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ASYMPTOTIC FORMULAS FOR OSCILLATORY BIFURCATION

DIAGRAMS OF SEMILINEAR ORDINARY DIFFERENTIAL

EQUATIONS

TETSUTARO SHIBATA

Abstract. We study the nonlinear eigenvalue problem

−u′′(t) = λ (u(t)p + g(u(t))) , u(t) > 0, t ∈ (−1, 1), u(±1) = 0,

where g(u) = h(u) sin(ur), p, r are given constants satisfying p ≥ 0, 0 < r ≤ 1
and λ > 0 is a parameter. It is known that under suitable conditions on h,

λ is parameterized by the maximum norm α = ‖uα‖∞ of the solution uλ
associated with λ and λ = λ(α) is a continuous function for α > 0. When
p = 1, h(u) ≡ 1 and r = 1/2, this equation has been introduced by Chen

[4] as a model equation such that there exist infinitely many solutions near
λ = π2/4. We prove that λ(α) is an oscillatory bifurcation curve as α → ∞
by showing the asymptotic formula for λ(α). It is found that the shapes of

bifurcation curves depend on the condition p > 1 or p < 1. The main tools of
the proof are time-map argument and stationary phase method.

1. Introduction

We consider the nonlinear eigenvalue problems

−u′′(t) = λ
(
u(t)p + g(u(t))

)
, t ∈ I := (−1, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(−1) = u(1) = 0, (1.3)

where g(u) = h(u) sin(ur) with h ∈ C1[0,∞), p, r are given constants satisfying
p ≥ 0, 0 < r ≤ 1 and λ > 0 is a parameter. We assume the following conditions :

(A1) up + g(u) > 0 for u > 0.
(A2) Let 0 ≤ q < p, and C1, C2 be positive constants. Then for u ≥ 0,

|h(u)| ≤ C1(u+ 1)q, |h′(u)| ≤ C2(u+ 1)q−1. (1.4)

(A3) h(u)� uq−(r/2) for u� 1.

A typical example of (1.1) is p = 2, h(u) = log(1+u2) (q = 1/4) and r = 1/2. By
(A1), we know from [11] that there exists a unique classical solution pair (λ, uα) of
(1.1)–(1.3) satisfying α = ‖uα‖∞ for any given α > 0. Moreover, λ is a continuous
curve λ = λ(α) for α > 0.

The study of global and local structures of bifurcation diagrams have a long
history. Many topics considered there have a background in mathematical biology,
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engineering, and have been investigated intensively by many authors. We refer
to [2, 3, 5, 6] and the references therein. In particular, oscillatory phenomena of
bifurcation curves seem to be the significant problems to study, since the oscillatory
properties of the nonlinear term g give us a lot of interesting shapes of bifurcation
curves. We refer to [7, 8, 9, 10, 12, 13, 14, 15] and the references therein.

The equation (1.1)–(1.3) with p = 1 and g(u) = sin
√
u has been studied in Cheng

[4]. This paper was motivated by [1], since this model equation was expected to
give an oscillatory bifurcation curve. Precisely, the following result has been proved
in [4].

Theorem 1.1 ([4, Theorem 6] ). Let g(u) = sin
√
u (u ≥ 0). Then for any integer

r ≥ 1, there is δ > 0 such that if λ ∈ (π2/4 − δ, π2/4 + δ), then (1.1)–(1.3) has at
least r distinct solutions.

By Theorem 1.1, we expect that λ(α) oscillates and intersects the line λ = π2/4
infinitely many times as α→∞. Recently, it was shown in [15] that this expectation
is valid.

Theorem 1.2 ([15]). Let g(u) = sin
√
u. Then as α→∞,

λ(α) =
π2

4
− π3/2α−5/4 sin(

√
α− π

4
) + o(α−5/4). (1.5)

A rough sketch of λ(α) for (1.5) is shown in Figure 1, obtained in [15].

α

λ

π2/4

0

Figure 1. Bifurcation curve when p = 1, h ≡ 1, r = 1/2

Motivated by [4, 15], the following asymptotic formulas for λ(α) with p = 1 and
g(u) = uq sin(ur) as α→∞ when 0 ≤ q < 1 and 0 < r ≤ 1 were obtained in [16].

Theorem 1.3 ([16]). Let p = 1 and g(u) = uq sin(ur) in (1.1)–(1.3), where 0 ≤
q < 1 and 0 < r ≤ 1 are fixed constants. Then as α→∞,

λ(α) =
π2

4
− π3/2

√
2r
αq−1−(r/2) sin

(
αr − π

4

)
+ o(αq−1−(r/2)). (1.6)

Clearly, if q = 0 and r = 1/2, then Theorem 1.3 coincides with Theorem 1.2.
The proof of Theorem 1.3 was based on the time-map formula and stationary
phase method. Unfortunately, however, it seems that only the special cases have
been considered in [16]. Moreover, since h(u) is not homogeneous function here,
the estimate of the remainder term of λ(α) is difficult when we apply the stationary
phase method to our case. This phenomenon does not appear for the case h(u) = uq.
The purpose of this paper is to overcome this difficulty and generalize the results
obtained in [16]. Now we state our main results.
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Theorem 1.4. Assume that (A1)–(A3) are satisfied. Then as α→∞,

λ(α) =
p+ 1

2
α−(p−1)

{
A2
p − 2π

√
π

r(p+ 1)
Aph(α)α−p−(r/2) sin(αr − π

4
)

+ o(h(α)α−p−(r/2))
}
,

(1.7)

where

Ap :=

∫ 1

0

1√
1− sp+1

ds. (1.8)

We see easily that if p = 1, h(u) = uq, then Theorem 1.4 coincides with Theorem
1.3. In the proof of Theorem 1.4 the main tools are time-map method and the
stationary phase method. The most important part is that, since f(x) in (2.17)
and (2.18) in the next section depends on α, we have to be careful about the decay
rate of the remainder terms in (2.10). To overcome this difficulty, in the proof, we
go back to the starting point of the argument of stationary phase method.

We next establish the asymptotic formulas for λ(α) as α → 0 to complete the
total shape of λ(α). We mention that the conditions (A2) and (A3), which control
the growth rate of h(u) as α→∞ are not necessary.

Theorem 1.5. Assume that (A1) is satisfied and h(0) > 0.

(i) if p < r, then as α→ 0,

λ(α) =
p+ 1

2
α1−p

{
A2
p −

p+ 1

r + 1
ApBp,rh(0)αr−p + o(αr−p)

}
, (1.9)

where

Bp,r :=

∫ 1

0

1− sr+1

(1− sp+1)3/2
ds. (1.10)

(ii) If r < p, then as α→ 0,

λ(α) =
r + 1

2h(0)
α1−r

{
A2
p −

r + 1

(p+ 1)h(0)
ArBr,pα

p−r + o(αp−r)
}
. (1.11)

(iii) If 1/2 < p = r and h′(0) 6= 0, then as α→ 0,

λ(α) =
p+ 1

2(1 + h(0))
α1−p

{
A2
p −

(p+ 1)h′(0)

(p+ 2)(1 + h(0))
ApBp,p+1α+ o(α)

}
. (1.12)

We note that in Theorem 1.5 (iii), the case p = r < 1/2 can be treated similarly.
The proof of Theorem 1.5 depends on the direct calculation by using time-map
method and Taylor expansion formula.

Figure 2 shows a rough sketch of λ(α) obtained in Theorems 1.4 and 1.5 with
0 < r < 1 < p and 0 < r < p < 1.

2. Proof of Theorem 1.4

In this section, we let α� 1. Also we denote by C the various positive constants
independent of α. For u ≥ 0, we put

G(u) :=

∫ u

0

g(θ)dθ =

∫ u

0

h(θ) sin(θr)dθ. (2.1)

It is known that if (uα, λ(α)) ∈ C2(Ī)× R+ satisfies (1.1)–(1.3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1, (2.2)
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Figure 2. Bifurcation curve when 0 < r < 1 < p (left), and when
0 < r < p < 1 (right)

uα(0) = max
−1≤t≤1

uα(t) = α, (2.3)

u′α(t) > 0, −1 < t < 0. (2.4)

By (1.1), we have

(u′′α(t) + λ (uα(t)p + g(uα(t))))u′α(t) = 0.

By this and (2.3), putting t = 0 we obtain

1

2
u′α(t)2 + λ

( 1

p+ 1
uα(t)p+1 +G(uα(t))

)
= const. = λ

( 1

p+ 1
αp+1 +G(α)

)
.

(2.5)

This along with (2.4) implies that for −1 ≤ t ≤ 0,

u′α(t) =

√
2λ

p+ 1

√
αp+1 − uα(t)p+1 + (p+ 1){(G(α)−G(uα(t))}. (2.6)

For 0 ≤ s ≤ 1, by (A2), we have

| G(α)−G(αs)

αp+1(1− sp+1)
| = |

∫ α
αs
g(t)dt

αp+1(1− sp+1)
|

≤ Cα
q+1(1− sq+1) + α(1− s)

αp+1(1− sp+1)

≤ C(αq−p + α−p)� 1.

(2.7)
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We put M(s, α) := G(α) − G(αs) for 0 ≤ s ≤ 1. By (2.6), (2.7), putting s :=
uα(t)/α and using the Taylor expansion, we obtain√

2λ

p+ 1

=

∫ 0

−1

u′α(t)√
αp+1 − uα(t)p+1 + (p+ 1)(G(α)−G(uα(t)))

dt

= α−(p−1)/2
∫ 1

0

1√
1− sp+1 + (p+ 1)M(α, s)/αp+1

ds

= α−(p−1)/2
∫ 1

0

1√
1− sp+1

1√
1 + (p+ 1)M(α, s)/(αp+1(1− sp+1))

ds

= α−(p−1)/2
∫ 1

0

1√
1− sp+1

{
1− (p+ 1)M(s, α)

2αp+1(1− sp+1)
(1 + o(1))

}
ds

= α−(p−1)/2
∫ 1

0

1√
1− sp+1

ds− p+ 1

2
α−(3p+1)/2

∫ 1

0

M(α, s)

(1− sp+1)3/2
ds

+ o(α−(3p+1)/2).

(2.8)

We put

L(α) :=

∫ 1

0

M(α, s)

(1− sp+1)3/2
ds. (2.9)

It is evident from (2.8) and (2.9) that the precise asymptotic formula for L(α) as
α → ∞ gives us Theorem 1.4. To study the asymptotic properties of L(α), we
apply the idea of the stationary phase method to (2.9).

Lemma 2.1. As α→∞,

L(α) =
2

p+ 1

√
π

r(p+ 1)
h(α)α(2−r)/2 sin

(
αr − π

4

)
+ o(h(α)α(2−r)/2). (2.10)

Proof. The proof is divided into several steps.

Step 1. We put s = sin2/(p+1) x in (2.9). Then we have

L(α) =
2

p+ 1

∫ π/2

0

1

cos2 x
sin(1−p)/(p+1) x(G(α)−G(α sin2/(p+1) x))dx

=
2

p+ 1

∫ π/2

0

(tanx)′{sin(1−p)/(p+1) x(G(α)−G(α sin2/(p+1) x))}dx

=
2

p+ 1

[
tanx{sin(1−p)/(p+1) x(G(α)−G(α sin2/(p+1) x))}

]π/2
0

− 2

p+ 1

∫ π/2

0

tanx
{1− p
p+ 1

sin−2p/(p+1) x cosx(G(α)−G(α sin2/(p+1) x))

− 2

p+ 1
α sin2(1−p)/(p+1) x cosxg(α sin2/(p+1) x)

}
dx

=
2

p+ 1

[
tanx{sin(1−p)/(p+1) x(G(α)−G(α sin2/(p+1) x))}

]π/2
0

+
2(p− 1)

(p+ 1)2

∫ π/2

0

sin(1−p)/(p+1) x(G(α)−G(α sin2/(p+1) x))dx
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+
4

(p+ 1)2
α

∫ π/2

0

sin(3−p)/(p+1) xg(α sin2/(p+1) x)dx

=: I +
2(p− 1)

(p+ 1)2
II +

4α

(p+ 1)2
III. (2.11)

Step 2. By l’Hôpital’s rule, we obtain

lim
x→π/2

G(α)−G(α sin2/(p+1) x))

cosx

= lim
x→π/2

2

p+ 1
α sin−2p/(p+1) x cosxg(α sin2/(p+1) x) = 0.

(2.12)

From this, we obtain I = 0. Now we calculate II. We have

II =

∫ π/2

0

sin(1−p)/(p+1) x
(∫ α

α sin2/(p+1) x

h(θ) sin(θr)dθ
)
dx. (2.13)

By putting θ = y1/r and integration by parts, we obtain∫ α

α sin2/(p+1) x

h(θ) sin(θr)dθ

=
1

r

∫ αr

αr sin2r/(p+1) x

h(y1/r)y(1−r)/r sin y dy

=
1

r

[
− h(y1/r)y(1−r)/r cos y

]αr

αr sin(2r)/(p+1) x

+
1

r

∫ αr

αr sin2r/(p+1) x

(h(y1/r)y(1−r)/r)′ cos y dy

=: II1 + II2.

(2.14)

By (A2) and direct calculation, it is easy to see that

|II1| ≤ Cαq+1−r, |II2| ≤ Cαq+1−2r. (2.15)

Step 3. Now by putting sinx = sin(p+1)/2 θ and θ = π/2− y, we obtain

III =
p+ 1

2

∫ π/2

0

sin θ
cos θ√

1− sinp+1 θ
h(α sin θ) sin(αr sinr θ)dθ

=
p+ 1

2

∫ π/2

0

cos y

√
1− cos2 y

1− cosp+1 y
h(α cos y) sin(αr cosr y)dy.

(2.16)

Let m := 1/r ≥ 1. We put cos y = cosm v and v = πx/2. Then by (2.16) and direct
calculation, we obtain

III =
mπ(p+ 1)

4

∫ 1

0

f(x) sin
(
αr cos

(π
2
x
))

dx, (2.17)

where

f(x) := cos2m−1
(π

2
x
)
V (x)h

(
α cosm

(π
2
x
))
, (2.18)

V (x) :=

√
1− cos2(π2x)

1− cosm(p+1)(π2x)
. (2.19)
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Next we use the argument [10, Lemmas 2.24 and 2.25]. We put

µ := αr, w(x) = cos
(π

2
x
)
, x = φ(t) :=

2

π
cos−1(1− t2). (2.20)

Then we have

f(φ(t)) = (1− t2)2m−1

√
1− (1− t2)2

1− (1− t2)m(p+1)
h(α(1− t2)m), (2.21)

φ′(t) =
4

π
√

2− t2
, φ(0) = 0, φ(1) = 1. (2.22)

Let

f̃(t) := f(φ(t))φ′(t), m(t) :=
f̃(t)− f̃(0)

t
, (2.23)

III1 :=

∫ 1

0

f(x)eiµw(x)dx. (2.24)

Since w(x) = 1− t2, by change of valuable x = φ(t), and (2.21)–(2.24), we have

III1 = eiµ
∫ 1

0

f(φ(t))φ′(t)e−iµt
2

dt

= eiµf(0)φ′(0)

∫ 1

0

e−iµt
2

dt+ eiµ
∫ 1

0

m(t)te−iµt
2

dt

= eiµf(0)φ′(0)
(1

2

√
π

µ
e−iπ/4 +O(µ−1)

)
+ eiµ

∫ 1

0

m(t)te−iµt
2

dt

=:
1

2
f(0)φ′(0)

(√π

µ
ei(µ−π/4) +O(µ−1)

)
+ eiµM1.

(2.25)

Then by direct calculations, we see that m(t) ∈ C1[0, ε], and consequently, m(t) ∈
C1[0, 1]. Since m(t) in (2.23) is defined by using f , and f contains α, m(t) also
depends on α. So we have to calculate how M1 depends on α� 1 precisely. Since
m(0) = 0 and m(1) = −4h(α)/(π

√
m(p+ 1)), by integration by parts and (A2),

we have

M1 :=

∫ 1

0

−1

2iµ
(e−iµt

2

)′m(t) dt

=
[−1

2iµ
e−iµt

2

m(t)
]1
0

+

∫ 1

0

1

2iµ
e−iµt

2

m′(t)dt

:=O(h(α)µ−1) +M2 = O(αq−r) +M2.

(2.26)

We estimate M2. By (A2), (2.22), (2.23) and direct calculations, for 0 ≤ t ≤ 1. We
obtain

|m′(t)| ≤ C max
0≤t≤1

|f̃ ′(t)|
t
≤ C( max

0≤t1≤1
|h(t1α)|+ α max

0≤t2≤1
|h′(t2α)|) ≤ Cαq. (2.27)

We accept (2.27) tentatively, since the argument is long and elementary. For com-
pleteness, the proof will be given in the appendix. Since µ = αr, by this and (2.26),
we obtain M2 = O(αq−r). By this, (2.26) and (A3),

|M1| = O(αq−r)� h(α)α−r/2. (2.28)
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Step 4. We have

V (0) = lim
x→0

√
1− cos2

(
π
2x
)

1− cosm(p+1)
(
π
2x
) =

√
2

m(p+ 1)
, (2.29)

φ′(0) =
2
√

2

π
, f(0) =

√
2

m(p+ 1)
h(α). (2.30)

By (2.17), (2.25), (2.26), (2.28)–(2.30), we obtain that as α→∞,

III =
mπ(p+ 1)

4
Im(III1)

=
1

2

√
m(p+ 1)πh(α)α−r/2 sin

(
αr − π

4

)
+ o(h(α)α−r/2).

(2.31)

From this, (2.11) and (2.15), we obtain (2.10). Thus the proof is complete. �

Now Theorem 1.4 follows from (2.8) and Lemma 2.1 immediately.

3. Proof of Theorem 1.5

In this section, we let 0 < α� 1. For 0 < x < α, we have

h(x) = h(0) + h′(0)(1 + o(1))x. (3.1)

The proof of Theorem 1.5 (ii) is almost the same as that of Theorem 1.5 (i). So we
only prove Theorem 1.5 (i) and (iii).

Proof of Theorem 1.5. (i) Let g(u) = h(u) sin(ur) and p < r. By (3.1) and Taylor
expansion, for 0 ≤ s ≤ 1, we have

M(α, s) =

∫ α

αs

(h(0) + h′(0)(1 + o(1))x)
(
xr − 1

6
x3r +O(x5r)

)
dx

=
1

r + 1
h(0)(1 + o(1))αr+1(1− sr+1).

(3.2)

From this and (2.8), we have√
2λ

p+ 1

= α−(p−1)/2
[ ∫ 1

0

1√
1− sp+1

{
1− p+ 1

2

M(α, s)

αp+1(1− sp+1)

}
ds+ o(αr−p)

]
= α−(p−1)/2{Ap −

p+ 1

2
α−(p+1)L1(α) + o(αr−p)},

(3.3)

where

L1(α) =
1

r + 1
h(0)αr+1

∫ 1

0

1− sr+1

(1− sp+1)3/2
ds =

1

r + 1
Bp,rh(0)αr+1. (3.4)

By this and (3.3), we obtain

λ =
p+ 1

2
α−(p−1)

{
A2
p −

p+ 1

r + 1
ApBp,rh(0)αr−p + o(αr−p)

}
. (3.5)

Thus we obtain (1.9).
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(iii) Let p = r. Since h′(0) 6= 0, by (3.2), we have

1− sp+1 +
p+ 1

αp+1
M(α, s)

= (1 + h(0))(1− sp+1) +
p+ 1

p+ 2
h′(0)α(1− sp+2) + o(α)(1− s).

(3.6)

By this and Taylor expansion, we obtain√
2λ

p+ 1

= α−(p−1)/2
∫ 1

0

1√
(1 + h(0))(1− sp+1) + (p+1)h′(0)

p+2 (1− sp+2)α+ o(α)(1− s)
ds

=
α−(p−1)/2√

1 + h(0)

∫ 1

0

1
√

1− sp+1
√

1 + (p+1)h′(0)
(p+2)(1+h(0))

1−sp+2

1−sp+1α+ o(α)
ds

=
α−(p−1)/2√

1 + h(0)

∫ 1

0

1√
1− sp+1

{
1− (p+ 1)h′(0)

2(p+ 2)(1 + h(0))

1− sp+2

1− sp+1
α+ o(α)

}
ds .

From this we obtain (1.12). Thus the proof is complete. �

4. Appendix

In this section, we prove (2.27). For 0 ≤ t ≤ 1. We put

W (t) :=
√
X(t), X(t) :=

1− (1− t2)2

1− (1− t2)m(p+1)
. (4.1)

Then by (2.21)–(2.23), we have

f̃(t) = (1− t2)2m−1W (t)h(α(1− t2)m)
4

π
√

2− t2
. (4.2)

Then

f̃ ′(t) = −2t(2m− 1)(1− t2)2m−2W (t)h(α(1− t2)m)
4

π
√

2− t2

+ (1− t2)2m−1W ′(t)h(α(1− t2)m)
4

π
√

2− t2

− 2mtα(1− t2)3m−2W (t)h′(α(1− t2)m)
4

π
√

2− t2

+
4

π
t(1− t2)2m−1W (t)h(α(1− t2)m)(2− t2)−3/2.

(4.3)

We have

X ′(t)

=
( 2t2 − t4

1− (1− t2)m(p+1)

)′
=

4(t− t3){1− (1− t2)m(p+1)} −m(p+ 1)(4t3 − 2t5)(1− t2)m(p+1)−1

{1− (1− t2)m(p+1)}2
.

(4.4)

By Taylor expansion, for 0 ≤ t� 1, we have

X ′(t) =
2(mp+m− 2)

m(p+ 1)
t+O(t3). (4.5)
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By this, (4.1) and (4.3), for 0 < t� 1, we have

W ′(t) =
1

2
X(t)−1/2X ′(t), X(0) =

2

m(p+ 1)
,

X ′(0) = 0, W ′(0) = 0, f̃ ′(0) = 0.

(4.6)

By this, the mean value theorem and (4.3), for 0 ≤ t ≤ 1, we obtain

m′(t) =
f̃ ′(t)

t
− f̃(t)− f̃(0)

t2
=
f̃ ′(t)

t
− ηt

f̃ ′(ηtt)

ηtt
, (4.7)

where 0 < ηt < 1. By this, (A2), (4.3) and (4.5), we obtain

|m′(t)| ≤ 2 max
0≤s≤t

| f̃
′(s)

s
| ≤ 2 max

0≤t≤1
| f̃
′(t)

t
|

≤ C( max
0≤t1≤1

|h(t1α)|+ α max
0≤t2≤1

|h′(t2α)|) ≤ Cαq.
(4.8)

Thus the proof is complete.
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[2] S. Cano-Casanova, J. López-Gómez; Existence, uniqueness and blow-up rate of large solutions

for a canonical class of one-dimensional problems on the half-line, J. Differential Equations,
244 (2008), 3180–3203.
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