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MULTIPLICITY OF SOLUTIONS TO AN ELLIPTIC PROBLEM

WITH SINGULARITY AND MEASURE DATA

SEKHAR GHOSH, AKASMIKA PANDA, DEBAJYOTI CHOUDHURI

Abstract. In this article, we prove the existence of multiple nontrivial solu-
tions to the equation

−∆pu =
λ

uγ
+ g(u) + µ in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

where Ω ⊂ RN is a smooth bounded domain with N ≥ 3, 1 < p−1 < q, λ > 0,
γ > 0, g satisfies certain conditions, µ ≥ 0 is a bounded Radon measure.

1. Introduction

Elliptic equations with singularity has gained a huge attention owing to its rich-
ness both from the theoretical and application point of view. Early traces of research
pertaining to problems involving singularity can be found in [24], where the authors
addressed the problem

−∆u =
f(x)

uγ
in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a strictly convex, bounded domain in RN with C2 boundary. The
existence of a unique solution was guaranteed if and only if 0 < γ < 3. The authors
in [24], also showed the existence of a solution in C1(Ω̄), for 0 < γ < 1. Haitao [22]
studied the perturbed singular problem

−∆u =
λ

uγ
+ up, u > 0 in Ω,

u = 0 on ∂Ω,
(1.2)

and guaranteed the existence of two weak solutions for λ < Λ, no solution for λ > Λ
and at least one solution for 0 < γ < 1 < p ≤ N+2

N−2 and some Λ > 0. A further

generalization to this problem can be found in [19], where the existence of two
solutions were shown for some 0 < γ < 1 < p − 1 < q ≤ p∗ − 1. An important
problem involving singularity in the literature can be found in the work due to
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Crandall et al [11], where the authors addressed the problem

−∆u = f(u) in Ω,

u = 0 on ∂Ω,
(1.3)

where f is a function with singularity near 0. The authors in [11], whoed the
existence of a unique classical solution in C2(Ω) ∩ C(Ω̄). Another noteworthy
work is due to Giacomoni and Sreenadh [18], where the authors investigated the
quasilinear and singular problem

−∆pu =
λ

uδ
+ uq in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.4)

where Ω is a bounded domain in RN with smooth boundary, 1 < p − 1 < q and
λ, δ > 0. The authors have shown the existence of weak solutions for small λ > 0 in
W 1,p

0 (Ω)∩C(Ω̄) if and only if δ < 2+ 1
p−1 . Further they have investigated the radial

symmetry case, i.e. for Ω = BR(0), where they have proved the global multiplicity
of solutions in C(Ω̄) with δ > 0, 1 < p − 1 < q, by using shooting method.
Readers interested in ‘singularity involving problem’ can refer to [26, 8, 9, 29] and
of late Panda et al [27], who investigated a problem involving singularity and a
measure. Motivated by the work in [6], which stemmed out from the work in[3], by
generalizing their result for the p-Laplacian, we will study the problem

−∆pu =
λ

uγ
+ g(u) + µ in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.5)

where Ω is a strictly convex, bounded domain in RN with C2 boundary, N > 2,
1 < p < N , ∆pu = div{|∇u|p−2∇u}, λ > 0, γ > 0 and µ is a bounded Radon
measure. The function g obeys certain growth conditions, i.e. there exists some
constants C > 0 such that,

C−1t1+q ≤ tg(t) ≤ Ct1+q,

where p− 1 < q < N(p−1)
N−p .

2. Definitions and notation

We will use the notations due to [15], to denote W k,p
0 (Ω) as the space obtained

by considering the closure of C∞c (Ω) in the Sobolev space W k,p(Ω) and W k,p
loc (Ω) to

be the local Sobolev space, which consists of functions u such that for any compact
K ⊂ Ω, u ∈ W k,p(K). The Hölder Space is denoted by Ck,β(Ω̄) with 0 < β ≤ 1
(again a notation borrowed from [15]), which consists of all functions u ∈ Ck(Ω̄)
such that the norm∑

|α|≤k

sup |Dαu|+ sup
x 6=y

{ |Dku(x)−Dku(y)|
|x− y|β

}
<∞.

We will use the truncation functions for fixed k > 0,

Tk(t) = max{−k,min{k, t}} and Gk(t) = (|t| − k)+sign(t)

with t ∈ R. Observe that Tk(t) +Gk(t) = t for any t ∈ R and k > 0.
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We denote by M(Ω) the space of all finite Radon measures on Ω. For every
µ ∈M(Ω), we define

‖µ‖M(Ω) =

∫
Ω

d|µ|.

We will use the Marcinkiewicz space Mq(Ω) (or weak Lq(Ω)) defined for every
0 < q < ∞, as the space of all measurable functions f : Ω → R such that the
corresponding distribution functions satisfy an estimate of the form

m({x ∈ Ω : |f(x)| > t}) ≤ C

tq
t > 0, C <∞.

Indeed, for bounded domain Ω we have Mq ⊂Mq̄ if q ≥ q̄, for some fixed positive
q̄. Further, the following continuous embeddings hold

Lq(Ω) ↪→Mq(Ω) ↪→ Lq−ε(Ω), (2.1)

for every 1 < q < ∞ and 0 < ε < q − 1. We will use this embedding result to
show the existence of solutions. We now give the definition of convergence in the
measure space.

Definition 2.1. Let (µn) be the sequence of measurable functions in M(Ω). We
say (µn) converges to µ ∈ M(Ω) in the sense of measure [17] i.e. µn ⇀ µ in M(Ω),
if ∫

Ω

fdµn →
∫

Ω

fdµ, ∀f ∈ C0(Ω).

To show the existence of solutions to problem (1.5), we consider the following
sequence of problems (Pn).

−∆pu =
λ

(u+ 1
n )γ

+ g(u) + µn in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(2.2)

whose solutions are denoted by un. The weak formulation of (2.2) is∫
Ω

|∇un|p−2∇un · ∇φdx

= λ

∫
Ω

φ

(un + 1
n )γ

+

∫
Ω

g(un)φdx+

∫
Ω

µnφdx, ∀φ ∈ C1
0 (Ω̄),

(2.3)

where (µn) is a sequence of smooth non-negative functions bounded in L1(Ω) and
converging weakly to µ in the sense of Definition 2.1. We now give the definition
of weak solution to the problem (2.2) in (1.5).

Definition 2.2. We say a function u ∈ W 1,p
loc (Ω) ∩ L∞(Ω) is a weak solution to

(1.5) if φ
uγ ∈ L

1(Ω) and it satisfies∫
Ω

|∇u|p−2 · ∇u · ∇φdx = λ

∫
Ω

φ

uγ
dx+

∫
Ω

g(u)φdx+

∫
Ω

φdµ (2.4)

for every φ ∈W 1,p
0 (Ω

′
) with Ω

′ ⊂⊂ Ω.

In the subsequent section, we will prove some lemmas required in the proof of
our main result in Section 4. Note that the solution will be named as un in multiple
places for different problems.
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3. Auxiliary Lemmas

In this section we will prove important lemmas that are the main tools for proving
the main result for existence of solution to problem (1.5).

Lemma 3.1. The problem

−∆pu =
λ

(u+ 1
n )γ

in Ω,

u = 0 on ∂Ω,

(3.1)

possesses a nonnegative weak solution in W 1,p
loc (Ω) ∩ L∞(Ω) for each n ∈ N.

Proof. The idea of the proof is to apply Schauder’s fixed point argument. For a
fixed n ∈ N and a fixed v ∈ Lp(Ω), we define the map Jλ : W 1,p

0 (Ω)→ R, as follows,

Jλ(u) =
1

p

∫
Ω

|∇u|pdx− λ
∫

Ω

u

(|v|+ 1
n )γ

dx.

It is easy to see that, Jλ is continuous, coercive and strictly convex in W 1,p
0 (Ω).

Therefore, the existence of a unique minimizer w ∈ W 1,p
0 (Ω) corresponding to a

v ∈ Lp(Ω) is certain.
We define H : Lp(Ω)→ Lp(Ω) by

H(v) = (−∆p)
−1
[ λ

(|v|+ 1
n )γ

]
:= w.

On choosing w as a test function from W 1,p
0 (Ω) in the weak formulation (3.1), we

have ∫
Ω

|∇w|p =

∫
Ω

|∇w|p−2∇w · ∇w =

∫
Ω

λ

(|v|+ 1
n )γ

w ≤ λnγ
∫

Ω

|w|.

Hence, by using the Poincaré inequality and the Hölder’s inequality on the left and
right hand side respectively, we obtain

‖w‖p ≤ C(n, γ, λ). (3.2)

Let us consider a sequence (vk) that converges to v in Lp(Ω). By using the domi-
nated convergence theorem, we have∥∥ λ

(|vk|+ 1
n )γ
− λ

(|v|+ 1
n )γ

∥∥
Lp(Ω)

→ 0.

Thus, the convergence of wk = H(vk) to w = H(v) in Lp(Ω) can be followed from
the uniqueness of the weak solution. Hence, the continuity of H over Lp(Ω) is
followed. By the estimate (3.2) and by the Rellich-Kondrochov theorem, we obtain
that H(Lp(Ω)) is relatively compact in Lp(Ω). We now can apply the Schauder’s
fixed point theorem to guarantee the existence of a fixed point say w. By the
regularity theorem of Lieberman [23], we have un ∈ C1(Ω̄) for all n ∈ N. Using
the strong maximum principle [21], we have w > 0 in Ω and this concludes the
proof. �

Lemma 3.2. The sequence (un) is increasing wit respect to n and for every K ⊂⊂
Ω, there exists CK (only depends on K) such that un ≥ CK > 0, a.e. in K with

‖un‖∞ ≤ Rλ
1

γ+p−1 for all n ∈ N, R is independent of n.



EJDE-2019/60 MULTIPLICITY OF SOLUTIONS 5

Proof. Consider a sequence of problems

−∆pu =
λ

(u+ 1
n )γ

in Ω,

u = 0 on ∂Ω.

(3.3)

For each n, let un be the solution to the problem (3.3). Consider∫
Ω

(|∇un|p−2 · ∇un − |∇un+1|p−2 · ∇un+1) · ∇φdx

= λ

∫
Ω

(
(un +

1

n
)−γ − (un+1 +

1

n+ 1
)−γ
)
φdx.

We choose, the test function φ = (un − un+1)+ to obtain∫
Ω

(|∇un|p−2 · ∇un − |∇un+1|p−2 · ∇un+1) · ∇(un − un+1)+dx

≤ λ
∫

Ω

(
(un +

1

n+ 1
)−γ − (un+1 +

1

n+ 1
)−γ
)

(un − un+1)+dx.

Using the inequalities from [14], for p ≥ 2, we obtain∫
Ω

(|∇un|p−2∇un − |∇un+1|p−2 · ∇un+1) · ∇(un − un+1)+dx

≥ Cp‖∇(un − u+n+1)+‖p ≥ 0,

and for 1 < p < 2,∫
Ω

(|∇un|p−2∇un − |∇un+1|p−2∇un+1) · ∇(un − un+1)+dx

≥ Cp
‖un − u+n+1‖2

(‖un‖+ ‖u+n+1‖)2−p ≥ 0.

Therefore,

0 ≤ λ
∫

Ω

{(
un +

1

n+ 1

)−γ
−
(
un+1 +

1

n+ 1

)−γ}
(un − un+1)+dx ≤ 0.

Hence, ‖(un − un+1)+‖ = 0. This implies un is monotonically increasing w.r.t n.
Now, using the Strong Maximum principle [31], we obtain u1 > 0 in Ω, where u1 is
the solution of (3.3) with n = 1. Since, un is monotonically increasing with respect
to n, we have un > u1 in Ω and hence we conclude that un > CK > 0, for every
K ⊂⊂ Ω with CK being independent of n.

Claim: (un) is uniformly bounded in Ω.
Case 1: When λ = 1. Define, M(k) = {x ∈ Ω : un > k} and

Sk(un) =

{
un − k; if un > k

0; if un ≤ k.

We choose, Sk(un) as the test function in the weak formulation (3.3) to obtain∫
M(k)

|∇un|p−2∇un · ∇un =

∫
M(k)

|∇un|p

=

∫
M(k)

un − k
(un + 1

n )γ
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<

∫
M(k)

un − k
uγn

≤ ‖un − k‖Lp(M(k))|M(k)|1/p
′

≤ C‖∇un‖Lp(M(k))|M(k)|1/p
′
,

by the Poincaré inequality. Using the Sobolev embedding theorem, we obtain

‖un‖p−1

Lp∗ (M(k))
<

C

Sp−1
|M(k)|1/p

′
,

where p∗ = Np
N−p which is the Sobolev conjugate of p. It is easy to see that M(l) ⊂

M(k) for 1 < k < l. Hence,

|M(l)| ≤
{ C

Sp−1

} p∗
p−1

1

(l − k)p∗
|M(k)|

p∗
p .

By [28, Lemma 4.1], we can guarantee the existence of a T > 0 independent of n
such that |M(T )| = 0. Therefore, ‖un‖∞ ≤ T .

Case 2: Suppose v is such that∫
Ω

|∇v|p−2∇v · ∇φ < λ

∫
Ω

φ

vγ
∀λ ∈W 1,p

0 (Ω), φ ≥ 0. (3.4)

Let λ > 0. Choose v = ( 1
λ )

1
γ+p−1w. We can see that v satisfies∫

Ω

|∇v|p−2∇v · ∇φ <
∫

Ω

φ

vγ
, ∀φ ∈W 1,p

0 (Ω), φ > 0.

Therefore, using the result from Case 1, for λ = 1, we have ‖v‖∞ ≤ T , which implies

that ‖un‖∞ ≤ Rλ
1

γ+p−1 . Hence, (un) is uniformly bounded in Ω. Finally, on using
a result due to Lieberman [23], we conclude that un ∈ C1(Ω) for all n ∈ N. �

Lemma 3.3. Every bounded nontrivial solution v of the problem −∆pu = g(u)+µn
in Ω, is uniformly bounded below in L∞(Ω), i.e. ‖v‖∞ > δ, for some δ > 0.

Before proving the above lemma, we prove the following lemma.

Lemma 3.4. Every bounded nontrivial solution u of the problem −∆pu = g(u) in
Ω, is uniformly bounded below in L∞(Ω), i.e. ‖u‖∞ > δ, for some δ > 0.

Proof. Let us consider a sequence of nontrivial solutions (um) such that ‖um‖∞ → 0
as m→∞. Then we can define wm(x) = um(x)‖um‖−1

∞ . Clearly, ‖wm‖∞ = 1. As
um satisfies −∆pu = g(u), we have

∆pwm = ∆p(um(x)‖um‖−1
∞ )

= ∇(|∇(um(x)‖um‖−1
∞ )|p−2∇(um(x)‖um‖−1

∞ ))

= ∆pum‖um‖1−p∞
= g(um)‖um‖1−p∞
≤ Cuqm‖um‖1−p∞
≤ Cwqm‖um‖1−p+q∞ = fm.

Now for very largem, these fm’s are uniformly bounded in L∞(Ω). So, ‖wm‖C1,β(Ω̄) ≤
M for some β ∈ (0, 1), by regularity results in [30], where M is independent of m.
Hence, by the Ascoli-Arzela theorem, the sequence (wm) converges uniformly to w
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in C1
0 (Ω). This implies w = 0. But with the consideration of [4, Lemma 1.1], we

have a unique solution w in C1
0 (Ω), which contradicts the fact that ‖wm‖∞ = 1.

Hence, there exists δ > 0 such that ‖u‖∞ > δ. �

Proof of Lemma 3.3. Since µn ≥ 0, then the solutions of the problem in Lemma 3.3
are supersolutions of the problem in Lemma 3.4. Therefore, if v and u are solutions
of the problem in Lemma 3.3 and Lemma 3.4 respectively, then ‖v‖∞ ≥ ‖u‖∞ >
δ > 0, for some δ > 0. �

Lemma 3.5. There exists a λ̄ > 0 such that the problem

−∆pu =
λ

(u+ 1
n )γ

+ g(u) + µn in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

(3.5)

does not have any weak solution u ∈W 1,p
0 (Ω) for λ ≥ λ̄.

Proof. Let λ1 be the first eigenvalue of the operator −∆p and its corresponding
eigenfunction φ1 ≥ 0 be such that

−∆pφ1 = λ1φ
p−1
1 in Ω,

φ1 = 0 on ∂Ω.

Its weak formulation with the test function φ = φ1 is given by∫
Ω

|∇φ1|p = λ1

∫
Ω

φp1.

Let un be the weak solution of (2.2), then by the strong maximum principle [31],

we obtain
φp1
up−1
n
∈W 1,p

0 (Ω). On applying the Picone’s Identity [6, Theorem 2.1], we

have ∫
Ω

|∇φ1|pdx−
∫

Ω

∇(
φp1
up−1
n

)|∇un|p−2∇undx ≥ 0

⇒
∫

Ω

λ1φ
p
1 −

φp1
up−1
n

λ

(un + 1
n )γ
− g(un)

φp1
up−1
n

− µn
φp1
up−1
n

dx ≥ 0

⇒
∫

Ω

(
λ1u

p−1
n − λ(un +

1

n
)−γ − g(un)− µn

)
φp1dx ≥ 0.

Consider λ̄ defined as λ̄ = max
x∈Ω

λ1u
p−1
n −g(un)−µn
(un+1)−γ . Now for every ε > 0, there exists

a δ > 0 such that vq < εvp−1 for all v ∈ [0, δ]. Therefore, λ̄ > 0 for some ε and for
λ ≥ λ̄, we have

λ ≥ max
x∈Ω

λ1u
p−1
n − g(u)− µn

(u+ 1)−γ

≥ λ1u
p−1
n − g(u)− µn
(u+ 1

n )−γ

⇒
(
λ1u

p−1
n − λ

(
u+

1

n

)−γ − g(u)− µn
)
< 0

(3.6)

which is a contradiction to our assumption. Hence, for λ ≥ λ̄, the problem (2.2)

does not possess any solution u ∈W 1,p
0 (Ω). �
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Lemma 3.6. Let Ω be a strictly convex domain and un be a solution of problem
(2.2). Then there exists M > 0, which does not depend on n, such that ‖un‖∞ ≤M .

Proof. We divide the proof of this lemma into six steps.

Step 1 (Uniform Höpf Lemma). Our aim is to show that ∂un
∂n (x) < c < 0 for any

n ∈ N, where c is some constant which is independent of n but depends on x. n̂ is
the unit outward normal to the boundary ∂Ω at the point x.

Now Ω satisfies the interior ball condition as it has a C2 boundary, i.e., for some
x0 ∈ ∂Ω, there exists a Br(y) ⊂ Ω such that ∂Br(y) ∩ ∂Ω = {x0}. Let us define
v : Br(y)→ R given by

v(x) = [2
N−p
p−1 − 1]−1r

N−p
p−1 |x− y|

p−N
p−1 − [2

N−p
p−1 − 1]−1.

We observe that

(i) v(x) = 1 on ∂B r
2
(y) and v(x) = 0 on ∂Br(y), and

(ii) if x ∈ Br(y) \B r
2
(y) with |∇v(x)| > c > 0 for some constant c independent

of n.

Therefore, we have 0 < v(x) < 1. Let us define m = inf{un(x)|x ∈ ∂B r
2
(y)}. By

using the Lemma 3.2, we can conclude that m > 0 and is independent of n. on
choosing w = mv, we see that w satisfies

−∆pw = 0 in Br(y)−B r
2
(y),

w = m if x ∈ ∂B r
2
(y),

w = 0 ifx ∈ ∂Br(y).

We have un ≥ w on the boundary of Br(y) − B r
2
(y) and −∆pw ≤ −∆pun in Ω.

Hence, by the weak comparison principle, we have un ≥ w in Br(y)−B r
2
(y). Since,

un(x0) = w(x0) = 0, then from the properties of v in (i) and (ii) above, we obtain

∂un
∂n̂

(x0) = lim
t→0

un(x0 − tn̂)

t
≤ lim
t→0

w(x0 − tn̂)

t

=
∂w

∂n̂
(x0) = m

∂w

∂n̂
< −c < 0,

where c > 0 is independent of n.

Step 2 (Existence of a neighbourhood of the boundary which does not contain any
critical points of un). Let us denote C(un) = {x ∈ Ω : ∇un(x) = 0}, as the set
of critical points of un. From Step 1, we have ∂un

∂η < 0 on the boundary. Hence,

dist(∂Ω, C(un)) = bn > 0 for all n ∈ N as ∂Ω and C(un) are compact subsets in Ω.

Claim: There exists ε > 0, independent of n, such that bn > ε > 0. In other
words there exists a neighbourhood Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}, such that
C(un) ∩ Ωε = φ.

We prove this claim by a contrapositive argument. Assume there is no ε > 0 such
that C(un) ∩ Ωε 6= φ. Then there exists xn ∈ C(un) such that dist(xn, ∂Ω)→ 0 as
n→∞. Therefore, up to a subsequence xnk → x0 and x0 ∈ ∂Ω. But from Step 1,

we obtain ∂un
∂η (x0) < c < 0. Hence, there exists l > 0 such that |∇un(x)| > c

2 for

x ∈ Bl(x0)∩Ω, where c is independent of n. This implies that Bl(x0)∩C(un) = φ.
This is a contradiction, since we can find xn0 ∈ Bl(x0)∩Ω such that ∇un0(xn0) = 0.
Hence the claim follows.
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Step 3 (Monotonicity of un). Let e ∈ SN−1, δ ∈ R, then for a fixed n ∈ N, we
define the following:

(i) The hyperplane Lδ,e = {x ∈ RN : x.e = δ} and σδ,e = {x ∈ RN : x.e < δ}.
(ii) x̂ be the reflection of x with respect to the hyperplane Lδ,e i.e. x̂ = x +

2(δ − x.e)e.
(iii) a(e) = inf

x∈Ω
{x.e} and the reflected cap of σδ,e with respect to Lδ,e for any

δ > a(e) denoted as σ̂δ,e.
(iv) σ̂δ,e is not internally tangent to ∂Ω at some point p /∈ Lδ,e.
(v) n̂(x) be the unit inward normal to ∂Ω at x, then n̂(x).e 6= 0 for all x ∈

∂Ω ∩ Lδ,e.
(vi) ξ(e) = {µ0 > a(e) : ∀δ ∈ (a(e), µ0), (iv) and (v) hold}. and ξ̄(e) =

sup{ξ(e)}.
If Ω is strictly convex, then the map e 7→ ξ̄(e) is continuous by Proposition 2 of
[5]. Let us denote vn(x) = un(x̂). Considering the strict convexity of Ω and the
property (iv), we see that σ̂δ,e is contained in Ω for any δ ≤ δ1 where δ1 only
depends on Ω. Since, ∆p is invariant under reflection and both un and vn satisfy
equation (2.2) hence both the functions take the same value on the hyperplane
Lδ,e. Let us define δ0 = min(δ1, ε). Also for x ∈ ∂Ω∩ ∂σδ,e, we have un(x) = 0 and
vn(x) = un(x̂) > 0 as x̂ ∈ Ω. Therefore,

−∆pun +
λ

(un + 1
n )γ

+ g(un) + µn

= −∆pvn +
λ

(vn + 1
n )γ

+ g(vn) + µn in σδ,e

un ≤ vn on ∂σδ,e ∩ ∂Ω.

Then un ≤ vn in σδ,e for any δ ∈ (a(e), δ0), by the comparison principle [12]. Hence,
un is nondecreasing for all x ∈ σδ0,e along the e-direction.

Step 4 (Existence of a measurable proper subset of Ω of nonzero measure on which
u is nondecreasing). For a fixed x0 ∈ ∂Ω, let e = e(x0) be the unit outward normal
to ∂Ω at x0. Then by the results in Step 3, we conclude that un is nondecreasing
in the direction of e for all x ∈ σδ,e and a(e) < δ < δ0. For any θ ∈ SN−1 in a small
neighbourhood of e, the reflection of σδ,θ w.r.t. Lδ,θ is a member of Ω, since the
domain is strictly convex and hence the sequence un will be nondecreasing in the
θ direction. Fix δ = δ0/2. Since Ω is strictly convex, there exists a neighbourhood
Θ ∈ SN−1 such that σδ0/2,e ⊂ σδ0,θ for all θ ∈ Θ. Thus, we can conclude that un is
nondecreasing in every direction for θ ∈ Θ and for any x with x ·e < δ0/2. Consider

σ0 =
{
x ∈ Ω :

δ0
8
< x · e < 3δ0

8

}
.

Obviously, σ0 ⊂ σδ0/2,e and un is nondecreasing in every direction θ ∈ Θ and
x ∈ σ0. Choose ε = δ0/8 and fix a point x ∈ Ωε. Let x0 be the projection of the
point x onto ∂Ω. We define Ix ⊂ σ0 to be the truncated cone having vertex at
x0 − εe and an opening angle θ/2. Then Ix satisfies the following properties.

(i) |Ix| > k for some k, where k depends only on Ω and ε,
(ii) un(x) ≤ un(y) for all y ∈ Ix and n ∈ N.

Then, we have un(x) ≤ un(x0 − εe) ≤ un(y), for all y ∈ Ix.
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Step 5 (A boundary estimate). Let us consider the first eigenfunction φ1 of the
p-Laplacian eigenvalue problem over Ω. Using the Picone’s identity on φ1, un and

then applying the strong maximum principle [31], we have
φp1
up−1
n
∈W 1,p

0 (Ω). Denote

fn(un) = λ
(un+ 1

n )γ
+ µn. Then, we have∫

Ω

[fn(un) + g(un)]φp1
up−1
n

=

∫
Ω

|∇un|p−2∇un · ∇
( φp1
up−1
n

)
≤
∫

Ω

|∇φ1|pdx ≤ C(Ω).

(3.7)

Let φ1(z) ≥ ξ > 0 for all z ∈ Ω− Ω ε
2
. Hence, from (3.7), we have

ξp
∫

Ω−Ω ε
2

[fn(un) + g(un)]

up−1
n

≤ C(Ω).

This implies ∫
Ix

[fn(un) + g(un)]

up−1
n

≤ C(Ω)

ξp
.

Now since, ∫
Ix

[fn(un) + g(un)]

up−1
n

≥
∫
Ix
g(un)u1−p

n (z)dz ≥ uq−p+1
n (x)|Ix| (3.8)

we have

uq−p+1
n (x) ≤ C1(Ω)

ξp
,

for some constant C1 > 0, i.e. un(x) ≤ C ′, for all x ∈ Ωε and for all n ∈ N.

Step 6 (Blow-up analysis). We will show that for every open set, K ⊂⊂ Ω, there
exists CK > 0 such that ‖un‖∞ < CK , for every solution un of (2.2). We will prove
it by contrapositive argument. Suppose, there exist a sequence (un) of positive
solutions of the problem (2.2) and a sequence of points (Zn) ⊂ Ω such that Mn =
un(Zn) = max{un(x) : x ∈ K̄} → ∞ as n→∞. Using the boundary estimates one
can assume that Zn → x0 as n → ∞, where x0 ∈ K̄. Let dist(K̄, ∂Ω) = 2d and
Ωd = {x ∈ Ω : dist(x,Ω) < d}.

Let Rn be the sequence of positive real numbers with R
p

q−p+1
n Mn = 1. Observe

that Mn →∞ if and only if Rn → 0 as n→∞. Define, wn : B d
Rn

(0)→R such that

wn(y) = R
p

q−p+1
n un(Zn +Rny).

Now un has a maximum at Zn, hence we have ‖wn‖∞ = wn(0) = 1. Since Rn → 0
there exists n0 such that BR(0) ⊂ B d

Rn
(0) for fixed R > 0. Again, we have that

wn satisfies

∇wn(y) = R
p

q−p+1 +1
n ∇un(Zn +Rny)

and

−∆pwn(y) = R
pq

q−p+1
n

[
λfn(un(Zn +Rny)) +R

−pq
q−p+1
n wqn(Zn +Rny)

+R
−pq
q−p+1
n µn(Zn +Rny)

]
.
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From Lemmas 3.1 and 3.3, for any y ∈ BR(0), we have Zn +Rny ∈ Ω̄d ⊂ Ω and

R
pq

q−p+1
n

[
λfn(un(Zn +Rny)) +R

−pq
q−p+1
n wqn(Zn +Rny)

+R
−pq
q−p+1
n µn(Zn +Rny)

]
≤ C(Ω̄d),

(3.9)

for every n ≥ n0. Let us fix a ball B such that B̄ ⊂ B d
Rn

(0) for all n ≥ n0. Then by

the interior estimates of Lieberman [23] and Tolksdorf [30], we have the existence
of a constant C = C(N, p,B) > 0 and β = β(N, p,B) ∈ (0, 1) such that

wn ∈ C1,β(B̄) and ‖wn‖1,β ≤ C.
Using the Arzela-Ascoli theorem, we guarantee the existence of a function w ∈
C1(B̄) such that there exists a convergent subsequence wn → w in C1(B̄). On
passing the limit n→∞, we have∫

B

|∇w|p−2∇w · ∇φ ≥ C
∫
B

wqφ, ∀φ ∈ C∞c (B), w ∈ C1(B̄), w ≥ 0 on B̄,

where the constant is obtained from the growth condition over g and the condition in
(3.9). Also, we have ‖w‖∞ = 1. Hence, by using the strong maximum principle [31],
we have w(x) > 0, ∀ x ∈ B. Now for a sequence of balls with increasing radius, the
Cantor diagonal subsequence converges to w ∈ C1(RN ), on every compact subsets
of RN and satisfy ∫

RN
|∇w|p−2∇w · ∇φ ≥ C

∫
RN

wqφ,

for all φ ∈ C∞c (RN ), w ∈ C1(RN ), w > 0 on RN . This contradicts Theorem 4.9. �

Lemma 3.7. For a strictly convex domain Ω, there exists λ̄ > 0 such that for
0 < λ < λ̄ and γ > 0 at least two solutions (say un, vn) exist for the problem (2.2)

in W 1,p
loc (Ω).

Proof. We define J̄λ : C(Ω̄)→ C(Ω̄) by

J̄λ(u) = (−∆p)
−1
( λ

(u+ 1
n )γ

+ g(u) + µn

)
, λ ≥ 0.

Now equation (2.2) can be written as u = J̄λ(u). The map J̄λ is compact since,
we know (−∆p)

−1 is a compact operator on C(Ω̄). So, we assume the map J̄λ is
also compact. For 0 < λ < λ̄, we have (un) as solutions to the problem (2.2) and
‖un‖∞ ≤ M , using Lemmas 3.5 and 3.6. Let us define, S1 = {u ∈ C(Ω̄) : u ≥
0 in Ω}, J̄0 : S1 → S1 by J̄0(u) = (−∆p)

−1(g(u) + µn) and G : B̄R × [0,∞) → S1

such that G(u, λ) = J̄λ.
Claim 1. There exists a supersolution to problem (2.2). Let us define, N(r) =
1
3

(
( rR )γ+p−1 − Crγ+q

)
, for r ∈ [0,∞) where R is the bound used in Lemma 3.2 and

C > 0 is the constant used in the growth condition of g and η = max0≤r≤β0 N(r),
where

β0 =
1

2
(2q − 2p+ 3)

1
p−q−1R

γ+p−1
p−q−1 .

Observe that, N(r) > 0 for r ∈ (0, β1), where β1 ∈ (0,min (γ, β0)). Now applying
the intermediate value property of continuous functions, we obtain that there exists

a β2 ∈ (0, β1) such that N(β2) = λ0. Denote λ∗ =
(
β2

R

)γ+p−1
. So

λ0 = N(β2) =
1

2

(
λ∗ − Cβγ+q

2

)
,
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λ∗ > λ0 + βγ+q
2 = λ0 + C[R(λ∗)

1
γ+p−1 ]γ+q.

Let un,λ∗ satisfy (2.2). Then for n ≥ n0, we have

λ∗ > λ0 + C
(
‖un,λ∗‖∞

)q(
‖un,λ∗‖+

1

n

)γ
> λ+ C

(
un,λ∗

)q(
un,λ∗ +

1

n

)γ
,

> λ+ g(un,λ∗)
(
un,λ∗ +

1

n

)γ
,

for λ ≤ λ0. Hence,

−∆pun,λ∗ =
λ∗

(un,λ∗ + 1
n )γ

+ µn >
λ

(un,λ∗ + 1
n )γ

+ µn + g(un,λ∗),

for λ ≤ λ∗ and n ≥ n0. Therefore, un,λ∗ ∈ C1,α(Ω̄) is a positive supersolution for
some α > 0 and un,λ∗ is a supersolution of

−∆pu =
λ

(u+ 1
n )γ

+ g(u) + µn,

u = 0 on ∂Ω,

(3.10)

with ‖un,λ∗‖∞ ≤ β2.

Claim 2. Problem (2.2) possesses a unique solution. To prove this claim we define

fn(x, r) =
λ(r + 1

n )−γ + g(r)

rp−1
, for r ∈ [0,∞).

Now the derivative of fn w.r.t r is

f ′n(x, r) =
1

rp

[λ{(1− p− γ)r + 1−p
n }

(r + 1
n )1+γ

]
+
rg′(r)− g(r)(p− 1)

rp

<
1

rp

[λ[(1− p− γ)r + 1−p
n ]

(r + 1
n )1+γ

]
+ (q − p+ 1)rq−p.

(3.11)

As the function rq(r + 1
n )1+γ is convex, so there exists a unique Cn > 0, which is

increasing with respect to λ such that

λ
[
(p+ γ − 1)Cn +

p− 1

n

]
> (q − p+ 1)Cqn(Cn +

1

n
)1+γ .

Now for r ≤ Cn, we have

(q − p+ 1)rq(r +
1

n
)1+γ ≤ λ

[
(p+ γ − 1)r +

p− 1

n

]
.

Hence, f ′n(x, r) < 0. Consider

Fn(x, r) =
λ(r + 1

n )−γ + g(r) + µn

rp−1
, for r ∈ [0,∞).

Clearly, F ′n(x, r) = f ′n(x, r) − µn(p−1)
rp < 0. Therefore, Fn is decreasing and using

the result of Dı́az-Saá [13], we guarantee that the problem (2.2) has unique solution
and ‖un‖∞ ≤ Cn.

Thus, we have β2 ≤ δ0. So

q − p+ 1

γ + p− 1
βγ+q

2 < λ0, for γ > 1.
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Choose

λm =
{(q − p+ 1)(β2 + ε)q − µm(p− 1)}(β2 + ε+ 1

m )1+γ

(p+ γ − 1)(β2 + ε) + p−1
m

< λ0,

then for all n ≥ m, we have Cn(λ0) ≥ Cn(λn) = β2 + ε. So, ‖un‖∞ ≤ β2 + ε. We
can see that using Lemmas 3.3, 3.5 and 3.6, J̄0 and G satisfy all the conditions of
Lemma (4.10) taken from [16] for some 0 < r < β2 < R. Since β2 < α, (I − J̄0)(u)
has no solution on ∂Br. Now considering Lemma 3.5 and using Lemma 4.8 of [2],
we can obtain a continuum An ⊂ A = {(λ, u) ∈ [0, λ̄]×C(Ω̄) : u− J̄λ(u) = 0} such
that

An ∩ ({0} ×Br) 6= φ, An ∩ ({0} × (BR −Br)) 6= φ. (3.12)

Next, we define F : [0, λ0] → C1,α
0 (Ω̄) a continuous map such that F (λ) = un,λ∗ .

Using Lemma 4.7, we conclude that there exists un ∈ Aλ0
n = {u ∈ C(Ω̄) : (λ0, u) ∈

An} such that 0 < un < un,λ∗ . We have ‖un,λ∗‖∞ ≤ β2 and hence ‖un‖∞ ≤
‖un,λ∗‖∞ ≤ β2. We have An ∩ ({0} × (BR − Br)) 6= φ by equation (3.12). Hence,
for n ≥ max(n0,m), there exists vn such that ‖vn‖∞ ≥ β2 + ε. For λ = λ0 we have
at least two solutions un and vn to the problem (2.2). As λ0 < λ̄ is arbitrary, it
concludes the proof. �

Theorem 3.8. Given γ > 0 there exists λ̄ > 0 such that problem (1.5) admits at

least two solutions u, v in W 1,p
loc (Ω), provided Ω is strictly convex with 1 < p < N ,

p− 1 < q < p(N−1)
N−p − 1 and for 0 < λ < λ̄.

Proof. From Lemma 3.7, we can conclude the existence of at least two solutions un
and vn of problem (2.2). Also for a suitable choice of c > 0,

u = (cφ1 + n
1+p−γ
p )

p
γ+p−1 − 1

n

will be a weak subsolution to (3.1) for λ = λ0.
Again, using λ0

(r+ 1
n )γ
≤ λ0

(r+ 1
n )γ

+ g(r) + µn for all r ≥ 0 we can conclude that

each solutions of (2.2) with λ = λ0 is a weak supersolution of (3.1). Now by the
strong comparison principle [21], we have

ū ≤ un,λ0
≤ un ≤ β2, ū ≤ un,λ0

≤ vn, ‖vn‖∞ ≥ β2 + ε. (3.13)

Let us take zn = un or vn, then from (3.13) and the Lemma 3.6 we have

ū ≤ zn ≤M,

where M is independent of n. By using the strong comparison principle [21] and
Lemma 3.2, we have

∀K b Ω, ∃CK such that zn ≥ CK > 0 in K, ∀n ∈ N. (3.14)

Claim. (zn) is bounded in W 1,p
loc (Ω). Consider znφ

p as a test function in (2.2) for
φ ∈ C1

0 (Ω), then we obtain∫
Ω

|∇zn|pφp = −p
∫
ω

φp−1zn|∇zn|p−2∇φ · ∇zn +

∫
Ω

λ0znφ
p

(zn + 1
n )γ

+

∫
Ω

zng(zn)φp +

∫
Ω

znµn
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By using the modified Young’s inequality we have
∫

Ω
|∇zn|pφp ≤ Cφ for all n ∈ N,

where Cφ is a constant depending only on φ. Hence, zn ∈W 1,p
loc (Ω) and there exists

z ∈W 1,p
loc (Ω)∩L∞(Ω) such that zn → z a.e. up to a subsequence and zn → z weakly

in W 1,p(K) for all K ⊂⊂ Ω. From the [10, Theorem 4.4],
∫

Ω
|∇un|p−2∇un · ∇φ

converges to
∫

Ω
|∇u|p−2∇u · ∇φ. Again, by using dominated convergence theorem,

we have

lim
n→∞

∫
Ω

( λ0φ

(zn + 1
n )γ

+ φ g(zn)
)
dx = λ0

∫
Ω

φ

zγ
dx+

∫
Ω

φ g(z)dx

Since, ‖un‖∞ ≤ β2, ‖vn‖∞ ≥ β2 + ε > β2 and un → u, vn → v, we have the
existence of two distinct solutions u and v. �

Next we prove the existence result of the problem (1.5).

4. Existence result

4.1. The case of γ < 1. Let us consider the problem in (2.2) for γ < 1.

Lemma 4.1. Let un be a solution of (2.2) with γ < 1. Then (un) is bounded in

W 1,r
0 (Ω) for every r < N(p−1)

N−1 .

Proof. We prove the boundedness of (∇un) in the Marcinkiewicz spaceM
N(p−1)
N−1 (Ω).

For this, let us take ϕ = Tk(un) as a test function in the weak formulation (2.3)
and we have∫

Ω

|∇Tk(un)|p =

∫
Ω

λ

(un + 1
n )γ

Tk(un) +

∫
Ω

g(un)Tk(un) +

∫
Ω

Tk(un)µn. (4.1)

Observe tht

Tk(un)

(un + 1
n )γ
≤ un

(un + 1
n )γ

=
uγn

(un + 1
n )γuγ−1

n

≤ u1−γ
n ,∫

Ω

Tk(un)µn ≤ k‖µn‖L1(Ω) ≤ Ck.

Therefore, ∫
Ω

|∇Tk(un)|p ≤ Ck. (4.2)

Now consider the following set inclusion

{|∇un| ≥ t} = {|∇un| ≥ t, un < k} ∪ {|∇un| ≥ t, un ≥ k}
⊂ {|∇un| ≥ t, un < k} ∪ {un ≥ k} ⊂ Ω.

With the help of the subadditivity property of Lesbegue measure m we have

m({|∇un| ≥ t}) ≤ m({|∇un| ≥ t, un < k}) +m({un ≥ k}). (4.3)

By the Sobolev inequality,

1

λ1

(∫
Ω

|Tk(un)|p
∗
)p/p∗

≤
∫

Ω

|∇Tk(un)|p ≤ Ck (4.4)

where λ1 is the first eigenvalue of the p-Laplacian operator. Now, on restricting the
left hand side of the integral (4.4) on I = [x ∈ Ω : un ≥ k], such that Tk(un) = k,
we obtain

kpm({un ≥ k})p/p
∗
≤ Ck
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⇒ m({un ≥ k}) ≤
C

k
N(p−1)
N−p

, ∀k ≥ 1.

Hence, (un) is bounded in M
N(p−1)
N−p (Ω).

Similarly on restricting (4.4) on I
′

= {|∇un| ≥ t, un < k}, we have

m({|∇un| ≥ t, un < k}) ≤ 1

tp

∫
Ω

|∇Tk(un)|p ≤ Ck

tp
, ∀k > 1.

Now (4.3) becomes

m({|∇un| ≥ t}) ≤ m({|∇un| ≥ t, un < k})+m({un ≥ k}) ≤
Ck

tp
+

C

k
N(p−1)
N−p

, ∀k > 1.

Let us choose, k = t
N−p
N−1 and hence we obtain

m({|∇un| ≥ t}) ≤
C

t
N(p−1)
N−1

, ∀t ≥ 1.

We have proved that (∇un) is bounded in M
N(p−1)
N−1 (Ω). This implies by property

(2.1) that (un) is bounded in W 1,r
0 (Ω), for every r < N(p−1)

N−1 . �

Theorem 4.2. Let γ < 1. Then there exists a weak solution u of (1.5) in W 1,r
0 (Ω)

for every r < N(p−1)
N−1 .

Proof. Lemma 4.1, implies that there exists u such that a subsequence of un con-

verges weakly to u in W 1,r
0 (Ω), for every r < N(p−1)

N−1 . This implies that for ϕ in

C1
c (Ω),

lim
n→+∞

∫
Ω

∇un.∇ϕ =

∫
Ω

∇u · ∇ϕ.

Also by the compact embeddings we can assume that un converges to u both
strongly in L1(Ω) and a.e. in Ω. Thus, taking ϕ in C1

c (Ω), we obtain

0 ≤
∣∣ λ

(un + 1
n )γ

ϕ
∣∣ ≤ Cλ‖ϕ‖L∞(Ω)

This is sufficient to apply the dominated convergence theorem to obtain

lim
n→+∞

∫
Ω

λ

(un + 1
n )γ

ϕ =

∫
Ω

λ

uγ
ϕ.

Further, since (un) is bounded in W 1,r
0 (Ω), we have by the compact embedding

that un → u in Lr(Ω). By the same standard argument, there exists a subsequence
that converge to u uniformly except on a set of arbitrarily small Lebesgue measure.
Since, by the hypothesis g is continuous, the limit n → ∞ can be passed on. On
applying a similar argument as in [26, step 4 of the Theorem 3.2], we have a.e.
convergence of the ∇un towards ∇u that follows in a standard way by proving that
∇Tk(un) goes to ∇Tk(u), in Lrloc(Ω) for r < p, for every k > 0. Finally, we can pass
the limit n → ∞ in the last term of (2.3) involving µn. This concludes the proof
of the result as it is easy to pass to the limit in (2.3). Therefore, we obtain a weak

solution of (1.5) in W 1,r
0 (Ω) for every r < N(p−1)

N−1 . �
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4.2. The case of γ ≥ 1. Because of the strong singularity we can have some local

estimates on un in the Sobolev space. We shall give global estimates on T
γ+p−1

2

k (un)

in W 1,2
0 (Ω) with the aim of giving sense, at least in a weak sense, to the boundary

values of u.

Lemma 4.3. Let un be a solution of (2.2) with γ ≥ 1. Then T
γ+p−1
p

k (un) is bounded

in W 1,p
0 (Ω) for every fixed k > 0.

Proof. Consider ϕ = T γk (un) as a test function in (2.3). We have

γ

∫
Ω

|∇un|p−2∇un · ∇Tk(un)T γ−1
k (un)

=

∫
Ω

λ

(un + 1
n )γ

T γk (un) +

∫
Ω

g(un)T γk (un) +

∫
Ω

T γk (un)µn.
(4.5)

We can estimate the term on the left-hand side of (4.5) as

γ

∫
Ω

|∇un|p−2∇un · ∇Tk(un)T γ−1
k (un) = γ

∫
Ω

|∇T
γ+p−1
p

k (un)|p. (4.6)

As
T γk (un)

(un + 1
n )γ
≤ uγn

(un + 1
n )γ
≤ 1,

the term on the right-hand side of (4.5) can be estimated as∫
Ω

λ

(un + 1
n )γ

T γk (un) +

∫
Ω

g(un)T γk (un) +

∫
Ω

T γk (un)µn

≤ Cλkγ + C

∫
Ω

uqnT
γ
k (un) + kγ

∫
Ω

µn

≤ Cλkγ + CMkγ + kγ
∫

Ω

µn

≤ C(k, γ)kγ .

(4.7)

On combining the inequalities (4.6) and (4.7) we obtain∫
Ω

|∇T
γ+p−1
p

k (un)|p ≤ Ckγ . (4.8)

Then
(
T
γ+p−1
p

k (un)
)

is bounded in W 1,p
0 (Ω) for every fixed k > 0. �

Now, so as to pass to the limit n→∞ in the weak formulation (2.3), we require
to prove some local estimates on un. We first prove the following lemma.

Lemma 4.4. Let un be a solution of (2.2) with γ ≥ 1. Then (un) is bounded in

W 1,r
loc (Ω) for every r < N(p−1)

N−1 .

Proof. We prove the theorem in two steps.

Step 1. We claim that (G1(un)) is bounded in W 1,r
0 (Ω) for every r < N(p−1)

N−1 . We

can see that G1(un) = 0 when 0 ≤ un ≤ 1, G1(un) = un − 1, otherwise i.e. when
un > 1. So ∇G1(un) = ∇un for un > 1. Now, we need to show that (∇G1(un)) is

bounded in M
N(p−1)
N−1 (Ω), where M

N(p−1)
N−1 (Ω) is the Marcinkiewicz space. Then we

have

{|∇un| > t, un > 1} = {|∇un| > t, 1 < un ≤ k + 1} ∪ {|∇un| > t, un > k + 1}
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⊂ {|∇un| > t, 1 < un ≤ k + 1} ∪ {un > k + 1} ⊂ Ω.

Hence,

m({|∇un| > t, un > 1})
≤ m({|∇un| > t, 1 < un ≤ k + 1}) +m({un > k + 1}).

(4.9)

To estimate (4.9) we take ϕ = Tk(G1(un)), for k > 1, as a test function in (2.2).
We observe that ∇Tk(G1(un)) = ∇un only when 1 < un ≤ k+ 1, otherwise is zero,
and Tk(G1(un)) = 0 on {un ≤ 1}, we have∫

Ω

|∇Tk(G1(un))|p

=

∫
Ω

λ

(u+ 1
n )γ

Tk(G1(un)) +

∫
Ω

g(un)Tk(G1(un)) +

∫
Ω

Tk(G1(un))µn

≤ Cλk + Ck

∫
Ω

uqn + k

∫
Ω

µn ≤ Ck

and by restricting the above integral on I1 = [1 < un ≤ k + 1], we obtain∫
[1<un≤k+1]

|∇Tk(G1(un))|p =

∫
[1<un≤k+1]

|∇un|p

≥
∫

[|∇un|>t,1<un≤k+1]

|∇un|p

≥ tpm({|∇un| > t, 1 < un ≤ k + 1})

so that

m({|∇un| > t, 1 < un ≤ k + 1}) ≤ Ck

tp
∀k ≥ 1.

According to (4.8) in the proof of Lemma 3.2, one can see that∫
Ω

|∇T
γ+p−1
p

k (un)|p ≤ Ckγ for all k > 1.

Therefore, from the Sobolev inequality

1

λ1

(∫
Ω

|T
γ+p−1
p

k (un)|p
∗
)p/p∗

≤
∫

Ω

|∇T
γ+p−1
p

k (un)|p ≤ Ckγ ,

where, λ1 is the first eigenvalue of the p-Laplacian operator. Now, if we restrict the
integral on the left hand side on I2 = [un > k + 1]x∈Ω, on which Tk(un) = k, we
then obtain

kγ+p−1m({un > k + 1})p/p
∗
≤ Ckγ ,

so that

m({un > k + 1}) ≤ C

k
N(p−1)
N−p

, ∀k ≥ 1.

So, (un) is bounded in M
N(p−1)
N−p (Ω), i.e. (G1(un)) is also bounded in M

N(p−1)
N−p (Ω).

Now (4.9) becomes

m({|∇un| > t, un > 1}) ≤ m({|∇un| > t, 1 < un ≤ k + 1}) +m({un > k + 1})

≤ Ck

tp
+

C

k
N(p−1)
N−p

,∀k > 1.
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We then choose k = t
N−p
N−1 and we obtain

m({|∇un| > t, un > 1}) ≤ C

t
N(p−1)
N−1

∀t ≥ 1.

We just proved that (∇un) = (∇G1(un)) is bounded in M
N(p−1)
N−1 (Ω). This implies

by property (2.1) that (G1(un)) is bounded in W 1,r
0 for every r < N(p−1)

N−1 .

Step 2. We claim that T1(un) is bounded in W 1,r
loc (Ω). We have to examine the

behavior of un for small values of un for each n. We want to show that for every
K ⊂⊂ Ω, ∫

K

|∇T1(un)|p ≤ C. (4.10)

We have already proved that un ≥ CK > 0 on K in Lemma 3.2. We will use
ϕ = T γ1 (un) as a test function in (2.3) to obtain

γ

∫
Ω

|∇un|p−2∇un · ∇Tk(un)T γ−1
k (un)

=

∫
Ω

λ

(un + 1
n )γ

T γk (un) +

∫
Ω

g(un)T γk (un) +

∫
Ω

T γk (un)µn ≤ C.
(4.11)

Now observe that

γ

∫
Ω

|∇un|p−2∇un · ∇T1(un)T γ−1
1 (un) ≥

∫
K

|∇T1(un)|pT γ−1
1 (un)

≥ Cγ−1
K

∫
K

|∇T1(un)|p.
(4.12)

On combining (4.11) and (4.12) we obtain (4.10). We completed the proof as

un = T1(un)+G1(un). Hence, (un) is bounded inW 1,r
loc (Ω) for every r < N(p−1)

N−1 . �

Now, we can finally state and prove the existence result for γ ≥ 1.

Theorem 4.5. Let γ ≥ 1. Then there exists a weak solution u of (1.5) in W 1,r
loc (Ω)

for every r < N(p−1)
N−1 .

The proof of the above theorem is a straightforward application of the Theorem
4.2 and using the results in Lemmas 4.3 and 4.4.

Other important results. Define, X = {u ∈ C1,α
0 (Ω̄) : u(x) ≥ 0 in Ω̄} and

let ξ is a unit outward normal at ∂Ω, then define X0 = {u ∈ C1,α
0 (Ω̄) : u(x) >

0 and ∂u
∂ξ (x) < 0, ∀x ∈ ∂Ω}. Clearly X0 is the interior of X.

Lemma 4.6. If u1, u ∈ C1,α
0 (Ω̄) with u1 6= u and

−∆pu1 >
λ

(u1 + 1
n )γ

+ g(u1) + µn,

−∆pu =
λ

(u+ 1
n )γ

+ g(u) + µn,

then (u1 − u) /∈ ∂X.

Proof. We prove this Lemma by contradiction. Suppose (u1 − u) ∈ ∂X. Then
u1(x) ≥ u(x). By Strong maximum principle [21], we can obtain (u1 − u) ∈ X0.
But X0 ∩ ∂X = φ, for which we obtain a contradiction. Therefore, u1− u does not
belong to ∂X. �
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Lemma 4.7. Assume I is an interval in R and A = I × C1,α
0 (Ω̄) is a connected

set of solutions of (2.2). Define F : I → C1,α
0 (Ω̄) is continuous such that F (λ) is

a supersolution to (2.2). If u1 ≤ F (λ1) in Ω, u1 6= F (λ1) for some (λ1, u1) ∈ A,
then u < F (λ) in Ω, for all (λ, u) ∈ A.

Proof. Let Z : A → C1,α
0 (Ω̄) is a continuous map such that Z(λ, u) = F (λ) − u.

A is connected, so by continuity Z(A) is connected in C1,α
0 (Ω̄). Using Lemma 4.6,

F (λ1) − u1 = Z(λ1, u1) /∈ ∂X. Hence, Z(λ1, u1) ∈ X0. So, Z(A) ⊂ X0, as Z(A)
is connected. Therefore, F (λ) − u > 0, which implies F (λ) > u for all (λ, u) ∈ A.
Hence, we obtain our required result. �

Lemma 4.8 (Ambrosetti-Arcoya [2]). Given X be a real Banach space with U ⊂ X
be open, bounded set. Let a, b ∈ R such that the equation u − T (λ, u) = 0 has no
solution on ∂U for all λ ∈ [a, b] and that u − T (λ, u) = 0 has no solution in U
for λ = b. Also let U1 ⊂ U be open such that u − T (λ, u) = 0 has no solution in
∂U1 for λ = a and deg(I − Ka, U1, 0) 6= 0. Then there exists a continuum C in∑

= {(λ, u) ∈ [a, b]×X : u− T (λ, u) = 0} such that

C ∩ ({a} × U1) 6= ∅ and C ∩ ({a} × (U − U1)) 6= ∅.

Theorem 4.9 (Mitidieri-Pohozaev [25]). If p− 1 < q < N(p−1)
N−p , p < N and C > 0,

then the problem ∫
Rn
|∇u|p−2∇u · ∇φ ≥ C

∫
Rn
uqφ; φ ∈ C∞c (Rn)

does not have any positive solution in C1(Rn).

Theorem 4.10 (De Figueiredo et al. [16]). Let C be a cone in a Banach space X
and φ : C → C be a compact map such that φ(0) = 0. Assume that there exists
0 < r < R such that

(1) x 6= tφ(x) for 0 ≤ t ≤ 1 and ‖x‖ = r
(2) a compact homotopy F : B̄R × [0,∞) → C such that F (x, 0) = φ(x) for
‖x‖ = R, F (x, t) 6= x for ‖x‖ = R and 0 ≤ t < ∞ and F (x, t) = x has no
solution for x ∈ B̄R for t ≥ t0.

Then, if U = {x ∈ C : r < ‖x‖ < R} and Bρ = {x ∈ C : ‖x‖ < ρ}, we have
deg(I − φ,BR, 0) = 0, deg(I − φ,Br, 0) = 1 and deg(I − φ,U, 0) = −1.
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