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Ck INVARIANT MANIFOLDS FOR INFINITE DELAY

LUIS BARREIRA, CLAUDIA VALLS

Abstract. For a non-autonomous delay difference equation with infinite de-
lay, we construct smooth stable and unstable invariant manifolds for any suffi-

ciently small perturbation of an exponential dichotomy. We consider a general
class of norms on the phase space satisfying an axiom considered by Matsunaga

and Murakami that goes back to earlier work by Hale and Kato for continuous

time. In addition, we show that the invariant manifolds are as regular as the
perturbation. Finally, we consider briefly the case of center manifolds and we

formulate corresponding results.

1. Introduction

We consider the non-autonomous delay difference equation

x(m+ 1) = Lmxm + fm(xm), for m ∈ N, (1.1)

with infinite delay on a Banach space. For the corresponding dynamics, we con-
struct stable and unstable invariant manifolds for any sufficiently small perturbation
(either Lipschitz or Ck with k ≥ 1) of an exponential dichotomy. We also show
that the invariant manifolds are as regular as the perturbation. We note that in
a certain sense the only delay difference equations are those with infinite delay,
since otherwise one can always bring them to a standard recurrence form in some
higher-dimensional space. An important aspect is that in the case of infinite delay
it is crucial to choose from the beginning an appropriate norm on the infinite-
dimensional phase space (on a finite-dimensional space all norms are equivalent).
We consider a class of norms satisfying an axiom considered by Matsunaga and
Murakami [7] that is analogous to the axiom proposed by Hale and Kato [5] in the
case of continuous time; that is, for delay differential equations with infinite delay.

We consider both Lipschitz and Ck perturbations. We start by constructing
Lipschitz stable and unstable invariant manifolds for any sufficiently small Lips-
chitz perturbation of an exponential dichotomy (see Theorems 3.5 and 3.6). More
precisely, we show that:

(1) the set of initial conditions leading to a bounded forward global solution is
a graph of a Lipschitz function over the stable bundle, which is precisely
the stable manifold;

(2) a similar statement holds for the bounded backward global solutions, lead-
ing to the construction of the unstable manifold.
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This part of our paper can be considered to be a non-autonomous version of work in
[7]. We then construct smooth stable and unstable invariant manifolds for any suf-
ficiently small smooth perturbation of an exponential dichotomy (see Theorems 4.1
and 4.3 in the case of C1 perturbations and see Section 4.2 in the case of higher
smoothness). In view of the uniqueness of the Lipschitz invariant manifolds con-
structed earlier it remains to show that the function of which the invariant manifold
is a graph has the required regularity properties.

We also consider briefly the case of center manifolds, for any sufficiently small
perturbation of an exponential trichotomy. The arguments are simple modifications
of those for the stable and unstable manifolds and so we omit them. We note that
center manifold theorems are powerful tools in the analysis of the behavior of a
dynamical system. We refer the reader to [3] for details and references. A detailed
exposition in the case of autonomous equations is given in [9], adapting results
in [11]. See also [8, 10] for the case of differential equations on infinite-dimensional
spaces.

In a certain sense, the arguments in the proofs can be considered classical, al-
though the consideration of delay difference equations with infinite delay and at the
same time in a class of spaces determined by a certain axiom (see Section 2), require
many modifications. We also made a strong effort to reduce all the work to first
principles. In particular, we showed that the stable set, that is, the set of all initial
conditions (n, φ) leading to bounded solutions of equation (1.1) (see Section 3 for
details) is an invariant manifold, by first showing that it leads naturally to a fixed
point problem (while in many other works the fixed point problem is considered
from the beginning without further explanations).

2. Preliminaries

For simplicity, we denote by (−∞, `] and [`,+∞), respectively, the sets (−∞, `]∩
Z and [`,+∞) ∩ Z. Let X = (X, | · |) be a Banach space. Given a sequence
x : (−∞,m]→ X and an integer ` ≤ m, we define a new sequence x` : Z−0 → X by
x`(j) = x(` + j) for j ∈ Z−0 . Following the approach in [7], we consider a Banach
space B = (B, ‖ · ‖) of sequences φ : Z−0 → X satisfying the axiom:

(A1) there exist a constant N0 > 0 and sequences K,M : Z+
0 → R+

0 with the
property that if x : Z → X is a sequence with x0 ∈ B, then for all n ∈ Z+

0

we have xn ∈ B and

N0|x(n)| ≤ ‖xn‖ ≤ K(n) sup
0≤l≤n

|x(l)|+M(n)‖x0‖.

An example of such a space B is the following. Given γ > 0, let Xγ be the set of
all sequences φ : Z−0 → X such that

‖φ‖γ := sup
j∈N

(
|φ(j)|eγj

)
< +∞.

Given linear operators Lm : B → X, for m ∈ Z, we consider the linear delay
equation

x(m+ 1) = Lmxm. (2.1)

We observe that given n ∈ N and φ ∈ B, there exists a unique sequence x =
x(·, n, φ) : Z → X with xn = φ satisfying (2.1) for all m ≥ n. We define linear
operators T (m, `) : B → B, for m ≥ n, by

T (m,n)φ = xm(·, n, φ), φ ∈ B.
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Clearly, T (m,m) = Id and T (m, l)T (l, n) = T (m,n) for m ≥ l ≥ n.
We say that equation (2.1) has an exponential dichotomy if:

(1) there exist projections Pn : B → B, for n ∈ Z, such that for m ≥ n we have

PmT (m,n) = T (m,n)Pn;

(2) writing Qn = Id−Pn, the operator T (m,n)Qn is invertible from ImQn
onto ImQm for each m ≥ n;

(3) there exist constants λ,N > 0 such that for m ≥ n we have

‖T (m,n)Pn‖ ≤ Ne−λ(m−n), ‖(T (m,n)Qn)−1‖ ≤ Ne−λ(m−n). (2.2)

For each m ∈ Z we then define

Em = ImPm and Fm = ImQm.

Now we consider perturbations given by continuous maps fm : B → X with
fm(0) = 0 for m ∈ Z. The delay equation

x(m+ 1) = Lmxm + fm(xm) (2.3)

determines the dynamics

xm = T (m,n)φ+

m−1∑
l=n

T (m, l + 1)(Γfl(xl)) (2.4)

for each m ≥ n, where Γ(0) = Id and Γ(l) = 0 for l < 0; that is,

(Γfl(xl))(j) = Γ(j)fl(xl) =

{
fl(xl) if j = 0,

0 if j < 0.

We shall write xm = vm(·, n, φ) for m ∈ Z, with vm given by (2.4) for m ≥ n and
by φm−n for m ≤ n. It follows from (A1) that Γfl(xl) ∈ B and

‖Γfl(xl)‖ ≤ K(1)|fl(xl)|. (2.5)

3. Lipschitz manifolds

In this section we construct Lipschitz stable and unstable invariant manifolds
for equation (2.3).

3.1. Stable manifolds. We first construct Lipschitz stable invariant manifolds.
The stable set V s of equation (2.3) is the set of all (n, φ) ∈ Z × B for which the
map m 7→ vm(·, n, φ) is bounded on [n,+∞).

Proposition 3.1. If (n, φ) ∈ V s, then (m, vm(·, n, φ)) ∈ V s for all m ≥ n.

Proof. It suffices to show that

v(m, k, vk(·, n, φ)) = v(m,n, φ) (3.1)

for all m ≥ k ≥ n. Indeed, since v(·, n, φ) is bounded on [n,+∞), this implies that
v(·, k, vk(m,n, φ)) is bounded on [k,+∞) and so (k, vk(m,n, φ)) ∈ V s for all k ≥ n.

To establish identity (3.1) we note that applying T (m,n) to (2.4) with m = k,
that is,

xk = T (k, n)φ+

k−1∑
l=n

T (k, l + 1)(Γfl(xl)),
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we obtain

T (m, k)xk +

m−1∑
l=k

T (m, l + 1)(Γfl(xl))

= T (m,n)φ+

m−1∑
l=n

T (m, l + 1)(Γfl(xl)) = xm.

(3.2)

Since (2.4) determines the solution recursively, it follows from (3.2) that (3.1) holds.
�

The following result gives an alternative characterization of the stable set when
we have an exponential dichotomy.

Proposition 3.2. Assume that equation (2.1) has an exponential dichotomy. Then
the stable set is composed of the pairs (n, φ) ∈ Z×B for which there exists a sequence
x : Z→ X bounded on N such that xn = φ and

xm = T (m,n)Pnφ+

m−1∑
l=n

T (m, l + 1)Pl+1(Γfl(xl))

−
+∞∑
l=m

T (m, l + 1)Ql+1(Γfl(xl))

(3.3)

for every m ≥ n (with the first sum vanishing for m = n).

Proof. First we assume that x is a solution of equation (2.3) bounded on N with
xn = φ. Then

Pkxk = T (k, j)Pjxj +

k−1∑
l=j

T (k, l + 1)Pl+1(Γfl(xl)),

Qkxk = T (k, j)Qjxj +

k−1∑
l=j

T (k, l + 1)Ql+1(Γfl(xl))

(3.4)

for k ≥ j ≥ n. Taking j = m, we write the second identity in the form

Qmxm = T (m, k)Qkxk −
k−1∑
l=m

T (k, l + 1)Ql+1(Γfl(xl)),

where T (m, k) = (T (k,m)Qm)−1. By the second inequality in (2.2), since the
sequence xk is bounded on N, we obtain

‖T (m, k)Qkxk‖ ≤ Ne−λ(k−m)‖xk‖ → 0

when k → +∞. Hence,

Qmxm = −
+∞∑
l=m

T (m, l + 1)Ql+1(Γfl(xl)),

which added to the first identity in (3.4) with k = m and j = n yields (3.3).
Now we assume that property (3.3) holds for some sequence x bounded on N

with xn = φ. Taking m = n we obtain

xn = Pnxn −
+∞∑
l=n

T (n, l + 1)Ql+1(Γfl(xl))
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and hence,

Qnxn = −
+∞∑
l=n

T (n, l + 1)Ql+1(Γfl(xl)).

Therefore,

T (m,n)xn +

m−1∑
l=n

T (m, l + 1)(Γfl(xl))

= T (m,n)Pnxn +

m−1∑
l=n

T (m, l + 1)Pl+1(Γfl(xl))

+

m−1∑
l=n

T (m, l + 1)Ql+1(Γfl(xl)) + T (m,n)Qnxn

= xm +

+∞∑
l=m

T (m, l + 1)Ql+1(Γfl(xl)) +

m−1∑
l=n

T (m, l + 1)Ql+1(Γfl(xl))

− T (m,n)

+∞∑
l=n

T (n, l + 1)Ql+1(Γfl(xl)) = xm

and so x is a solution of equation (2.3). �

We use Proposition 3.2 to show that when equation (2.1) has an exponential
dichotomy and the perturbations are Lipschitz, all bounded solutions of equation
(2.3) decay exponentially.

Proposition 3.3. Assume that equation (2.1) has an exponential dichotomy and
that there exists δ > 0 such that

|fm(u)− fm(v)| ≤ δ‖u− v‖ (3.5)

for every m ∈ Z and u, v ∈ B. Then each bounded solution x of equation (2.3)
bounded on N with vn = φ satisfies

‖vm‖ ≤ 2Ne−(λ−2δNK(1))(m−n)‖Pnφ‖ (3.6)

for every m ≥ n.

Proof. By Proposition 3.2, each solution x of equation (2.3) bounded on N with
vn = φ satisfies (3.3). Using (3.5) and the fact that fn(0) = 0, it follows from (2.5)
and (3.3) that

‖xm‖ ≤ Ne−λ(m−n)‖Pnφ‖+ δNK(1)

m−1∑
l=n

e−λ(m−l−1)‖xl‖

+ δNK(1)

+∞∑
l=m

eλ(m−l−1)‖xl‖.

(3.7)

Before continuing, we formulate an auxiliary result.

Lemma 3.4 (see [1, Lemma 2.5]). Let (v(m))m≥n be a bounded sequence in R+
0

such that

v(m) ≤ βe−γ(m−n) + δD

m−1∑
l=n

e−γ(m−l−1)v(l) + δD

+∞∑
l=m

e−γ(l+1−m)v(l)
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for m ≥ n. Then, for any sufficiently small δ, we have

v(m) ≤ 2βe−(γ−2δD)(m−n) for m ≥ n.

Proof. Consider a sequence u(m) such that for m ≥ n

u(m) = βe−γ(m−n) + δD

m−1∑
l=n

e−γ(m−l−1)u(l) + δD

+∞∑
l=m

e−γ(l+1−m)u(l) (3.8)

for m ≥ n. One can verify in a straightforward manner that it satisfies the recur-
rence

u(m+ 1) = (eγ + e−γ)u(m)− (1 + δ(eγ + e−γ))u(m− 1). (3.9)

In order that the solution u(m) of recurrence (3.9) is bounded we must have u(m) =
u(n)e−γ̃(m−n), where

γ̃ = − log
(

cosh γ −
√

cosh2 γ − 2(1 + δD sinh γ)
)
≥ γ − 2δD.

Note that for δ sufficiently small we have e−γ̃ ≤ e−(γ−2δD) < 1.
Taking m = n in (3.8) we obtain

u(n) = β + δDe−γu(n)

+∞∑
l=n

e−(γ+γ̃)(l−n)

= β + u(n)
δDe−γ

1− e−(γ+γ̃)
,

which yields

u(n) =
β(eγ+γ̃ − 1)

eγ+γ̃ − 1− δDeγ̃
≤ 2β

for δ sufficiently small. Hence,

u(m) ≤ 2βe−γ̃(m−n) ≤ 2βe−(γ−2δD)(m−n).

Now let w(n) = v(m)− u(m) for m ≥ n. Then

w(n) ≤ δD
m−1∑
l=n

e−γ(m−l−1)w(l) + δD

+∞∑
l=m

e−γ(l+1−m)w(l)

Finally, taking w = supm≥n w(m) we obtain

w ≤ δDw sup
m≥n

m−1∑
l=n

e−γ(m−l−1) + δDw sup
m≥n

+∞∑
l=m

e−γ(l+1−m) ≤ δDw1 + e−γ

1− e−γ

and so w ≤ 0 for δ sufficiently small. Thus, v(m) ≤ u(m) for m ≥ n, which yields
the desired result. �

In view of (3.7), applying Lemma 3.4 with

v(m) = ‖xm‖, β = N‖Pnφ‖, γ = λ and D = NK(1)

we obtain inequality (3.6). �

Now we formulate the Lipschitz stable manifold theorem. Assume that equation
(2.1) has an exponential dichotomy. Let L be the set of all maps

z : {(n, a) ∈ Z× B : a ∈ En} → B (3.10)

such that for each n ∈ Z:
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(1) z(n, 0) = 0 and z(n,En) ⊂ Fn;
(2) for a, ā ∈ En we have

‖z(n, a)− z(n, ā)‖ ≤ ‖a− ā‖.

For each function z ∈ L we consider its graph

graph z =
{

(n, a+ z(n, a)) : (n, a) ∈ Z× En
}
⊂ Z× B.

Theorem 3.5. Assume that (2.1) has an exponential dichotomy and that there
exists δ > 0 such that (3.5) holds for every n ∈ Z and u, v ∈ B. Then, for any
sufficiently small δ, there exists a function z ∈ L such that V s = graph z. Moreover,

‖vm(·, n, a+z(n, a))−vm(·, n, ā+z(n, ā))‖ ≤ 2Ne−(λ−2δNK(1))(m−n)‖a−ā‖ (3.11)

for every m,n ∈ Z with m ≥ n and a, ā ∈ En.

Proof. Take n ∈ Z and a ∈ En. We consider the set La of all sequences x : Z→ X
with Pnxn = a such that

‖xm‖ ≤ 3Ne−(λ−2δNK(1))(m−n)‖a‖

for all m ≥ n. One can easily verify that La is a complete metric space when
equipped with the norm

|x|a := sup
m≥n

(
‖xm‖e(λ−2δNK(1))(m−n)).

We define an operator J on La by

(Jx)m = T (m,n)a+

m−1∑
l=n

T (m, l + 1)Pl+1(Γfl(xl))

−
+∞∑
l=m

T (m, l + 1)Ql+1(Γfl(xl))

for x ∈ La and m ≥ n. Note that

(Jx)n = a−
+∞∑
l=n

T (n, l + 1)Ql+1(Γfl(xl))

and so Pn(Jx)n = a.
We want to show that J(La) ⊂ La and that J is a contraction. For each m ≥ n

and x, y ∈ La, by (3.5) we have

‖(Jx)m − (Jy)m‖ ≤ δNK(1)

m−1∑
l=n

e−λ(m−l−1)‖xl − yl‖

+ δNK(1)

+∞∑
l=m

eλ(m−l−1)‖xl − wl‖

≤ δNK(1)

m−1∑
l=n

e−λ(m−l−1)e−(λ−2δNK(1))(l−n)|x− y|a

+ δNK(1)

+∞∑
l=m

eλ(m−l−1)e−(λ−2δNK(1))(l−n)|x− y|a
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≤ δNK(1)e−λ(m−1−n)
m−1∑
l=n

e2δNK(1)(l−n)|x− y|a

+ δNK(1)eλ(m−n)
+∞∑
l=m

e−2(λ−δNK(1))(l−n)|x− y|a

≤ δNK(1)eλ

e2δNK(1) − 1
e−(λ−2δNK(1))(m−n)|x− y|a

+
δNK(1)

1− e−2(λ−δNK(1))
e−(λ−2δNK(1))(m−n)|x− y|a

≤
(1

2
+

δNK(1)

1− e−2(λ−δNK(1))

)
e−(λ−2δNK(1))(m−n)|x− y|a

(since x/(e2x − 1) < 1/2), and so

|Jx− Jy|a ≤ θ|x− y|a, where θ =
1

2
+

δNK(1)

1− e−2(λ−δNK(1))
.

Taking δ sufficiently small so that θ < 2/3, the operator becomes a contraction.
Moreover, we have |J0|a ≤ N‖a‖ and hence,

|Jx|a ≤ |J0|a + |Jx− J0|a ≤ N‖a‖+ θ|x|a

≤ N‖a‖+
2

3
· 3N‖a‖ = 3N‖a‖.

This shows that J(La) ⊂ La and so there exists a unique x = xn,a ∈ La such that
Jx = x.

Now we use the function xn,a to construct the stable manifold. Taking m = n
in (3.3) we obtain

Qnxn = −
+∞∑
l=n

T (n, l + 1)Ql+1(Γfl(xl)).

We define a function z as in (3.10) by

z(n, a) := Qnx
n,a
n = −

+∞∑
l=n

T (n, l + 1)Ql+1(Γfl(xl)). (3.12)

Note that by construction

xn,a = v(·, n, a+ z(n, a)). (3.13)

Now we show that z ∈ L. Taking φ ∈ B with a = Pnφ = 0, the function x = 0
satisfies (3.3) (recall that fm(0) = 0 for m ∈ Z) and so z(n, 0) = 0. Moreover, it
follows from Lemma 3.4 with

v(m) = ‖xn,am − xn,ām ‖, β = N‖a− ā‖, γ = λ, D = NK(1)

that

‖xn,am − xn,ām ‖ ≤ 2Ne−(λ−2δNK(1))(m−n)‖a− ā‖.
This establishes (3.11). On the other hand, it follows from (3.12) that

‖z(n, a)− z(n, ā)‖ ≤ δNK(1)

+∞∑
l=n

eλ(n−l−1)‖xn,al − xn,āl ‖
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≤ 2δN2K(1)

+∞∑
l=n

e−2(λ−δNK(1))(l−n)‖a− ā‖

≤ 2δN2K(1)

1− e−2(λ−δNK(1))
‖a− ā‖.

Taking δ sufficiently small we have z ∈ L.
Finally, we show that graph z = V s. First observe that given (n, φ) ∈ graph z, we

have φ = a+ z(n, a), where a = Pnφ. Hence, by (3.12) we obtain xn,a = x(·, n, φ)
and since (xn,am )m≥0 is bounded, it follows from (A1) that (n, φ) ∈ V s. Conversely,
if (n, φ) ∈ V s, then by Propositions 3.1 and 3.2 there exists a sequence x : Z → X
bounded on N with xn = φ satisfying (3.3). Moreover, in view of the uniqueness of
solutions we have x = xn,a, where a = Pnφ. By (3.12) and (3.13) we obtain

z(n, a) = Qnxn = Qnφ

and so

(n, φ) = (n, Pnφ+Qnφ) = (n, a+ z(n, a)) ∈ graph z.

This completes the proof of the theorem. �

3.2. Unstable manifolds. The unstable set V u of equation (2.3) is the set of all
(n, φ) ∈ Z× B for which:

(1) v(·, n, φ) satisfies (2.3) for all m ∈ Z;
(2) the map m 7→ vm(·, n, φ) is bounded on (−∞, n].

Note that the first condition corresponds to require a certain compatibility from
the entries of φ since vm = φm−n for all m ≤ n. It can be shown as in the proof of
Proposition 3.1 that if (n, φ) ∈ V u, then (m, vm(·, n, φ)) ∈ V k for all m ≤ n.

Now we formulate the Lipschitz unstable manifold theorem. Assume that equa-
tion (2.1) has an exponential dichotomy. Let M be the set of all maps

w : {(n, b) ∈ Z× B : b ∈ Fn} → B

such that for each n ∈ Z:

(1) w(n, 0) = 0 and w(n, Fn) ⊂ En;
(2) for b, b̄ ∈ Fn we have

‖w(n, b)− w(n, b̄)‖ ≤ ‖b− b̄‖.

For each function w ∈M we consider its graph

graphw = {(n,w(n, b) + b) : (n, b) ∈ Z× Fn} ⊂ Z× B.

Theorem 3.6. Assume that the equation (2.1) has an exponential dichotomy and
that there exists δ > 0 such that (3.5) holds for every m ∈ Z and u, v ∈ B. Then,
for any sufficiently small δ, there exists a function w ∈M such that V u = graphw.
Moreover,

‖vm(·, n, w(n, b) + b)− vm(·, n, w(n, b̄) + b̄)‖ ≤ 2Ne−(λ−2δNK(1))(n−m)‖b− b̄‖

for every m,n ∈ Z with m ≤ n and b, b̄ ∈ Fn.

The proof of Theorem 3.6 is entirely analogous to the proof of Theorem 3.5 and
so we omit it.



10 L. BARREIRA, C. VALLS EJDE-2019/50

4. C1 manifolds

In this section we turn to the construction of smooth stable and unstable invari-
ant manifolds for equation (2.3).

4.1. Stable manifolds. Now we assume that f is of class C1, with fm(0) = 0 and
d0fm = 0 for all m ∈ Z. The stable manifold is obtained as a graph of a function of
class C1 in the second variable. In Theorem 3.5 we already showed that the stable
set is a graph of a Lipschitz function z in the second variable. Thus, it remains to
verify (with the current assumptions) that this function is of class C1 in the second
variable.

Let L1 be the set of all functions z ∈ L of class C1 in the second variable such
that ∂z(n, 0) = 0 for n ∈ Z.

Theorem 4.1. Assume that equation (2.1) has an exponential dichotomy and that
there exists δ > 0 such that

‖dvfm‖ ≤ δ (4.1)

for every m ∈ Z and v ∈ B. Then, for any sufficiently small δ, the function z ∈ L
given by Theorem 3.5 is in L1.

Proof. We first recall a result from [6] (see [4]).

Lemma 4.2. Given Banach spaces Y and Z, let g : A→ Z be a Lipschitz function
on some open ball A ⊂ Y . Then g is of class C1 if and only if for each y ∈ A
we have

|g(v + h)− g(v)− g(u+ h) + g(u)| = o(|h|),
when (v, h)→ (u, 0).

Let z ∈ L be the function given by Theorem 3.5. The map En 3 a 7→ z(n, a) is
of class C1 if and only if the same happens with

a 7→ a+ z(n, a) = vn(·, n, a+ z(n, a)).

Hence, in view of Lemma 4.2 and (A1), writing

yam = vm(·, n, a+ z(n, a))

it suffices to show that

‖yb+hm − ybm − ya+h
m + yam‖ = o(‖h‖)

when (b, h)→ (a, 0) for each m ∈ Z and a ∈ En. We define

wl(a, b, h) = yb+hl − ybl − ya+h
l + yal .

By Taylor’s formula we have

fl(y
a+h
l ) = fl(y

a
l + (ya+h

l − yal ))

= fl(y
a
l ) + dyal fl(y

a+h
l − yal ) + ∆(l, a, h),

where

∆(l, a, h) =

∫ 1

0

dyal +t(ya+h
l −yal )fl(y

a+h
l − yal ) dt− dyal fl(y

a+h
l − yal )

=

∫ 1

0

[
dyal +t(ya+h

l −yal )fl − dyal fl
]
(ya+h
l − yal ) dt.
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Therefore,

G(l) : = fl(y
b+h
l )− fl(ybl )− fl(ya+h

l ) + fl(y
a
l )

= fl(y
b+h
l )− fl(ybl )− dyal fl(y

a+h
l − yal )−∆(l, a, h)

= fl(y
b+h
l )− fl(ybl ) + dyal fl(wl(a, b, h)− yb+hl + ybl )−∆(l, a, h)

= dybl fl(y
b+h
l − ybl ) + ∆(l, b, h) + dyal flwl(a, b, h)

− dyal fl(y
b+h
l + ybl )−∆(l, a, h)

= dybl flwl(a, b, h) + (dybl fl − dyal fl)(y
b+h
l − ybl ) + ∆(l, b, h)−∆(l, a, h).

On the other hand, since

yam = T (m,n)a+

m−1∑
l=n

T (m, l + 1)Pl+1(Γfl(xl))−
+∞∑
l=m

T (m, l + 1)Ql+1(Γfl(xl))

for m ≥ n, we obtain

wm(a, b, h) =

m−1∑
l=n

T (m, l + 1)Pl+1(ΓG(l))−
+∞∑
l=m

T (m, l + 1)Ql+1(ΓG(l))

=

m−1∑
l=n

T (m, l + 1)Pl+1(Γdyal flwl(a, b, h))

+

m−1∑
l=n

T (m, l + 1)Pl+1(Γ(dybl fl − dyal fl)(y
b+h
l − ybl ))

+

m−1∑
l=n

T (m, l + 1)Pl+1(Γ(∆(l, b, h)−∆(l, a, h)))

−
+∞∑
l=m

T (m, l + 1)Ql+1(Γdyal flwl(a, b, h))

−
+∞∑
l=m

T (m, l + 1)Ql+1(Γ(dybl fl − dyal fl)(y
b+h
l − ybl ))

−
+∞∑
l=m

T (m, l + 1)Ql+1(Γ(∆(l, b, h)−∆(l, a, h))).

(4.2)

Using the inequalities in (2.2) and (4.1) we obtain

m−1∑
l=n

‖T (m, l + 1)Pl+1(Γdyal flwl(a, b, h))‖

≤ δNK(1)

m−1∑
l=n

e−λ(m−l−1) sup
l≥n
‖wl(a, b, h)‖

≤ δNK(1)

1− e−λ
sup
m≥n
‖wm(a, b, h)‖
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and

+∞∑
l=m

‖T (m, l + 1)Ql+1(Γdyal flwl(a, b, h))‖ ≤ δNK(1)

1− e−λ
eλ sup

m≥n
‖wm(a, b, h)‖.

Moreover, by Theorem 3.5 we have

‖yb+hl − ybl ‖ ≤ 2N‖h‖e−(λ−2δNK(1))(m−n) (4.3)

for m ≥ n, and so

m−1∑
l=n

‖T (m, l + 1)Pl+1(Γ(dybl fl − dyal fl)(y
b+h
l − ybl ))‖

≤ 2N2K(1)‖h‖
m−1∑
l=n

e−λ(m−l−1)e−(λ−2δNK(1))(l−n) sup
l≥n
‖dybl fl − dyal fl‖

≤ 2N2K(1)‖h‖eλe−(λ−2δNK(1))(m−n) sup
l≥n
‖dybl fl − dyal fl‖

m−1∑
l=n

e2δNK(1)(l−m)

≤ N1‖h‖ sup
l≥n
‖dybl fl − dyal fl‖,

where N1 is some positive constant. Similarly,

+∞∑
l=m

‖T (m, l + 1)Ql+1(Γ(dybl fl − dyal fl)(y
b+h
l − ybl ))‖

≤ N2‖h‖ sup
l≥n
‖dybl fl − dyal fl‖,

where N2 is some positive constant. Finally, letting

S(a, b, h) = sup
m≥n
‖
∫ 1

0

(
dyam+t(ya+h

m −yam)fm − dyamfm
)
dt‖

+ sup
m≥n
‖
∫ 1

0

(
dybm+t(yb+h

m −ybm)fm − dybmfm
)
dt‖,

it follows from (4.3) that

m−1∑
l=n

‖T (m, l + 1)Pl+1(Γ(∆(l, b, h)−∆(l, a, h)))‖

≤ 2N2K(1)‖h‖S(a, b, h)

m−1∑
l=n

e−λ(m−l−1)e−(λ−2δNK(1))(l−n)

≤ N3‖h‖S(a, b, h)e−(λ−2δNK(1))(m−n)

≤ N3‖h‖S(a, b, h)

and

+∞∑
l=m

‖T (m, l + 1)Ql+1(Γ(∆(l, b, h)−∆(l, a, h)))‖ ≤ N4‖h‖S(a, b, h)
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for some positive constants N3 and N4. Therefore, by (4.2), for δ sufficiently small
we obtain

sup
m≥n
‖wm(a, b, h)‖ ≤ N5‖h‖

(
sup
m≥n
‖dybmfm − dyamfm‖+ S(a, b, h)

)
, (4.4)

where N5 is some positive constant. It follows from the continuity of the maps fm,
(4.3) and (4.4) that

lim
(b,a)→(a,0)

1

‖h‖
sup
m≥n
‖wm(a, b, h)‖ = 0.

Hence, by Lemma 3.4, each map En 3 a 7→ z(n, a) is of class C1. Moreover, it
follows from (3.12) that ∂z(n, 0) = 0 and so z ∈ L1. �

We have a corresponding result for the unstable manifold. Let M1 be the set
of all functions w ∈ M of class C1 in the second variable such that ∂w(n, 0) = 0
for n ∈ Z.

Theorem 4.3. Assume that equation (2.1) has an exponential dichotomy and that
there exists δ > 0 such that (4.1) holds for every m ∈ Z and v ∈ B. Then, for any
sufficiently small δ, the function w ∈M given by Theorem 3.6 is in M1.

The proof of Theorem 4.3 is entirely analogous to the proof of Theorem 4.1.

4.2. Higher smoothness. In this section we formulate Ck stable and unstable
manifold theorems, for k ∈ N, following closely the approaches in the former sec-
tions. The results can be obtained in a more or less straightforward manner using
induction on k together with the Faà di Bruno formula and so we omit the proofs.

We assume that f is of class Ck, with fm(0) = 0 and d0fm = 0 for m ∈ Z. The
following results are Ck versions of Theorems 4.1 and 4.3. Let Lk be the set of all
functions z ∈ L of class Ck in a such that ∂z(n, 0) = 0 and

‖∂jz(n, a)‖ ≤ 1

for every n ∈ Z, a ∈ En and j = 1, . . . , k.

Theorem 4.4. Assume that equation (2.1) has an exponential dichotomy and that
there exists δ > 0 such that ‖djvfm‖ ≤ δ for every m ∈ Z, v ∈ B and j = 1, . . . , k.
Then, for any sufficiently small δ, the function z ∈ L given by Theorem 3.5 is
in Lk.

Similarly, let Mk be the set of all functions w ∈ M of class Ck in b such that
∂w(n, 0) = 0 and

‖∂jw(n, b)‖ ≤ 1

for every n ∈ Z, b ∈ Fn and j = 1, . . . , k.

Theorem 4.5. Assume that equation (2.1) has an exponential dichotomy and that
there exists δ > 0 such that ‖djvfm‖ ≤ δ for every n ∈ Z, v ∈ B and j = 1, . . . , k.
Then, for any sufficiently small δ, the function w ∈ M given by Theorem 3.6 is
in Mk.
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5. Center manifolds

In this section we formulate corresponding center manifold theorems. We first
introduce the notion of an exponential trichotomy.

We say that equation (2.1) has a exponential trichotomy if:

(1) there exist projections Pn, Qn, Rn : B → B, for n ∈ Z, satisfying Pn +Qn +
Rn = Id such that for m ≥ n we have

PmT (m,n) = T (m,n)Pn, QmT (m,n) = T (m,n)Qn,

RmT (m,n) = T (m,n)Rn;

(2) T (m,n) is invertible from kerPn onto kerPm for each m ≥ n;
(3) there exist constants λ,N, µ > 0 with µ < λ such that for m ≥ n we have

‖T (m,n)Rn‖ ≤ Neµ(m−n), ‖T (m,n)Pn‖ ≤ Ne−λ(m−n),

‖(T (m,n)Rn)−1‖ ≤ Neµ(m−n), ‖(T (m,n)Qn)−1‖ ≤ Ne−λ(m−n).

For each m ∈ Z we then define

Em = ImPm, Fm = ImQm, Gm = ImRm.

Now we introduce the notion of the center set of equation (2.3). Let Kκ be the
set of all sequences v : Z→ B such that

sup
m∈Z

(
‖vm‖e−κ|m|

)
< +∞

for any sufficiently large κ < λ. The center set V c of equation (2.3) is the set of
all (n, φ) ∈ Z × B for which there exists a solution x(·, n, φ) ∈ K with xn = φ.
The center set has the invariance property in Proposition 3.1. More precisely, if
(n, φ) ∈ V c, then (m, vm(·, n, φ)) ∈ V c for all m ∈ Z.

Assume that equation (2.1) has an exponential trichotomy. Proceeding as in
Section 3.1 one can establish a Lipschitz center manifold theorem. Let N be the
set of all maps

u : {(n, c) ∈ Z× B : c ∈ Gn} → B
such that for each n ∈ Z:

(1) u(n, 0) = 0 and u(n,Gn) ⊂ En ⊕ Fn;
(2) for c, c̄ ∈ Gn we have

‖u(n, c)− u(n, c̄)‖ ≤ ‖c− c̄‖.
For each function w ∈ N we consider its graph

graphu = {(n, c+ u(n, c)) : (n, c) ∈ Z×Gn} ⊂ Z× B.

Theorem 5.1. Assume that equation (2.1) has an exponential trichotomy and that
there exists δ > 0 such that (3.5) holds for every m ∈ Z and u, v ∈ B. Then, for
any sufficiently small δ, there exists a function u ∈ N such that V c = graphu.

Now let N k be the set of all functions u ∈ N of class Ck in c such that ∂u(n, 0) =
0, ‖∂ju(n, c)‖ ≤ 1 for j = 1, . . . , k. Repeating arguments in [2] we obtain the
following smooth center manifold theorem.

Theorem 5.2. Assume that equation (2.1) has an exponential trichotomy and that
there exists δ > 0 such that ‖djvfm‖ ≤ δ for every m ∈ Z, v ∈ B and j = 1, . . . , k.
If λ > (k + 1)µ and δ is sufficiently small, then the function u ∈ N given by
Theorem 5.1 is in N k.
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