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NON-AUTONOMOUS APPROXIMATIONS GOVERNED BY THE

FRACTIONAL POWERS OF DAMPED WAVE OPERATORS

MARCELO J. D. NASCIMENTO, FLANK D. M. BEZERRA

Abstract. In this article we study non-autonomous approximations governed
by the fractional powers of damped wave operators of order α ∈ (0, 1) subject

to Dirichlet boundary conditions in an n-dimensional bounded domain with

smooth boundary. We give explicitly expressions for the fractional powers of
the wave operator, we compute their resolvent operators and their eigenvalues.

Moreover, we study the convergence as α↗ 1 with rate 1− α.

1. Introduction

This article concerns the fractional powers of order α ∈ (0, 1) of the wave op-
erators with time-dependent propagation speed subject to Dirichlet boundary con-
ditions in an n-dimensional bounded domain with smooth boundary, in sense of
Amann [1, pg. 148] and Henry [22, pg. 25]. We study the approximation via
fractional powers of the following initial-boundary value problem associated with a
non-autonomous damped wave equation

utt + a(t)(−∆D)u+ η(t)ut = 0, x ∈ Ω, t > τ,

u(x, t) = 0, x ∈ ∂Ω, t > τ,

u(x, τ) = u0(x), ut(x, τ) = v0(x), x ∈ Ω̄, τ ∈ R,
(1.1)

where Ω ⊂ Rn is a bounded smooth domain, n > 1, a is a positive and bounded
real-valued functions defined in R such that there are positive constants amin and
amax satisfying

0 < amin 6 a(t) 6 amax, ∀t ∈ R, (1.2)

We suppose that a is a Hölder continuous function with exponent 1/2 6 γ 6 1
and constant κ > 0; that is,

∀x, y ∈ R, |a(x)− a(y)| 6 κ|x− y|γ . (1.3)

In this case we say that the function a is (γ, κ)-Hölder continuous in R, or simply
a ∈ C0,γ(R).

We also assume that η is continuously differentiable, positive, decreasing in R
and is Hölder continuous function with some exponent less than 1.

We give explicitly expressions for the fractional powers of the wave operator,
compute their resolvent operators, and their eigenvalues. Moreover, we study the
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convergence as α↗ 1 with rate 1−α. Our motivation for considering this problem is
based on the fact that, if for each t ∈ R, the linear operator Λ(t) is the infinitesimal
generator of a semigroup which is strongly continuous (not necessarily analytic,
in sense of Henry [22]) for which we can define their fractional powers of order
0 < α < 1, Λ(t)α, the fractional powers are positive sectorial operators, see e.g.
Kato [23] and Henry [22]. With this, the analytic semigroup to which infinitesimal
generator is the fractional power Λ(t)α is associated with a fractional approximation
more regular to the original problem, and this can be used to get more information
to original problem in the passage to the limit α↗ 1.

In recent years many researchers has been studying spatial fractional models in
bounded smooth domains and its connection with classical models involving the
problem of solvability and analysis of asymptotic dynamics, in the sense of global
attractors. Benson, Wheatcraft and Meerschaert [2] studied a fractional advection-
dispersion equation. Bezerra, Carvalho, Cholewa and Nascimento [3] considered
autonomous approximations via fractional powers of semilinear wave equations with
subcritical nonlinear term. Bezerra, Carvalho, D lotko and Nascimento [4] consid-
ered approximations via fractional powers of Schröndiger equations with subcritical
nonlinear term. Cholewa and D lotko [6] and D lotko [20] studied approximations
via fractional powers of Navier-Stokes equations. Fazli and Bahrami [21] studied
steady solutions of fractional reaction-diffusion equations. Pan et al. [24] studied
the fractional approximations of a thermal transport model for nanofluid in porous
media.

Non-autonomous damped wave equations have been considered before by many
authors, see e.g. Caraballo et al. [8, 9, 10] and Carvalho, Langa and Robinson [12,
Chapter 15] where the dynamics and their continuity is studied under perturbations
in the parameters of the equations. Chen and Triggiani [16, 17, 18, 19] studied the
characterization and properties of the fractional powers of certain operators arising
in elastic systems. Sun, Cao and Duan [27] studied the dynamics (existence of
pullback attractors) for a class of non-autonomous damped wave equations.

Carvalho et al. [11] considered the semilinear problem correspondent to (1.1),
with η and a positive constants functions, through a limit of a strongly damped
wave equation, adding the term 2ρ(−∆D)1/2 with ρ > 0 to the equation, so that the
equation becomes ‘parabolic’ in nature (see Chen and Triggiani [17]), and passing
to the limit as ρ → 0+. With the ‘parabolic’ structure (ρ > 0), they obtain
local well posedness for the perturbed problem with the usual semigroup approach.
Under a dissipative condition in the nonlinearity they obtain global well posedness,
existence of global attractors and some uniform (with respect to ρ) bounds that
allow a passage to the limit (ρ = 0). After this the authors obtain global solutions
of (1.1) that satisfy the variation of constants formula and are able to establish the
existence of global attractors.

To express our results better let us first introduce some terminology. If X =
L2(Ω) and A : D(A) ⊂ X → X is defined by D(A) = H2(Ω) ∩ H1

0 (Ω) and Au =
−∆Du for all u ∈ D(A), then A is a positive self-adjoint operator and −A generates
a compact analytic semigroup on X. Denote by Xα the fractional power spaces
associated with operator A; that is, Xα = D(Aα) with the norm ‖Aα · ‖X : Xα →
R+.

Since A is positive self-adjoint operator on X, then the characterization of the
scale {Xα : 0 6 α 6 1} is quite complete, see for instance Cholewa and D lotko
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[7], Triebel [28] and references therein. In this case the imaginary powers of A are
bounded and Xα may be described as the intermediate spaces between L2(Ω) and
H2(Ω)∩H1

0 (Ω) based on the complex interpolation method, see for instance Triebel
[28] and references therein. For α > 0 we define X−α as the completion of X with
the norm ‖A−α · ‖X . With this notation X1/2 = H1

0 (Ω), X1 = H2(Ω)∩H1
0 (Ω) and

X−α = (Xα)′ (see Amann [1] for the characterization of the negative scale).
The initial-boundary value problem (1.1) can be written as a non-autonomous

abstract Cauchy problem in the product space Y = X1/2 ×X as

d

dt

[
u
v

]
+ Λ(t)

[
u
v

]
= F

(
t,

[
u
v

])
, t > τ, and

[
u
v

]
t=τ

=

[
u0
v0

]
, (1.4)

where the non-autonomous damped wave operator Λ(t) : D(Λ(t)) ⊂ Y → Y is
defined by

Λ(t)

[
u
v

]
=

[
0 −I

a(t)A 0

] [
u
v

]
where

D(Λ(t)) = X1 ×X1/2 =: Y 1,

and

F
(
t,

[
u
v

])
:=

[
0

−η(t)v

]
, t ∈ R,

[
u
v

]
∈ X1 ×X1/2. (1.5)

The aim of this paper is to consider problem (1.1) using an approximation by
‘parabolic type’ problems of ‘lower order’ which we begin to describe. If −Λ(t) de-
notes the wave operator (generator of a C0-semigroup), we use the fractional power
operators −Λ(t)α, α ∈ (0, 1), (generator of an analytic semigroup) to approximate
−Λ(t). This type of approximation (though defined by a lower order operator) has
the effect of regularity and ensures properties of smoothing to the operator solution
of the perturbed problem that the limit does not have.

With this, we consider the non-autonomous abstract Cauchy problem

d

dt

[
uα

vα

]
+ Λ(t)α

[
uα

vα

]
= F (t,

[
uα

vα

]
), t > τ, and

[
uα

vα

]
t=τ

=

[
u0
v0

]
. (1.6)

We will see that the operator Λ(t)α is a positive sectorial operator (see Kato
[23]). With this, the system (1.6) can be seen as a parabolic type perturbation
of the system (1.4) and we approximate solutions of (1.4) by solutions of (1.6),
α0 < α < 1, with suitably chosen initial data, for some 0 < α0 < 1.

We emphasize that, though it may appear cumbersome at the moment, we will
be able to give explicit expressions to the fractional powers of Λ(t) (in terms of the
fractional powers of −∆D). Exploiting the parabolic structure of (1.6), the local
well posedness for (1.6) is obtained for α suitably close do 1.

This paper is organized as follows. In Section 2 we will remember some defini-
tions and results about theory of non-autonomous semilinear parabolic problems,
according to Carvalho, Langa and Robinson [12], Carvalho and Nascimento [13],
and Sobolevskĭı [26]. In Section 3 we solve the linear problem associated with (1.6);
namely we prove the following theorem.

Theorem 1.1. (i) For each α ∈ (0, 1), the operators Λ(t)α are uniformly sec-
torial and the map t 7→ Λ(t)α is uniformly Hölder continuous in Y ;
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(ii) There exist a linear evolution process {Uα(t, τ) : t > τ ∈ R} that solves the
linear homogeneous problem

d

dt

[
uα

vα

]
+ Λ(t)α

[
uα

vα

]
= 0, t > τ,

[
uα

vα

]
t=τ

=

[
u0
v0

]
, (1.7)

for each α ∈ (0, 1); namely, for any t > τ ∈ R,

Uα(t, τ)

[
u0
v0

]
=

[
uα

vα

]
,

where

(τ,∞) 3 t 7→
[
uα

vα

]
(t) = Uα(t, τ)

[
u0
v0

]
∈ X1/2 ×Xis continuously differentiable,[

uα

vα

]
(t) ∈ X

1+α
2 ×Xα/2 ∀t ∈ (τ,+∞) and satisfies (1.7).

(1.8)
(iii) There exist a linear evolution process {Sα(t, τ) : t > τ ∈ R} that solves

the linear problem (1.6) for each α ∈ (0, 1); namely, for any t > τ ∈ R,

Sα(t, τ)

[
u0
v0

]
=

[
uα

vα

]
, where[

uα

vα

]
∈ C1([τ,∞);X1/2 ×X) ∩ C((τ,∞);X

1+α
2 ×Xα/2).

In Section 4 we study the spectral properties of the operators Λ(t) and Λ(t)α,
studying the convergence with rate of the spectral projections and compute the
eigenvalues of this operators, in terms of α. Namely, we obtain the convergence
with rate 1− α of the spectral projections associated with Λ(t)α.

2. Singularly non-autonomous abstract linear problem

Throughout this article, L(Z) denotes the space of linear and bounded operators
defined in a Banach space Z. Let A(t), t ∈ R, be a family of unbounded closed
linear operators defined on a fixed dense subspace D of Z.

Consider the singularly non-autonomous abstract linear parabolic problem

du

dt
= −A(t)u, t > τ,

u(τ) = u0 ∈ D.

We assume that

(a) The operator A(t) : D ⊂ Z → Z is a closed densely defined operator (the
domain D is fixed) and there is a constant C > 0 (independent of t ∈ R)
such that all λ ∈ C with Reλ > 0,

‖(A(t) + λI)−1‖L(Z) 6
C

|λ|+ 1
.

To express this fact we will say that the family A(t) is uniformly sectorial,
see e.g. [13] and [26].

(b) There are constants C > 0 and ε0 > 0 such that, for any t, τ, s ∈ R,

‖[A(t)−A(τ)]A−1(s)‖L(Z) 6 C(t− τ)ε0 , ε0 ∈ (0, 1].
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To express this fact we will say that the function A(t) is uniformly Hölder
continuous, see e.g. [13] and [26].

Denote by A0 the operator A(t0) for some t0 ∈ R fixed. If Zα denotes the
domain of Aα0 with the graph norm, α > 0, Z0 := Z, denote by {Zα;α > 0} the
fractional power scale associated with A0 (see Henry [22]).

From (a), −A(t) is the generator of an analytic semigroup {e−τA(t) ∈ L(Z) :
τ > 0}. With this and the fact that 0 ∈ ρ(A(t)), it follows that

‖e−τA(t)‖L(Z) 6 C, τ > 0, t ∈ R,

and

‖A(t)e−τA(t)‖L(Z) 6 Cτ−1, τ > 0, t ∈ R.

From (b) it follows that for all T > 0,

‖A(t)A−1(τ)‖L(Z) 6 C,

for any t, τ ∈ [−T, T ]. Also, the semigroup e−τA(t) generated by −A(t) satisfies the
estimate

‖e−τA(t)‖L(Zβ ,Zα) 6Mτβ−α, (2.1)

where 0 6 β 6 α < 1 + ε0.
Next we recall the definition of evolution process associated with an operator

family {A(t) : t ∈ R}.

Definition 2.1. A family {U(t, τ) : t > τ ∈ R} ⊂ L(Z) satisfying

(1) U(τ, τ) = I,
(2) U(t, σ)U(σ, τ) = U(t, τ) for any t > σ > τ ,
(3) P × Z 3 ((t, τ), u0) 7→ U(t, τ)v0 ∈ Z is continuous, where P = {(t, τ) ∈

R2 : t > τ}.
it is called a linear evolution process (process for short) or family of evolution
operators, see [12].

If the operator A(t) is uniformly sectorial and uniformly Hölder continuous, then
we obtain that there exist a process {U(t, τ) : t > τ ∈ R} associated with operator
A(t), that is give by

U(t, τ) = e−(t−τ)A(τ) +

∫ t

τ

U(t, s)[A(τ)−A(s)]e−(s−τ)A(τ)ds.

The evolution operator {U(t, τ) : t > τ ∈ R} satisfies the condition

‖U(t, τ)‖L(Zβ ,Zα) 6 C(α, β)(t− τ)β−α,

where 0 6 β 6 α < 1 + ε0. For more details see Sobolevskĭı [26], and Carvalho and
Nascimento [13].

3. Equation governed by fractional powers

In this section we obtain a description of the operator Λ(t)α in terms of the
fractional Laplacian operator in bounded smooth domains of Rn and we prove the
Theorem 1.1.



6 M. J. D. NASCIMENTO, F. D. M. BEZERRA EJDE-2019/72

3.1. Fractional powers of the damped wave operator. To arrive at (1.6) and
apply to it the above results, we need to compute the fractional powers of Λ(t) and
to understand the fractional power spaces associated with it. This is what we do
next.

Remark 3.1. Thanks to (1.2), for any 0 < α < 1 we have the following identity

(a(t)A)α = a(t)αAα, for all t ∈ R.
Indeed, for any t ∈ R and 0 < α < 1,

(a(t)A)−α =
sinπα

π

∫ ∞
0

λ−α(λI + a(t)A)−1dλ

=
sinπα

π

∫ ∞
0

λ−αa(t)−1(a(t)−1λI +A)−1dλ,

and a change of variable allows us to obtain

(a(t)A)−α = a(t)−α
sinπα

π

∫ ∞
0

µ−α(µI +A)−1dµ

= a(t)−αA−α.

Consequently, for any t ∈ R and 0 < α < 1, we have

(a(t)A)α = [(a(t)A)−α]−1 = [a(t)−αA−α]−1 = a(t)αAα.

Theorem 3.2. For any α ∈ [0, 1] and t ∈ R, we have

(i)

Λ(t)−α =

[
cos πα2 a(t)−α/2A−α/2 sin πα

2 a(t)
−1−α

2 A
−1−α

2

− sin πα
2 a(t)

1−α
2 A

1−α
2 cos πα2 a(t)−α/2A−α/2

]
. (3.1)

(ii) Zero is in the continuous spectrum of Λ−α(t), α ∈ (0, 1] and the unbounded
linear operator Λ(t)α : D(Λ(t)α) ⊂ Y → Y is given by

D(Λ(t)α) = X
1+α
2 ×Xα/2

and

Λ(t)α =

[
cos πα2 a(t)α/2Aα/2 − sin πα

2 a(t)
−1+α

2 A
−1+α

2

sin πα
2 a(t)

1+α
2 A

1+α
2 cos πα2 a(t)α/2Aα/2

]
. (3.2)

Proof. (i) Note that for all t ∈ R and λ ∈ C,

λI + Λ(t) =

[
λI −I

a(t)A λI

]
,

and therefore, for all λ ∈ ρ(−Λ(t)), we have

(λI + Λ(t))−1 =

[
λ(λ2I + a(t)A)−1 (λ2I + a(t)A)−1

−a(t)A(λ2I + a(t)A)−1 λ(λ2I + a(t)A)−1

]
.

For any 0 < α < 1 and t ∈ R, we can compute the fractional Λ(t)−α by the formula

Λ(t)−α =
sinπα

π

∫ ∞
0

λ−α(λI + Λ(t))−1dλ

see Amann [1, pg. 148] or Henry [22, pg. 25]. With this, for any 0 < α < 1 and
t ∈ R, we can obtain (3.1).

(ii) Also, it is not difficult to see that 0 is in the continuous spectrum of Λ−α(t)
and (3.2) for every α ∈ (0, 1] and t ∈ R. �
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The next theorem ensures that the rate of convergence of resolvents Λ(t)−α at
α = 1 it is 1− α. Before proving the theorem, we have two Lemmas.

Theorem 3.3. For every t ∈ R the operators Λ(t)−α converges in the uniform
operator topology of L(X1/2 ×X) to Λ(t)−1 as α↗ 1, with rate 1− α.

Proof. Let

[
u
v

]
∈ X1/2 ×X, t ∈ R and α ∈ (0, 1) then

(Λ(t)−α − Λ(t)−1)

[
u
v

]
=

[
cos πα2 a(t)−α/2A−α/2u+ (sin πα

2 a(t)
−1−α

2 A
−1−α

2 − a(t)−1A−1)v

(− sin πα
2 a(t)

1−α
2 A

1−α
2 + I)u+ cos πα2 a(t)−α/2A−α/2v

]
,

in other words,

‖(Λ(t)−α − Λ(t)−1)

[
u
v

]
‖X1/2×X

= ‖ cos
πα

2
a(t)

−α
2 A−α/2u+ (sin

πα

2
a(t)

−1−α
2 A

−1−α
2 − a(t)−1A−1)v‖X1/2

+ ‖(− sin
πα

2
a(t)

1−α
2 A

1−α
2 + I)u+ cos

πα

2
a(t)−α/2A−α/2v‖X ,

and by the triangle inequality and by the fact that ‖ · ‖X1/2 = ‖A1/2 · ‖X , we obtain

‖(Λ(t)−α − Λ(t)−1)

[
u
v

]
‖X1/2×X

6 ‖ cos
πα

2
a(t)−α/2A−α/2u‖X1/2 + ‖(sin πα

2
a(t)

−1−α
2 A

−1−α
2 − a(t)−1A−1)v‖X1/2

+ ‖(− sin
πα

2
a(t)

1−α
2 A

1−α
2 + I)u‖X + ‖ cos

πα

2
a(t)−α/2A−α/2v‖X

= ‖ cos
πα

2
a(t)−α/2A−α/2u‖X1/2 + ‖(− sin

πα

2
a(t)

−1−α
2 A−α/2 + a(t)−1A−1/2)v‖X

+ ‖(− sin
πα

2
a(t)

1−α
2 A−α/2 +A−1/2)u‖X1/2 + ‖ cos

πα

2
a(t)−α/2A−α/2v‖X .

Since u = A−1/2ū for some ū ∈ X, it follows that

‖(Λ(t)−α − Λ(t)−1)

[
u
v

]
‖X1/2×X

6 ‖ cos
πα

2
a(t)−α/2A−α/2ū‖X + ‖(− sin

πα

2
a(t)

−1−α
2 A−α/2 + a(t)−1A−1/2)v‖X

+ ‖(− sin
πα

2
a(t)

1−α
2 A−α/2 +A−1/2)ū‖X + ‖ cos

πα

2
a(t)−α/2A−α/2v‖X .

(3.3)

Now we recall that the fractional powers of the Laplacian can to be calculated
through the spectral decomposition: since X = L2(Ω) is a Hilbert space and A =
−∆D with zero Dirichlet boundary condition in Ω is a self-adjoint operator and is
the infinitesimal generator of a C0-semigroup of contractions on X, it follows that
there exists an orthonormal basis composed by eigenfunctions {ϕn, n > 1} of A.
Let µn be the eigenvalues of A = −∆D in Ω, then (µαn, ϕn) are the eigenvalues and
eigenfunctions of Aα = (−∆D)α, also with zero Dirichlet boundary condition.
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The fractional Laplacian Aα : D(Aα) ⊂ X → X is well defined in the space

D(Aα) =
{
u =

∞∑
n=1

anϕn ∈ L2(Ω) :

∞∑
n=1

a2nµ
α
n <∞

}
,

where

Aαu =

∞∑
n=1

µαnanϕn, u ∈ D(Aα) = Xα.

Note that ‖u‖Xα = ‖Aαu‖X .

To study cos πα2 a(t)−α/2A−α/2w, (− sin πα
2 a(t)

−1−α
2 A−α/2 + a(t)−1A−1/2)w and

(− sin πα
2 a(t)

1−α
2 A−α/2 +A−1/2)w for w ∈ X. Let us denote w =

∑
anϕn, then

(i) The norm ‖ cos πα2 a(t)−α/2A−α/2w‖X satisfies

‖ cos
πα

2
a(t)−α/2A−α/2w‖X 6 cos

πα

2
a
−α/2
min max

n
|µn|−α/2‖w‖X , (3.4)

(ii) The norm ‖(− sin πα
2 a(t)

−1−α
2 A−α/2 + a(t)−1A−1/2)w‖X satisfies

‖(− sin
πα

2
a(t)

−1−α
2 A−α/2 + a(t)−1A−1/2)w‖X

6 max
n
| − sin

πα

2
a(t)

−1−α
2 µ−α/2n + a(t)−1µ−1/2n |‖w‖X

6 a−1/2min max
n
| − sin

πα

2
a(t)−α/2µ−α/2n + a(t)−1/2µ−1/2n |‖w‖X .

(3.5)

(iii) The norm ‖(− sin πα
2 a(t)

1−α
2 A−α/2 +A−1/2)w‖X satisfies

‖(− sin
πα

2
a(t)

1−α
2 A−α/2 +A−1/2)w‖X

6 max
n
| − sin

πα

2
a(t)

1−α
2 µ−α/2n + µ−1/2n |‖w‖X

6 a1/2max max
n
| − sin

πα

2
a(t)−α/2µ−α/2n + a(t)−1/2µ−1/2n |‖w‖X .

(3.6)

From (3.4) we have

‖ cos
πα

2
a(t)−α/2A−α/2w‖X 6 C1(1− α)‖w‖X ,

for some constant C1 > 0 independent of α.
Using (3.5) we obtain positive constants C2 and C3 independents of α such that

‖(− sin
πα

2
a(t)

−1−α
2 A−α/2 + a(t)−1A−1/2)w‖X 6 C2(1− α)|‖w‖X ,

and from (3.6) we obtain

‖(− sin
πα

2
a(t)

1−α
2 A−α/2 +A−1/2)w‖X 6 C3(1− α)|‖w‖X ,

from this and (3.3) we conclude that the operators Λ(t)−α converges in the uniform
topology operators (of L(X1/2 ×X)) to Λ(t)−1 as α ↗ 1 with rate 1 − α, for any
t ∈ R. �
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3.2. Proof of main theorem. In the following discussion we will develop proper-
ties of Hölder continuity for the function aα/2(·) for α ∈ (0, 1]. Our main objective
in this section is to prove the Theorem 1.1.

Lemma 3.4. Let I ⊂ R be an interval with nonempty interior (i.e., I has endpoints
p1, p2 with p1 < p2). We recall that a function f : I → R is called (α,C)-Hölder
continuous with exponent α and constant C > 0 if there exist real constants 0 <
α 6 1 and C > 0 such that

|f(x)− f(y)| 6 C|x− y|α, for all x, y ∈ I.

For any bounded interval I ⊂ R, we have

C0,β(I) ⊃ C0,α(I), for 0 < β 6 α 6 1.

More specifically, if I has length ` <∞ and f is (α,C)-Hölder continuous, then f
is (β, `α−βC)-Hölder continuous.

Proof. Using that f is (β,C)-Hölder continuous, then for all x, y ∈ I, we have

|f(x)− f(y)| 6 C|x− y|β ,

and if I has length ` <∞

|f(x)− f(y)| 6 C|x− y|β−α|y − x|α 6 C`β−α|x− y|α,

that is f is (α, `β−αC)-Hölder continuous. �

Lemma 3.5. Let 0 < α 6 1. The function [0,∞) 3 x 7→ xα ∈ R is (α, 1)-Hölder
continuous. Moreover, if I ⊂ [0,∞) is a bounded interval with length ` <∞, then
the function I 3 x 7→ xα ∈ R is (β, `α−β)-Hölder continuous.

Proof. Initially we note that the function [0,∞) 3 x 7→ xα ∈ R is subadditive,
namely

(x+ y)α 6 xα + yα, for all x, y > 0.

It is also monotonically increasing. From this, we obtain

yα = (y − x+ x)α 6 (y − x)α + xα,

and this implies

0 6 yα − xα 6 (y − x)α,

whenever 0 6 x 6 y.
Now consider arbitrary nonnegative x and y. If either of them is zero, there is

nothing to prove. Otherwise, we may suppose that x 6 y (if not, interchange x and
y). Then, from the above

|yα − xα| = yα − xα 6 (y − x)α = 1 · |y − x|α.

The second part of the proposition is an immediate consequence of the Lemma
3.4. �

Lemma 3.6. The function R 3 t 7→ a(t)α/2 ∈ R is ( 1
4 , C)-Hölder continuous, for all

α ∈ ( 1
2 , 1], where C = max{(amax − amin)1/2, 1, κ

1
4γ (2amax)

1
2 (1−

1
2γ )} is independent

of α.
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Proof. For t, τ ∈ R, using (1.3) we have (for γ ∈ [1/2, 1])

|a(t)1/2 − a(τ)1/2| 6 |a(t)− a(τ)|1/2 = |a(t)− a(τ)| 12 (1−θ)|a(t)− a(τ)| 12 θ,

for any θ ∈ [0, 1]. From this and using (1.2) we obtain

|a(t)1/2 − a(τ)1/2| 6 Cγ |a(t)− a(τ)| 12 θ, (3.7)

where Cγ = (2amax)
1
2 (1−θ), for all θ ∈ [0, 1].

For α ∈ (1/2, 1), it follows from Lemma 3.4 that

[amin, amax] 3 x 7→ xα/2 ∈ R

is (β, (amax − amin)
α
2−β)-Hölder continuous, for any 0 < β 6 α/2 < 1/2. Take

β = 1/4. Then, for all t, τ ∈ R

|a(t)α/2 − a(τ)α/2| 6 (amax − amin)
α
2−

1
4 |t− τ |1/4 6 C0|t− τ |1/4, (3.8)

where C0 = max{(amax − amin)1/2, 1} is independent of α. Finally, choose

θ =
1

2γ
,

where γ is given by (1.3). Since γ ∈ [ 12 , 1] we obtain θ ∈ [0, 1]. From this and using
(3.7) we conclude that

|a(t)1/2 − a(τ)1/2| 6 Cγκ
1
4γ |t− τ |1/4. (3.9)

Thus, it follows from (3.8) and (3.9) that the function R 3 t 7→ a(t)α/2 ∈ R is

(1/4, C)-Hölder continuous, for all α ∈ ( 1
2 , 1], where C = max{C0, κ

1
4γCγ}. �

Proof of the Theorem 1.1. From (1.2) and sectoriallity of the operators A(t) it fol-
lows that Λ(t)α is uniformly sectorial (in Y ); that is, there is a constant C > 0
(independent of t) such that

‖(λI + Λ(t)α)−1‖L(Y ) 6
C

|λ|+ 1
, for all λ ∈ C with Reλ > 0.

Also, it is not difficult to see that for any t, τ, s ∈ R,

[Λ(t)α − Λ(τ)α]Λ(s)−α =

[
E11 E12

E21 E22

]
,

where

E11 = cos2
πα

2
[a(t)α/2 − a(τ)α/2]a(s)−α/2 + sin2 πα

2
[a(t)

−1+α
2 − a(τ)

−1+α
2 ]a(s)

1−α
2 ,

E12 = cos
πα

2
sin

πα

2
[a(t)α/2 − a(τ)α/2]a(s)

−1−α
2 A−1/2

+ cos
πα

2
sin

πα

2
[a(t)

−1+α
2 − a(τ)

−1+α
2 ]a(s)−α/2A−1/2,

E21 = cos
πα

2
sin

πα

2
[a(t)

1+α
2 − a(τ)

1+α
2 ]a(s)−α/2A1/2

− cos
πα

2
sin

πα

2
[a(t)α/2 − a(τ)α/2]a(s)−α/2A1/2,

E22 = sin2 πα

2
[a(t)

1+α
2 − a(τ)

1+α
2 ]a(s)

−1−α
2 + cos2

πα

2
[a(t)α/2 − a(τ)α/2]a(s)−α/2.
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Since the function a is bounded below by a positive constant (see (1.2)), from
Lemma 3.6 we obtain that the map R 3 t 7→ Λ(t)α is uniformly Hölder continuous
in X1/2 ×X. Indeed,∥∥∥[Λ(t)α − Λ(τ)α]Λ(s)−α

[
u
v

] ∥∥
X1/2×X =

∥∥ [E11u+ E12v
E21u+ E22v

] ∥∥
X1/2×X , (3.10)

where∥∥ [E11u+ E12v
E21u+ E22v

] ∥∥
X1/2×X = ‖A1/2[E11u+ E12v]‖X + ‖E21u+ E22v‖X .

In the following discussion we develop estimates for ‖A1/2[E11u + E12v]‖X and
‖E21u+ E22v‖X with the functions aα/2(t), α ∈ (0, 1). Note that

‖E11A
1/2u‖X

6 cos2
πα

2
|a(t)α/2 − a(τ)α/2|a(s)−α/2‖u‖X1/2

+ sin2 πα

2
|a(t)

−1+α
2 − a(τ)

−1+α
2 |a(s)

1−α
2 ‖u‖X1/2

6 max{1, a1/2max}a
−α/2
min

[
|a(t)α/2 − a(τ)α/2|+ |a(t)

−1+α
2 − a(τ)

−1+α
2 |
]
‖u‖X1/2 ,

(3.11)

‖E12A
1/2v‖X

6 cos
πα

2
sin

πα

2
|a(t)α/2 − a(τ)α/2|a(s)

−1−α
2 ‖v‖X

+ cos
πα

2
sin

πα

2
|a(t)

−1+α
2 − a(τ)

−1+α
2 |a(s)−α/2‖v‖X

6 max{1, a−1/2max }a
−α/2
min

[
|a(t)α/2 − a(τ)α/2|+ |a(t)

−1+α
2 − a(τ)

−1+α
2 |
]
‖v‖X ,

(3.12)

‖E21u‖X 6 cos
πα

2
sin

πα

2
|a(t)

1+α
2 − a(τ)

1+α
2 |a(s)−α/2‖u‖X1/2

+ cos
πα

2
sin

πα

2
|a(t)α/2 − a(τ)α/2|a(s)−α/2‖u‖X1/2

6 a−α/2min

[
|a(t)

1+α
2 − a(τ)

1+α
2 |+ |a(t)α/2 − a(τ)α/2|

]
‖u‖X1/2 ,

(3.13)

and

‖E22v‖X

6 sin2 πα

2
|a(t)

1+α
2 − a(τ)

1+α
2 |a(s)

−1−α
2 ‖v‖X

+ cos2
πα

2
|a(t)α/2 − a(τ)α/2|a(s)−α/2‖v‖X

6 max{1, a−1/2min }a
−α/2
min

[
|a(t)

1+α
2 − a(τ)

1+α
2 |+ |a(t)α/2 − a(τ)α/2|

]
‖v‖X .

(3.14)

Hence, we can estimate ‖A1/2[E11u+ E12v]‖X using (3.11) with (3.12) as follows

‖A1/2[E11u+ E12v]‖X 6 2a
−α/2
min max{a−1/2max , a

1/2
max}

[
|a(t)α/2 − a(τ)α/2|

+ |a(t)
−1+α

2 − a(τ)
−1+α

2 |
]∥∥ [u

v

] ∥∥
X1/2×X .

Since for all t, τ ∈ R,

|a(t)
−1+α

2 − a(τ)
−1+α

2 |

6 a(t)−1/2|a(t)α/2 − a(τ)α/2|+ a(τ)α/2|a(t)−1/2 − a(τ)−1/2|
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6 a−1/2min |a(t)α/2 − a(τ)α/2|+ max{1, a1/2max}|a(t)−1/2 − a(τ)−1/2|

6 a−1/2min |a(t)α/2 − a(τ)α/2|+ max{1, a1/2max}|a(t)1/2 − a(τ)1/2|,

it follows that there exists a positive constant C ′ dependent of amin and amax, but
independent of α, such that

‖A1/2[E11u+ E12v]‖X

6 C ′
[
|a(t)α/2 − a(τ)α/2|+ |a(t)1/2 − a(τ)1/2|

]∥∥ [u
v

] ∥∥
X1/2×X .

(3.15)

Also we can estimate ‖E21u+ E22v‖X using (3.13) and (3.14) as follows

‖E21u+ E22v‖X

6 2a
−α/2
min max{1, a−1/2min }

[
|a(t)

1+α
2 − a(τ)

1+α
2 |+ |a(t)α/2 − a(τ)α/2|

]∥∥ [u
v

] ∥∥
X1/2×X .

Since for all t, τ ∈ R,

|a(t)
1+α
2 − a(τ)

1+α
2 | 6 a(t)1/2|a(t)α/2 − a(τ)α/2|+ a(τ)α/2|a(t)1/2 − a(τ)1/2|

6 a1/2max|a(t)α/2 − a(τ)α/2|+ max{1, a1/2max}|a(t)1/2 − a(τ)1/2|,

it follows that there exists a positive constant C ′′ dependent of amin and amax, but
independent of α, such that

‖E21u+ E22v‖X

6 C ′′
[
|a(t)α/2 − a(τ)α/2|+ |a(t)1/2 − a(τ)1/2|

]∥∥ [u
v

] ∥∥
X1/2×X .

(3.16)

Combining (3.10), (3.15) and (3.16) we concluded that there exists a positive con-
stant C ′′′ = 2(C ′ + C ′′) such that∥∥[Λ(t)α − Λ(τ)α]Λ(s)−α

[
u
v

] ∥∥
X1/2×X

6 C ′′′
[
|a(t)α/2 − a(τ)α/2|+ |a(t)1/2 − a(τ)1/2|

]∥∥ [u
v

] ∥∥
X1/2×X .

From Lemma 3.6 there exists a positive constant C dependent of amin, amax, κ, but
independent of α such that∥∥[Λ(t)α − Λ(τ)α]Λ(s)−α

[
u
v

] ∥∥
X1/2×X

6 C ′′′
[
|a(t)α/2 − a(τ)α/2|+ |a(t)1/2 − a(τ)1/2|

]∥∥ [u
v

] ∥∥
X1/2×X

6 C|t− τ |1/4
∥∥ [u
v

] ∥∥
X1/2×X ,

for any t, τ ∈ R. From this the proof of the Theorem 1.1(i) it follows from [13, 26].
For α = 1 it is easily seen that 0 ∈ ρ(Λ(t)) for any t ∈ R, and its inverse is given

by

Λ(t)−1 =

[
0 a(t)−1A−1

−I 0

]
, for all t ∈ R.



EJDE-2019/72 FRACTIONAL POWERS OF WAVE OPERATORS 13

Observe that, the adjoint of Λ(t), is

Λ(t)∗ =

[
0 I

−a(t)A 0

]
, for all t ∈ R,

and Λ(t) = −Λ(t)∗ for all t ∈ R; that is, for every t ∈ R the operator Λ(t) is
skew-adjoint. It follows that iΛ(t) is self-adjoint and, from Stone’s theorem, Λ(t)
is the infinitesimal generator of a C0-group of unitary operators on X1/2 ×X (see
Pazy [25, Theorem 1.10.8, pg. 41]).

For α ∈ (0, 1) it follows from results of [13, Subsection 2.1.2] and [26] that (1.8)
is valid. From the above analysis we have proved the Theorem 1.1(ii).

Finally, let us consider the linear problem (1.6). Thanks to boundedness of η,

it is easy to see that F (t, ·) : X
1+α
2 × Xα/2 → X1/2 × X is Lipschitz continuous

in bounded subsets of X
1+α
2 × Xα/2 and by the [9, Theorem 2.3] (see also [13,

Theorem 1.1 and Theorem 3.1] for a more general version that includes de critical
growth case) we have proved the Theorem 1.1(iii). �

3.3. Energy functionals associated with perturbed problems. In this sub-
section, we will consider the function a equal to 1 and η be a decreasing function on

R in (1.1). Let

[
uα(t)
vα(t)

]
be the local solution of (1.6). In this case

[
uα(t)
vα(t)

]
satisfies

the following system

uαt + cos
πα

2
Aα/2uα − sin

πα

2
A

−1+α
2 vα = 0

vαt + sin
πα

2
A

1+α
2 uα + cos

πα

2
Aα/2vα + η(t)vα = 0.

(3.17)

From the first equation we obtain

sin
πα

2
vα = A

1−α
2

(
uαt + cos

πα

2
Aα/2uα

)
and then

sin
πα

2
vαt = A

1−α
2

(
uαtt + cos

πα

2
Aα/2uαt

)
. (3.18)

It is not difficult to see (second equation of (3.17)) that

sin
πα

2
vαt + sin2 πα

2
A

1+α
2 uα + sin

πα

2
cos

πα

2
Aα/2vα + η(t) sin

πα

2
vα = 0. (3.19)

Combining (3.18) with (3.19), we obtain

A
1−α
2 uαtt+2 cos

πα

2
A1/2uαt +A

1+α
2 uα+η(t)A

1−α
2 uαt +η(t) cos

πα

2
A1/2uα = 0. (3.20)

Multiplying (3.20) by uαt and integrating, we obtain a function Vα given by

Vα(uα, uαt ) =
1

2
‖uαt ‖2

X
1−α
4

+
1

2
‖uα‖2

X
1+α
4

+
η(t)

2
cos

πα

2
‖uα‖2X1/4 .

This function satisfies the differential equation

d

dt
(Vα(uα, uαt )) = −2 cos

πα

2
‖uαt ‖2X1/4 − η(t)‖uαt ‖2

X
1−α
4

+ η′(t) cos
πα

2
‖uα‖2X1/4 .

Since uαt = sin πα
2 A

−1+α
2 vα−cos πα2 A

α/2uα (see (3.17)), we can consider a functional

Lα : X
1+α
4 ×X −1+α

4 → R, given by

Lα
([
w
z

])
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=
1

2
‖w‖2

X
1+α
4

+
1

2
‖ sin

πα

2
A

−1+α
2 z − cos

πα

2
Aα/2w‖2

X
1−α
4

+
η(t)

2
cos

πα

2
‖w‖2X1/4

=
1

2
‖w‖2

X
1+α
4

+
1

2
‖ sin

πα

2
A

−1+α
4 z − cos

πα

2
A

1+α
4 w‖2X +

η(t)

2
cos

πα

2
‖w‖2X1/4 .

Remark 3.7. For positive times and as long as the solutions exist we have

Vα(uα, uαt ) = Lα
([uα
uαt

])
and hence since η′(t) 6 0 for all t (since η is decreasing) it follows that

d

dt

(
Vα(uα, uαt )

)
=

d

dt

(
Lα
([uα
uαt

]))
6 0.

Remark 3.8. For A = Aα, we can rewrite (3.20) as

uαtt + η(t) cos
πα

2
A1/2uα + Auα + η(t)uαt + 2 cos

πα

2
A1/2uαt = 0.

this latter equation can be viewed as an fractional approximation of the PDE in
(1.1) (see Bezerra, Carvalho, Cholewa and Nascimento [3], Caraballo, Carvalho,
Langa and Rivero [9, 10], Carvalho, Cholewa and D lotko [11], Carvalho, Langa and
Robinson [12], Chen and Russell [15], Chen and Triggiani [16, 17, 18, 19], Sun,
Cao and Duan [27] and references therein for the extensive studies of the strongly
damped wave equations).

4. Spectral properties

In this section we will study the spectral properties of the operators −Λ(t)α. We
characterize the functions λα = λα(t) such that

− Λ(t)α
[
ϕ
ψ

]
= λα(t)

[
ϕ
ψ

]
, (4.1)

for some not null vector

[
ϕ
ψ

]
∈ D(Λ(t)α), in terms of the eigenvalues ofA. Moreover,

we will prove the convergence with rate of the functions λα at α = 1.
Let σ(−Λ(t)α) be the spectrum of −Λ(t)α for any α ∈ [0, 1], the next result

shows the convergence of the spectrum of −Λ(t)α at α = 1. The proof follows the
same ideas of the [5, Lemmas 2.3 and 2.6], and we will omit the proof.

Proposition 4.1. The following statements hold:

(i) If µ0 ∈ σ(−Λ(t)), then exists a sequence αn → 1 and {µn}, with µn ∈
σ(−Λ(t)αn), n ∈ N such that µn → µ0 as n→∞;

(ii) If for some sequences αn → 1 and µn → µ0 as n → ∞, with µn ∈
σ(−Λ(t)αn), n ∈ N, then µ0 ∈ σ(−Λ(t)).

Lemma 4.2. If λ ∈ ρ(−Λ(t)) ∩ ρ(−Λ(t)α), then

(λI + Λ(t)α)−1 − (λI + Λ(t))−1

= Λ(t)α(λI + Λ(t)α)−1[Λ(t)−α − Λ(t)−1]Λ(t)(λI + Λ(t))−1,
(4.2)

and

Λ(t)α(λI + Λ(t)α)−1 − Λ(t)(λI + Λ(t))−1

= (λI + Λ(t)α)−1Λ(t)[Λ(t)−1 − Λ(t)−α]λΛ(t)α(λI + Λ(t))−1.
(4.3)
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Proposition 4.3. Let α ∈ (1/2, 1) and λ ∈ ρ(−Λ(t)) ∩ ρ(−Λ(t)α). There exists a
constant M > 0 such that

‖(λI + Λ(t)α)−1 − (λI + Λ(t))−1‖L(X1/2×X) 6M(1− α), (4.4)

where

M = C‖Λ(t)(λI + Λ(t))−1‖L(X1/2×X) sup
α∈(0,1)

‖Λ(t)α(λI + Λ(t)α)−1‖L(X1/2×X)

and C is given by Theorem 3.3 and it is independent of α.

Proof. Using the Theorem 3.3 we obtain that (4.4) is a direct consequence of (4.2).
�

Proposition 4.4. Let α ∈ (1/2, 1) and λ ∈ ρ(−Λ(t)) ∩ ρ(−Λ(t)α). There exists a
constant M ′ > 0 such that

‖Λ(t)α(λI + Λ(t)α)−1 − Λ(t)(λI + Λ(t))−1‖L(X1/2×X) 6M
′(1− α)|λ|, (4.5)

where

M ′ = C‖(λI + Λ(t)α)−1Λ(t)‖L(X1/2×X) sup
α∈(0,1)

‖Λ(t)α(λI + Λ(t))−1‖L(X1/2×X)

and Cα is given by Theorem 3.3 and it is independent of α.

Proof. Using Theorem 3.3 we obtain that (4.5) is a direct consequence of (4.3). �

Let C be a compact oriented counterclockwise contour in ρ(−Λ(t)). From Propo-
sition 4.1, we have that C ⊂ ρ(−Λ(t)α) for all α ∈ [αC , 1], for some αC > 0. Define
the spectral projections on X by

Q(t)α(µ0) =
1

2πi

∫
C
(λI + Λ(t)α)−1dλ,

for any µ0 ∈ C such that 1
2πi

∫
C(λ− µ0)−1dλ = 1.

Proposition 4.5. Let α ∈ (1/2, 1). There exists a constant M > 0 such that

‖Q(t)α(µ0)−Q(t)(µ0)‖L(X1/2×X) 6 δM(1− α),

where

M = C‖Λ(t)(λI − Λ(t))−1‖L(X1/2×X) sup
α∈(1/2,1)

‖Λ(t)α(λI − Λ(t)α)−1‖L(X1/2×X),

C is given by Theorem 3.3, and is independent of α, and δ > 0 is such that C is
contained in the ball centered at the origin of radius

√
2δ, B(0,

√
2δ).

Proof. The proof it follows from the same arguments used to proof the Proposi-
tion 4.3; namely

‖Q(t)α(µ0)−Q(t)(µ0)‖L(X1/2×X)

6
1

2π

∫
C
‖(λI + Λ(t)α)−1 − (λI + Λ(t))−1‖L(X1/2×X)dλ.

Since
‖(λI + Λ(t)α)−1 − (λI + Λ(t))−1‖L(X1/2×X) 6M(1− α),

where M is defined in the Proposition 4.3, and C ⊂ B(0,
√

2δ), it follows that

‖Q(t)α(µ0)−Q(t)(µ0)‖L(X1/2×X) 6 δM(1− α),

since
∫
B(0,
√
2δ)

dλ = 2δπ. �
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Proposition 4.6. Let α ∈ (1/2, 1). There exists a constant C > 0 independent of
α such that

‖Λ(t)αQ(t)α(µ0)− Λ(t)Q(t)(µ0)‖L(X1/2×X) 6 CM
′(1− α),

where M ′ is defined in the Proposition 4.4 and it is independent of α.

Proof. We have

‖Λ(t)αQ(t)α(µ0)− Λ(t)Q(t)(µ0)‖L(X1/2×X)

6
1

2π

∫
C
‖Λ(t)α(λI + Λ(t)α)−1 − Λ(t)(λI + Λ(t))−1‖L(X1/2×X)dλ.

From (4.3) we obtain

‖Λ(t)α(λI + Λ(t)α)−1 − Λ(t)(λI + Λ(t))−1‖L(X1/2×X) 6M
′(1− α)|λ|,

where M ′ is defined by Proposition 4.4, By the compactness of the contour C, it
follows that

‖Λ(t)αQ(t)α(µ0)− Λ(t)Q(t)(µ0)‖L(X1/2×X) 6 CM
′(1− α),

where C =
∫
C |λ|dλ > 0 is independent of α. �

Now prove the convergence with rate of {λα}α∈(0,1] at α = 1, where the functions
λα = λα(t) are defined by (4.1).

Theorem 4.7 (Spectral properties of Λ(t)). Let the skew-adjoint operator Λ(t),
and the family {λ±n (t)}n∈N, where for every t ∈ R

Λ(t)

[
ϕ
ψ

]
= λ±n (t)

[
ϕ
ψ

]
,

for some no-null vector

[
ϕ
ψ

]
∈ D(Λ(t)). Then

λ±n (t) = ±ia(t)1/2µ1/2
n , n ∈ N,

where {µn}n∈N denote the eigenvalues of the operator A = −∆D with zero Dirichlet
boundary conditions.

Proof. Since Λ(t) has compact resolvent, all points in the spectrum σ(Λ(t)) of Λ(t)
are eigenvalues. The eigenvalue problem for Λ(t) is[

0 −I
a(t)A 0

] [
ϕ
ψ

]
= λ

[
ϕ
ψ

]
,

[
ϕ
ψ

]
∈ D(Λ(t)),

i.e.

a(t)Aϕ = −λ2ϕ, ϕ ∈ D(A).

Recall that A = −∆D is a positive self-adjoint operator with compact resolvent.
Denote by {µn}n∈N the eigenvalues of A ordered increasingly and repeated accord-
ing to multiplicity. Hence, the eigenvalues of Λ(t) are solutions of the equation
λ2 = −a(t)µn, n ∈ N, and therefore

λ = λ±n (t) = ±ia(t)1/2µ1/2
n , n ∈ N.

�



EJDE-2019/72 FRACTIONAL POWERS OF WAVE OPERATORS 17

Theorem 4.8 (Spectral properties of −Λ(t)α, 0 < α 6 1). Let the operator −Λ(t)α.
For every t ∈ R the spectrum of −Λ(t)α consists of functions λ±α,n(t) only, where

−Λ(t)α
[
ϕ
ψ

]
= λ±α,n(t)

[
ϕ
ψ

]
,

for some non-null vector

[
ϕ
ψ

]
∈ D(Λ(t)α); namely, they are given by

λ±α,n(t) = e±i
π(2−α)

2 a(t)α/2µα/2n , n ∈ N,
where {µn}n∈N denotes the ordered sequence of eigenvalues of the operator A re-
peated according to multiplicity.

Proof. For each t ∈ R, the eigenvalue problem for −Λ(t)α is

−

[
cos πα2 a(t)α/2Aα/2 − sin πα

2 a(t)
−1+α

2 A
−1+α

2

sin πα
2 a(t)

1+α
2 A

1+α
2 cos πα2 a(t)α/2Aα/2

] [
ϕ
ψ

]
= λ

[
ϕ
ψ

]
,

[
ϕ
ψ

]
∈ D(Λ(t)α);

that is, λ ∈ C is an eigenvalue for −Λ(t)α if and only if there is a 0 6=
[
ϕ
ψ

]
∈

X
1+α
2 ×Xα/2 such that

− cos
πα

2
a(t)α/2Aα/2ϕ+ sin

πα

2
a(t)

−1+α
2 A

−1+α
2 ψ = λϕ

− sin
πα

2
a(t)

1+α
2 A

1+α
2 ϕ− cos

πα

2
a(t)α/2Aα/2ψ = λψ.

With this, we obtain λ ∈ C is an eigenvalue for −Λ(t)α if and only if

0 = λ2 + 2λ cos
πα

2
a(t)α/2Aα/2 + a(t)αAα

= (λ− ei
π(2−α)

2 a(t)α/2Aα/2)(λ− e−i
π(2−α)

2 a(t)α/2Aα/2)

is not injective. Then, the eigenvalues λ of −Λ(t)α are solutions of the equation

(λ− eiπ(2−α)/2a(t)α/2µα/2n )(λ− e−iπ(2−α)/2a(t)α/2µα/2n ) = 0;

that is, λ±α,n(t) = e±i
π(2−α)

2 a(t)α/2µ
α/2
n , n ∈ N, and this concludes the proof. �

Remark 4.9. We can see that the eigenvalues −Λ(t)α lie in the semi-axes

{re±i
π(2−α)

2 : r > 0}.

These semi-axes form the edges of a sector of angle π(2−α)
2 in the complex plane

that, as α tends to 1 approaches the semi-plane {λ ∈ C : Reλ > 0}. This behavior
reflects the loss of sectoriallity that the operator Λ(t)α experiences as α tends to 1.

Moreover, the eigenvalues λ±n (t) and λ±α,n(t) of the operators −Λ(t) and −Λα(t),
respectively, have the same regularity of the functional coefficient a(t), and the
following estimates are hold

|λ±n (t)| 6 a1/2maxµ
1/2
n , for all t ∈ R,

|λ±α,n(t)| 6 aα/2maxµ
α/2
n , for all t ∈ R.

Remark 4.10. The analysis made in the previous sections can be applied on other
examples, e.g., singularly non-autonomous plate equation with structural damping
and non-autonomous Schrödinger equations. In each example a careful study of
the fractional power of the operator that governs the problem it is necessary.
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