ : (λ − ε, λ + ε) → Xα is a C1 map, then σ → uσ is a C1 map from
(λ− ε, λ+ ε) into Xα, and this holds for any λ ∈ (0,Λ). Then σ → uσ is a C1 map
from (0,Λ) into Xα. Since the inclusions i : Xα → L∞(Ω) and j : Xα → H1

0 (Ω)
are linear and continuous, and taking into account that uσ ∈ C(Ω) for any σ, the
theorem follows. �

Proof of Theorem 1.4. By way of contradiction, suppose that for λ = Λ there exist
at least two weak solutions of problem (1.1). Then, taking into account Lemmas
3.7 and 5.18, Lemma 5.19 gives a nonempty interval I := (Λ − ε,Λ + ε), and a
differentiable function UΛ : I → Xα, such that (λ,UΛ(λ)) ∈ R×Dα for any λ ∈ I
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and T (λ,UΛ(λ)) = 0 for any λ ∈ I, in contradiction with the fact that no positive
weak solution in H1

0 (Ω) ∩ L∞(Ω) of problem (1.1) exists if λ > Λ. �
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[39] N. S. Papageorgiou, V. D. Rădulescu; Combined effects of singular and sublinear nonlinear-
ities in some elliptic problems, Nonlinear Anal., 109 (2014), 236–244.
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