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NONLINEAR DIRICHLET PROBLEMS WITH THE COMBINED

EFFECTS OF SINGULAR AND CONVECTION TERMS

YUNRU BAI, LESZEK GASIŃSKI, NIKOLAOS S. PAPAGEORGIOU

Abstract. We consider a nonlinear Dirichlet elliptic problem driven by the

p-Laplacian. In the reaction term of the equation we have the combined effects
of a singular term and a convection term. Using a topological approach based

on the fixed point theory (the Leray-Schauder alternative principle), we prove

the existence of a positive smooth solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this article we
study the nonlinear Dirichlet problem

−∆pu(z) = u(z)−γ + f(z, u(z), Du(z)) in Ω,

u|∂Ω = 0, u > 0,
(1.1)

where 1 < p < +∞ and 0 < γ < 1. In this problem ∆p denotes the p-Laplace
differential operator defined by

∆pu = div(|Du|p−2Du) ∀u ∈W 1,p
0 (Ω).

In the right-hand side of (1.1) (the reaction of the problem), we have the combined
effects of a singular term u−γ (0 < γ < 1) and of a convection term f(z, u,Du).
The convection term f is a Carathéodory function, that is, for all (x, y) ∈ R×RN ,
z 7→ f(z, x, y) is measurable and for a.a. z ∈ Ω, (x, y) 7→ f(z, x, y) is continuous. We
assume that f(z, ·, y) exhibits (p− 1)-linear growth near +∞ and we have nonuni-

form non-resonance with respect to the principal eigenvalue of (−∆p,W
1,p
0 (Ω)). We

look for positive solutions. The dependence of the gradient Du of the perturbation
f , removes from consideration a variational approach directly on the equation. In-
stead our method of proof is topological based on fixed point theory. More precisely,
we employ the Leray-Schauder alternative principle. This leads to the existence of
a positive smooth solution for problem (1.1).

In the past, singular problems and problems with convection, were investigated
mostly separately. For singular problems, we mention the following works: Bai-
Gasiński-Papageorgiou [2], Gasiński-Papageorgiou [9], Giacomoni-Schindler-Takáč
[13], Hirano-Saccon-Shioji [17], Papageorgiou-Rădulescu [24], Papageorgiou-Rădu-
lescu-Repovš [25], Papageorgiou-Smyrlis [27, 28], Perera-Zhang [29], Sun-WuLong
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[32]. For problems with convection, we mention the following works Bai-Gasiński-
Papageorgiou [1], Faraci-Motreanu-Puglisi [3], de Figueiredo-Girardi-Matzeu [4],
Gasiński-Papageorgiou [12], Girardi-Matzeu [14], Huy-Quan-Khanh [19], Papageor-
giou-Rădulescu-Repovš [26], Ruiz [30].

2. Preliminaries and hypotheses

If V and W are two Banach spaces, a map h : V → W is said to be “compact”
if it is continuous and maps bounded sets in V onto relatively compact sets in
W . As we already mentioned in the Introduction, we will use the Leray-Schauder
alternative principle which we recall below (see e.g., Gasiński-Papageorgiou [7, p.
827]).

Theorem 2.1. If X is a Banach space and h : X → X is compact, then exactly
one of the following holds:

(a) h has a fixed point;
(b) the set K = {x ∈ X : x = th(x), 0 < t < 1} is unbounded.

In the analysis of problem (1.1) we will use the Sobolev space W 1,p
0 (Ω) and the

Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

By ‖·‖ we denote the norm of the Sobolev space W 1,p
0 (Ω). On account of Poincaré’s

inequality, we can have

‖u‖ = ‖Du‖p ∀u ∈W 1,p
0 (Ω).

The Banach space C1
0 (Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1
0 (Ω) : u(z) > 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 ∀z ∈ Ω,

∂u

∂n
|∂Ω < 0

}
.

Here ∂u
∂n denotes the normal derivative of u, that is ∂u

∂n = (Du, n)RN with n(·) being
the outward unit normal on ∂Ω.

We know that W 1,p
0 (Ω)∗ = W−1,p′(Ω) (where 1

p + 1
p′ = 1). Let A : W 1,p

0 (Ω) →
W−1,p′(Ω) be the nonlinear operator defined by

〈A(u), h〉 =

∫
Ω

|Du|p−2(Du,Dh)RN dz ∀u, h ∈W 1,p
0 (Ω).

This operator has the following properties (see Gasiński-Papageorgiou [11, Problem
2.192, p.279] or [8, Lemma 3.2]).

Proposition 2.2. The map A : W 1,p
0 (Ω) → W−1,p′(Ω) is bounded (that is, maps

bounded sets to bounded sets), continuous, strictly monotone (hence maximal mono-
tone too) and of type (S)+; that is,

“if un → u weakly in W 1,p
0 (Ω) and lim supn→+∞〈A(un), un − u〉 6

0, then un → u in W 1,p
0 (Ω).”
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Consider the nonlinear eigenvalue problem

−∆pu(z) = λ̂|u(z)|p−2u(z) in Ω,

u|∂Ω = 0.
(2.1)

This problem has a smallest eigenvalue λ̂1, which has the following properties:

• λ̂1 > 0 and is isolated (that is, if σ̂(p) is the spectrum of (2.1), we can find

ε > 0 such that (λ̂1, λ̂1 + ε) ∩ σ̂(p) = ∅).
• λ̂1 is simple (that is, if û, v̂ ∈W 1,p

0 (Ω) are eigenfunctions corresponding to

λ̂1, then û = ξv̂ for some ξ ∈ R \ {0}).
• We have

λ̂1 = inf
{‖Du‖pp
‖u‖pp

: u ∈W 1,p
0 (Ω), u 6= 0

}
. (2.2)

The infimum in (2.2) is realized on the corresponding one-dimensional
eigenspace.

The nonlinear regularity theory of Lieberman [21], implies that if û is an eigen-

value of (2.1), then û ∈ C1
0 (Ω). The above properties of λ̂1 imply that the eigen-

functions corresponding to λ̂1 do not change sign.
By û1 we denote the positive, Lp-normalized (that is, ‖û1‖p = 1) eigenfunction

corresponding to λ̂1 > 0. From the nonlinear maximum principle (see e.g., Gasiński-
Papageorgiou [7, p. 738]), we have that û1 ∈ intC+. Using these properties, we can
easily prove the following result (see Filippakis-Gasiński-Papageorgiou [5, Lemma
3.2] or Motreanu-Motreanu-Papageorgiou [23, p. 305]).

Lemma 2.3. Let ϑ ∈ L∞(Ω), ϑ(z) 6 λ̂1 for a.a. z ∈ Ω and the inequality is strict
on a set of positive measure, then there exists c0 > 0 such that

‖Du‖pp −
∫

Ω

ϑ(z)|u|p dz > c0‖u‖p ∀u ∈W 1,p
0 (Ω).

For x ∈ R, we set x± = max{±x, 0}. Then given u ∈ W 1,p
0 (Ω), we set u±(·) =

u(·)±. We know that

u± ∈W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

The hypotheses on the perturbation term f are the following:

(H1) f : Ω × R × RN → R is a Carathéodory function such that f(z, 0, y) = 0
for a.a. z ∈ Ω, all y ∈ RN , f(z, x, y) = f0(z, y) for a.a. z ∈ Ω, all x 6 0, all
y ∈ RN with f0 being a Carathéodory function such that f0 > 0 and

(i) we have

f(z, x, y) 6 a(z) + ϑ(z)xp−1 + c|y|p−1 for a.a. z ∈ Ω, all x > 0, y ∈ RN ,

with a, ϑ ∈ L∞(Ω), 0 < c < λ̂
1/p
1 , ϑ(z) 6 (1 − c

λ̂
1/p
1

)λ̂1 a.e. on Ω and the

last inequality is strict on a set of positive measure;
(ii) there exists δ0 > 0 such that for all δ ∈ (0, δ0) there exists cδ > 0 such that

0 < cδ 6 f(z, x, y) for a.a. z ∈ Ω, all 0 < δ 6 x 6 δ0, y ∈ RN ;

(iii) for every % > 0, there exists ξ̂% > 0 such that for a.a. z ∈ Ω, all |y| 6 %, the

map x 7→ f(z, x, y) + ξ̂px
p−1 is nondecreasing on [0, %];
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(iv) for a.a. z ∈ Ω, all x > 0, y ∈ RN and t ∈ (0, 1), we have

f
(
z, 1

tx, y) 6 1
tp−1 f(z, x, y).

Remark 2.4. Hypothesis (H1)(i) implies that asymptotically at +∞ we may have

nonuniform non-resonance with respect to the principal eigenvalue λ̂1 > 0. Hy-
pothesis H(f)(iv) is satisfied if for a.a. z ∈ Ω, all y ∈ RN , the function

x 7→ f(z, x, y)

xp−1

is non-increasing on (0,+∞).

Example 2.5. The following function satisfies hypotheses (H1). For the sake of
simplicity we drop the z-dependence.

f(x, y) =


0 if x < 0,

ϑ̂(xp−1 − xτ−1) + η|y|p−1 if 0 6 x 6 1,

ϑ[xp−1 − xq−1] + η|y|p−1 if 1 < x,

∀y ∈ RN ,

with 0 < η < λ̂
1/p
1 , 0 < ϑ < (1− η

λ̂
1/p
1

)λ̂1, ϑ̂ > 0, 1 < q < p < τ < +∞.

3. Positive solutions

We start by considering the purely singular problem

−∆pu(z) = u(z)−γ in Ω,

u|∂Ω = 0, u > 0.
(3.1)

From Papageorgiou-Smyrlis [28, Proposition 5], we have the following result.

Proposition 3.1. Problem (3.1) admits a unique positive solution u ∈ intC+.

Let δ0 > 0 be as postulated by hypothesis (H1)(ii). We choose t ∈ (0, 1) small
such that

ũ = tu 6 δ0. (3.2)

For every y ∈W 1,p
0 (Ω), we have

−∆pũ(z) = tp−1[−∆pu(z)] = tp−1u(z)−γ = tp−1+γ ũ(z)−γ

< ũ(z)−γ + f(z, ũ(z), Dy(z)) for a.a. z ∈ Ω,
(3.3)

(see (3.2) and hypothesis (H1)(ii)).
Given v ∈ C1

0 (Ω), we consider the nonlinear Dirichlet problem

−∆pu(z) = u(z)−γ + f(z, u(z), Dv(z)) in Ω,

u|∂Ω = 0, u > 0,
(3.4)

Proposition 3.2. If hypotheses (H1) hold and v ∈ C1
0 (Ω), then problem (3.4)

admits a positive solution uv ∈ intC+ and ũ 6 uv.

Proof. We consider the following truncation of the reaction in problem (1.1),

f̂v(z, x) =

{
ũ(z)−γ + f(z, ũ(z), Dv(z)) if x 6 ũ(z),

x−γ + f(z, x,Dv(z)) if ũ(z) < x.
(3.5)

Evidently this is a Carathéodory function.
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Since ũ, û1 ∈ intC+, on account of [22, Proposition 2.1], we can find c1 > 0 such

that û1 6 c1ũp
′
, so

û
1/p′

1 6 c1/p
′

1 ũ,

thus

ũ−γ 6 c2û
−γ/p′
1 ,

for some c2 > 0.

Using a Lemma in Lazer-McKenna [20], we have that û
−γ/p′
1 ∈ Lp′(Ω). Therefore

ũ−γ ∈ Lp
′
(Ω). (3.6)

We set

F̂v(z, x) =

∫ x

0

f̂v(z, s) ds

and consider the functional ϕ̂v : W 1,p
0 (Ω)→ R defined by

ϕ̂v(u) =
1

p
‖Du‖pp −

∫
Ω

F̂v(z, u) dz ∀u ∈W 1,p
0 (Ω).

From hypothesis (H1)(i) and (3.6), we infer that ϕ̂v ∈ C1(W 1,p
0 (Ω)) (see also

Papageorgiou-Smyrlis [28, Proposition 3]).

Claim. ϕ̂v is coercive.

Clearly it suffices to check when u(z) > ũ(z). We have

F̂v(z, u(z)) =

∫ u(z)

0

f̂v(z, x) dx

=

∫ ũ(z)

0

f̂v(z, x) dz +

∫ u(z)

ũ(z)

f̂v(z, x) dx

6 (ũ(z)−γ + f(z, ũ(z), Dv(z)))ũ(z)

+

∫ u(z)

ũ(z)

(ũ(z)−γ + â(z) + ϑ(z)xp−1) dx

6 â0(z) +
1

p
ϑ(z)|u(x)|p

with â ∈ L∞(Ω), â0 ∈ Lp
′
(Ω). Therefore

ϕ̂v(u) =
1

p
‖Du‖pp −

∫
Ω

F̂v(z, u(z)) dz

>
1

p

(
‖Du‖pp −

∫
Ω

ϑ(z)|u|p dz
)
− ĉ1

> ĉ2‖Du‖pp − ĉ1,

for some ĉ1, ĉ2 > 0 (see Lemma 2.3). Thus ϕ̂v is coercive and so the Claim is
proved.

From (3.6) and the Sobolev embedding theorem, we see that ϕ̂v is sequentially
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find
uv ∈W 1,p

0 (Ω) such that

ϕ̂v(uv) = inf
u∈W 1,p

0 (Ω)
ϕ̂v(u),
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so ϕ̂′v(uv) = 0 and thus

〈A(uv), h〉 =

∫
Ω

f̂v(z, uv)h dz ∀h ∈W 1,p
0 (Ω). (3.7)

In (3.7) we choose h = (ũ− uv)+ ∈W 1,p
0 (Ω). Then

〈A(uv), (ũ− uv)+〉 =

∫
Ω

(ũ−γ + f(z, ũ,Dv))(ũ− uv)+ dz

> 〈A(ũ), (ũ− uv)+〉

(see (3.5) and (3.3) with y = v), so

〈A(ũ)−A(uv), (ũ− uv)+〉 6 0,

and

ũ 6 uv. (3.8)

From (3.8), (3.5) and (3.7), we infer that

−∆puv(z) = uv(z)
−γ + f(z, uv(z), Dv(z)) in Ω,

uv|∂Ω = 0.
(3.9)

Then from (3.7) and Giacomoni-Schindler-Takáč [13, Theorem B.1] we get that
uv ∈ intC+ (see (3.8)). �

Given v ∈ C1
0 (Ω), let

Sv = {u ∈W 1,p
0 (Ω) : u is a solution of (3.4), ũ 6 u}.

From Proposition 3.2 we know that

∅ 6= Sv ⊆ intC+.

In the next proposition we prove a useful property of the elements of Sv.

Proposition 3.3. If hypotheses (H1) hold, v ∈ C1
0 (Ω) and u ∈ Sv, then u − ũ ∈

intC+.

Proof. We know that u ∈ intC+. Let % = ‖u‖C1
0 (Ω) and let ξ̃% > 0 be as postulated

by hypothesis (H1)(iii). We have

−∆pũ(z) + ξ̂pũ(z)p−1 − ũ(z)−γ

< f(z, ũ(z), Dv(z)) + ξ̂pũ(z)p−1

6 f(z, u(z), Dv(z)) + ξ̂pu(z)p−1

= −∆pu(z) + ξ̂pu(z)p−1 − u(z)−γ for a.a. z ∈ Ω

(3.10)
(see (3.3) with y = v, hypothesis (H1)(iii), recall that ũ 6 u and see (3.9)).

We know that

−∆pũ(z) + ξ̂pũ(z)p−1 = tp−1(−∆pu(z) + ξ̂pu(z)p−1)

= tp−1(u(z)−γ + ξ̂pu(z)p−1)

= tp−1+γ(tu(z))−γ(1 + ξ̂pu(z)p−1+γ)

< ũ(z)−γ for a.a. z ∈ Ω
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for t ∈ (0, 1) sufficiently small (as u ∈ L∞(Ω) and see Proposition 3.1), so

−∆pũ(z) + ξ̂pũ(z)p−1 − ũ(z)−γ < 0 for a.a. z ∈ Ω. (3.11)

Since ũ ∈ intC+, for K ⊆ Ω compact, we have

0 < δK 6 ũ(z) ∀z ∈ K.
Then hypothesis (H1)(ii) implies that there exists cK = cδK > 0 such that

0 < cK 6 f(z, ũ(z), Dv(z)) for a.a. z ∈ K. (3.12)

From (3.10), (3.11), (3.12) and Papageorgiou-Smyrlis [28, Proposition 4] (the strong
comparison principle), we have that u− ũ ∈ intC+. �

Next we show that the set Sv has a smallest element, that is there exists ûv ∈ Sv
such that ûv 6 u for all u ∈ Sv.

Proposition 3.4. If hypotheses (H1) hold and v ∈ C1
0 (Ω), then there exists ûv ∈ Sv

such that ûv 6 u for all u ∈ Sv.

Proof. From Filippakis-Papageorgiou [6] we know that Sv is downward directed
(that is, if u, û ∈ Sv, then there exists y ∈ Sv such that y 6 u, y 6 û). Invoking
Hu-Papageorgiou [18, Lemma 3.10, p. 178], we can find a decreasing sequence
{un}n>1 ⊆ Sv such that

inf Sv = inf
n>1

un.

We have

〈A(un), h〉 =

∫
Ω

(u−γn + f(z, un, Dv))h dz ∀h ∈W 1,p
0 (Ω), n > 1. (3.13)

Let h = un ∈W 1,p
0 (Ω) in (3.13). Then

‖Dun‖pp =

∫
Ω

(u1−γ
n + f(z, un, Dv)un) dz,

so

‖Dun‖pp 6 c3 ∀n > 1,

for some c3 > 0. Here we used that 0 6 un 6 u1 ∈ intC+ for all n > 1 and
Hewitt-Stromberg [16, Theorem 13.17, p. 196] and hypothesis (H1)(i). It follows

that the sequence {un}n>1 ⊆W 1,p
0 (Ω) is bounded. So, passing to a subsequence if

necessary, we may assume that

un → ûv weakly in W 1,p
0 (Ω) and un → ûv in Lp(Ω). (3.14)

In (3.13) we choose h = un − ûv ∈W 1,p
0 (Ω), pass to the limit as n→ +∞ and use

(3.14) and (3.6). Then

lim
n→+∞

〈A(un), un − ûv〉 = 0,

so

un → ûv in W 1,p
0 (Ω) (3.15)

(see Proposition 2.2).
If in (3.13) we pass to the limit as n→ +∞ and use (3.15), then we obtain

〈A(ûv), h〉 =

∫
Ω

(û−γv + f(z, ûv, Dv))h dz ∀h ∈W 1,p
0 (Ω),

so ûv ∈ Sv ⊆ intC+ and ûv = inf Sv. �
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We define a map g : C1
0 (Ω)→ C1

0 (Ω) by setting

g(v) = ûv.

This map is well-defined and clearly a fixed point of g is a solution of (1.1). To
produce a fixed point of g, we will use the Leray-Schauder alternative principle
(see Theorem 2.1). To this end, we need to show that the minimal solution map g
is compact (that is, g is continuous and maps bounded sets to relatively compact
sets). The next lemma will be useful in this respect.

Lemma 3.5. If hypotheses (H1) hold, {vn}n>1 ⊆ C1
0 (Ω), vn → v in C1

0 (Ω) and

u ∈ Sv, then we can find un ∈ Svn for n > 1 such that un → u in C1
0 (Ω).

Proof. We start by considering the nonlinear Dirichlet problem

−∆py(z) = u(z)−γ + f(z, u(z), Dvn(z)) in Ω,

y|∂Ω = 0,
(3.16)

for n > 1. As in the proof of Proposition 3.2, using Marano-Papageorgiou [22,
Proposition 2.1] and a Lemma by Lazer-McKenna [20], we have that u−γ ∈ Lq(Ω)
with q > N . We set

kn(z) = u(z)−γ + f(z, u(z), Dvn(z)).

Then hypothesis (H1)(i) implies that

kn ∈ Lq(Ω), kn > 0, kn 6≡ 0, ‖kn‖q 6 c4 ∀n > 1,

for some c4 > 0. Hence problem (3.16) has a unique solution y0
n ∈W

1,p
0 (Ω), y0

n > 0,
y0
n 6≡ 0 and using Guedda-Véron [15, Proposition 1.3], we have

y0
n ∈ L∞(Ω), ‖y0

n‖∞ 6 c5 ∀n > 1, (3.17)

for some c5 > 0. Consider the linear Dirichlet problem

−∆w(z) = kn(z) in Ω,

w|∂Ω = 0

for all n > 1. Standard regularity theory (see e.g., Struwe [31, p. 218]), implies
that this problem has a unique solution wn such that

wn ∈W 2,q
0 (Ω) ⊆ C1,α

0 (Ω) = C1,α(Ω) ∩ C1
0 (Ω), ‖wn‖C1,α

0 (Ω) 6 c6 ∀n > 1,

with α = q − N
q > 0 and for some c6 > 0. We put σn(z) = ∇wn(z) for all z ∈ Ω

and all n > 1. Evidently σn ∈ Cα(Ω) for all n > 1. Then from (3.16) we see that
y0
n satisfies

−div
(
|∇y0

n(z)|p−2∇y0
n(z)− σn(z)

)
= 0 in Ω,

y0
n|∂Ω = 0,

for n > 1. Invoking Lieberman [21, Theorem 1] (see also Guedda-Véron [15, Corol-
lary 1.1]) and using (3.17), we infer that there exists β ∈ (0, 1) and c7 > 0 such
that

y0
n ∈ C

1,β
0 (Ω) ∩ intC+, ‖y0

n‖C1,β
0 (Ω) 6 c7 ∀n > 1. (3.18)

Recall that C1,β
0 (Ω) is embedded compactly in C1

0 (Ω). So, from (3.18) it follows
that there exists a subsequence {y0

nk
}k>1 of {y0

n}n>1 such that

y0
nk
→ y0 in C1

0 (Ω) as k → +∞, (3.19)
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with y0 > 0. Note that
kn → k in Lq(Ω), (3.20)

with k(z) = u(z)−γ + f(z, u(z), Dv(z)). From (3.16), (3.19), (3.20), in the limit as
n→ +∞, we have

−∆py
0(z) = k(z) in Ω,

y0|∂Ω = 0.
(3.21)

This problem has a unique solution y0 ∈ C1
0 (Ω). On the other hand, since u ∈ Sv,

from (3.20) it follows that u also solves (3.21). Hence y0 = u. It follows that for
the original sequence we have

y0
n → u in C1

0 (Ω). (3.22)

Next we consider the nonlinear Dirichlet problem

−∆py(z) = y0
n(z)−γ + f(z, y0

n(z), Dvn(z)) in Ω,

y0
n|∂Ω = 0,

for n > 1. Again this problem has a unique solution y1
n ∈ intC+ for n > 1 and as

above (see (3.22)), we have

y1
n → u in C1

0 (Ω).

Continuing this way, we generate a sequence {ykn}n>1 ⊆ intC+ for all k > 1 such
that

−∆py
k
n(z) = yk−1

n (z)−γ + f(z, yk−1
n (z), Dvn(z)) in Ω,

ykn|∂Ω = 0,
(3.23)

for k, n > 1 and

ykn → u in C1
0 (Ω) as n→ +∞ ∀k > 1. (3.24)

As before from (3.23) and Lieberman [21, Theorem 1 ], we know that {ykn}k>1 ⊆
C1

0 (Ω) is relatively compact.
So, we can find a subsequence {ykmn }m>1 of {ykn}k>1 such that

ykmn → ŷn in C1
0 (Ω) as m→ +∞ ∀n > 1.

From (3.23) in the limit as m→ +∞, we obtain

−∆pŷn(z) = ŷn(z)−γ + f(z, ŷn(z), Dvn(z)) in Ω,

ŷn|∂Ω = 0,
(3.25)

for n > 1.
From (3.25) we have

‖Dŷn‖pp =

∫
Ω

ŷ1−γ
n dz +

∫
Ω

f(z, ŷn, Dvn)ŷn dz 6 ĉ3 +

∫
Ω

ϑ(z)ŷpn dz

for some ĉ3 > 0, so

‖Dŷn‖pp −
∫

Ω

ϑ(z)ŷpn dz 6 ĉ3

and hence the sequence {ŷn}n>1 ⊆W 1,p
0 (Ω) is bounded (by Lemma 2.3).

From this and Lieberman [21, Theorem 1], it follows that the sequence {ŷn}n>1 ⊆
C1

0 (Ω) is relatively compact. Passing to a subsequence if necessary, we may assume
that

ŷn → û in C1
0 (Ω).



10 Y. BAI, L. GASIŃSKI, N. S. PAPAGEORGIOU EJDE-2019/57

By the double limit lemma (see e.g., Gasiński-Papageorgiou [10, Problem 1.175, p.
61]), we have

ykm(n)
n → û in C1

0 (Ω) as n→ +∞.
If û 6= u, then 0 < ε0 6 ‖u− û‖C1

0 (Ω), so

0 <
ε0

2
6 ‖u− ykm(n)

n ‖C1
0 (Ω) ∀n > n0,

a contradiction (see (3.24)). So, we have

ŷn → u in C1
0 (Ω) as n→ +∞.

Recall that u− ũ ∈ intC+ (see Proposition 3.3). So, it follows that

ŷn − ũ ∈ intC+ ∀n > n0,

and ŷn ∈ Svn ∀n > n0 (see (3.25)). �

Using this lemma, we can show that the minimal solution map is compact.

Proposition 3.6. If hypotheses (H1) hold, then the minimal solution map
g : C1

0 (Ω)→ C1
0 (Ω) defined by g(v) = ûv is compact.

Proof. First we show that g is continuous. To this end let vn → v in C1
0 (Ω). We

set ûn = ûvn = g(vn) for all n > 1. We have

−∆pûn(z) = ûn(z)−γ + f(z, ûn(z), Dvn(z)) in Ω,

ûn|∂Ω = 0,
(3.26)

for n > 1.
As in the proof of Lemma 3.5, using Guedda-Véron [15, Proposition 1.3] and

Lieberman [21, Theorem 1], we have that the sequence {ûn}n>1 ⊆ C1
0 (Ω) is rel-

atively compact (see also Giacomoni-Schindler-Takáč [13, Theorem B.1]). So, we
may assume that

ûn → û0 in C1
0 (Ω) as n→ +∞. (3.27)

Passing to the limit as n→ +∞ in (3.26) and using (3.27), we obtain that

û0 ∈ Sv. (3.28)

From Lemma 3.5, we know that we can find un ∈ Svn for n > 1 such that

un → û = ûv = g(v) in C1
0 (Ω) as n→ +∞. (3.29)

We have ûn 6 un ∀n > 1, so

û0 6 û = g(v)

(see (3.27) and (3.29)). Since û0 ∈ Sv (see (3.28)), we conclude that

û0 = g(v) = û.

Therefore for the original sequence we have ûn → û in C1
0 (Ω); thus g is continuous.

Also, if B ⊆ C1
0 (Ω) is bounded, then as before via the results by Guedda-Véron

[15] and Lieberman [21], we obtain that g(B) ⊆ C1
0 (Ω) is relatively compact and

thus g is compact. �

Now we can employ the Leray-Schauder alternative principle (see Theorem 2.1)
to produce a positive solution to problem (1.1).

Theorem 3.7. If hypotheses (H1) hold, then problem (1.1) admits a positive solu-
tion û0 ∈ intC+.
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Proof. From Proposition 3.6 we know that the minimal solution map g : C1
0 (Ω)→

C1
0 (Ω) is compact. Let K ⊆ C1

0 (Ω) be the set

K = {u ∈ C1
0 (Ω) : u = tg(u), 0 < t < 1}.

If u ∈ K, then 1
tu = g(u), so

−∆pu(z) = tp−1
( tγ

u(z)γ
+ f(z,

1

t
u(z), Du(z))

)
a.e. in Ω. (3.30)

Hypothesis (H1)(iv) implies that

f(z, 1
tu(z), Du(z)) 6

1

tp−1
f(z, u(z), Du(z)) for a.a. z ∈ Ω. (3.31)

Returning to (3.30) and using (3.31) and hypothesis (H1)(i), we have

−∆pu(z) 6
tp+γ−1

u(z)γ
+ f(z, u(z), Du(z))

6
1

ũ(z)γ
+ a(z) + ϑ(z)u(z)p−1 + c|Du(z)|p−1,

(3.32)

for a.a. z ∈ Ω, so

‖Du‖pp 6 ĉ4 +

∫
Ω

ϑ(z)up dz + c

∫
Ω

|Du|p−1u dz

6 ĉ4 +

∫
Ω

ϑ(z)up dz + c‖Du‖p−1
p ‖u‖p

6 ĉ4 +

∫
Ω

ϑ(z)up dz +
c

λ̂
1/p
1

‖Du‖pp,

for some ĉ4 > 0 (by Hölder’s inequality and using (2.2)), thus(
1− c

λ̂
1/p
1

)
‖Du‖pp −

∫
Ω

ϑ(z)up dz ≤ ĉ4,

hence, by Lemma 2.3, we have

ĉ5‖Du‖pp 6 ĉ4,

for some ĉ5 > 0. This proves the boundedness of K ⊆W 1,p
0 (Ω).

Invoking Theorem 2.1 (the Leray-Schauder alternative principle), we can find
û0 ∈ C1

0 (Ω) such that

û0 = g(û0) ∈ Sû0
⊆ intC+.

This is a positive solution of (1.1). �

Remark 3.8. It will be interesting to know if we can have multiplicity of positive
solutions (for example a pair of positive solutions). For purely singular elliptic
problem such a result was proved by Papageorgiou-Rădulescu-Repovš [25]. Also
another interesting open problem is whether we can treat resonant equations.
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of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci.

(5), 6:1 (2007), 117–158.
[14] Girardi, M.; Matzeu, M.; Positive and negative solutions of a quasi-linear elliptic equation by

a mountain pass method and truncature techniques, Nonlinear Anal., 59:1–2 (2004), 199–210.
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