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TRAVELLING SOLITARY WAVES FOR BOSON STARS

GUOQING ZHANG, NINGNING SONG

Abstract. In this article, we study the pseudo-relativistic Hartree equation

i∂tψ = (
√
−∆ +m2 −m)ψ − (

e−µ|x|

4π|x|
∗ |ψ|2)ψ, on R3,

which describes the dynamics of pseudo-relativistic boson stars with rest mass
m > 0 in the mean-field limit. Based on Ekeland variational principle, con-

centration-compactness lemma and Gagliardo-Nirenberg inequality, we prove

existence of travelling solitary waves under the critical stellar mass. In addition
to their existence, we obtain orbital stability by using a general idea presented

in Cazenave and Lions [2].

1. Introduction

In this article, we consider the pseudo-relativistic Hartree equation

i∂tψ = (
√
−∆ +m2 −m)ψ − Φψ, (x, t) ∈ R3 × R,

−∆Φ + µ2Φ = |ψ|2, (x, t) ∈ R3 × R,
(1.1)

where ψ(x, t) and Φ(x, t) are complex-valued wave functions, m denotes the rela-
tivistic particle of mass, when m ≥ 0 and when µ > 0. It is straightforward to solve
the second equation of (1.1) and obtain the expression

Φ(x) =
e−µ|x|

4π|x|
∗ |ψ|2 =

1

4π

∫
R3

e−µ|x−y|

|x− y|
ψ(y)dy, (1.2)

where the symbol ∗ stands for convolution of functions on R3. By substituting the
expression of Φ(x) into the first equation of (1.1), we obtain the nonlocal nonlinear
Schrödinger equation

i∂tψ = (
√
−∆ +m2 −m)ψ − (

e−µ|x|

4π|x|
∗ |ψ|2)ψ, (x, t) ∈ R3 × R. (1.3)

Recently, many authors have studied the pseudo-relativistic Hartree equation. In
2006, Elgart and Schlein [3] studied the nonlocal nonlinear Schrödinger equation

i∂tψ = (
√
−∆ +m2 −m)ψ − (

1

|x|
∗ |ψ|2)ψ, (x, t) ∈ R3 × R. (1.4)

Equation (1.4) arises as an effective dynamical description for an N -body quantum
system of relativistic bosons with two-body interaction given by Newtonian gravity.
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In 2007, Lenzmann [11] proved local and global well-posedness for equation (1.4) by
using Kato’s inequality, a priori estimates and conservation of charge and energy.
Fröhlich and Lenzmann [6], Lenzmann and Lewin [8] obtained the existence of
finite-time blow up solution. In particular, the idea of a mathematical model of
pseudo-relativistic boson stars dates back to the works of Lieb and Thirring [15]
and of Lieb and Yau [16], where the corresponding N -body Hamiltonian and its
relation to the Hartree energy functional are discussed.

Because of the focusing nature of the nonlinearity in equation (1.4), there ex-
ist solitary wave solutions. Based on rearrangement inequalities and variational
arguments, Lieb and Yau [16] proved the existence of ground state solitary wave
solutions for equation (1.4). Lenzmann [10] obtained the uniqueness of ground
states. In 2018, Guo and Zeng [7] proved existence of ground state solitary wave
solutions, and presented a detailed analysis of the behavior of ground states.

In this article, we focus on the existence and properties of travelling solitary
wave solutions for (1.3). More precisely, we consider solutions of the form

ψ(x, t) = eitωϕv(x− vt), (1.5)

with ω ∈ R and travelling velocity v ∈ R3 such that |v| < 1 (i.e., below the speed
of light in our units). Substituting ansatz (1.5) in (1.3), we have

(
√
−∆ +m2 −m)ϕv + i(v · ∇)ϕv − (

e−µ|x|

4π|x|
∗ |ϕv|2)ϕv = −ωϕv, (1.6)

with ω ∈ R. Using the Ekeland variational principle, concentration-compactness
lemma and Gagliardo-Nirenberg inequality, we obtain existence of travelling solitary
wave solutions under the critical stellar mass.

We point out that, since equation (1.6) is not the Lorentz covariant, travelling
solitary wave solutions can not be directly obtained from solitary waves at rest
(that is, when v = 0 in (1.5)) and then applying a Lorentz boost. We also obtain
the existence of ground state travelling solitary wave solutions for (1.6) under the
critical stellar mass. Apart from the existence of travelling solitary wave solutions,
we are also concerned with properties such as “orbital stability”.

This article is organized as follows. In Section 2, we set up the variational
structure for equation (1.6), and state our main theorems. In Section 3 and 4, we
obtain existence of travelling solitary wave solutions for (1.6). In Section 5, we
prove orbital stability of travelling solitary waves.

2. Preliminaries and statement of main results

In this section, we introduce some basic notation and lemmas which will be used
in subsequent sections. Let Lp(R3) denote the usual Lebesgue space for p ≥ 1. We
define the Fourier transform for f ∈ S(R3) (i.e., Schwartz functions) by

(Ff)(k) = f̂(k) =
1

(2π)3/2

∫
R3

f(x)e−ikxdx,

where F extends to S′(R3) (i.e., the space of tempered distributions) by duality.
We introduce the operator (1 −∆)1/2 via its multiplier (1 + |k|2)1/2 in Fourier

space, i.e., we set (1 − ∆)1/2f = F−1[(1 + |k|2)1/2Ff ]. Likewise, we define the

operator
√
−∆ +m2 through its multiplier

√
|k|2 +m2 in the Fourier space.
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We employ the Sobolev space H1/2(R3) of fractional order 1/2 defined by

H1/2(R3) = {f ∈ S′(R3) : (1−∆)1/4f ∈ L2(R3)}, (2.1)

and equipped with the norm ‖f‖H1/2(R3) = ‖(1−∆)1/4f‖L2(R3). In 2007, Lenzmann

[11] investigated the local and global well posedness of the Cauchy problem for
equation (1.3).

Lemma 2.1. For any ψ(x, 0) = ψ0(x) ∈ H1/2(R3), there exists a unique global

solution ψ(x, t) ∈ C(R, H1/2(R3)) ∩ C1(R, H− 1
2 (R3)), provided that

‖ψ0(x)‖L2(R3) ≤ ‖Q(x)‖L2(R3),

where Q(x) ∈ H1/2(R3) is a strictly positive solution of

√
−∆Q− (

1

4π|x|
∗ |Q|2)Q = −Q. (2.2)

We defined the charge M(ψ(x, t)) by

M(ψ(x, t)) =

∫
R3

|ψ(x, t)|2dx,

and the energy associated with (1.3) by

E(ψ(x, t)) =
1

2
〈ψ, (

√
−∆ +m2 −m)ψ〉 − 1

4

∫
R3

(
e−µ|x|

4π|x|
∗ |ψ|2)|ψ|2dx. (2.3)

Lenzmann [11] proved that the solution ψ(x, t) obtained in Lemma 2.1 conserves
both the charge M(ψ(x, t)) and the energy E(ψ(x, t)), i.e.,

M(ψ(x, t)) = M(ψ0(x)) and E(ψ(x, t)) = E(ψ0(x)). (2.4)

For equation (1.6), we define the functional Ev : H1/2(R2)→ R by

Ev(ϕv) :=
1

2
〈ϕv, (

√
−∆ +m2 −m)ϕv〉+

i

2
〈ϕv, (v · ∇)ϕv〉

− 1

4

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv|2)|ϕv|2dx,

(2.5)

and the charge functional N : H1/2(R2)→ R by

N (ϕv) :=

∫
R3

|ϕv|2dx = ‖ϕv‖2L2(R3). (2.6)

It is straightforward to verify that Ev ∈ C1(H1/2(R3),R) andN ∈ C1(H1/2(R3),R).

Lemma 2.2 ([4]). For any v ∈ R3 with |v| < 1, there exists an optimal constant
Sv such that∫

R3

(
1

4π|x|
∗ |ϕv|2)|ϕv|2dx ≤ Sv〈ϕv, (

√
−∆ + iv · ∇)ϕv〉〈ϕv, ϕv〉, (2.7)

holds for all ϕv ∈ H1/2(R3). Moreover, we have

Sv =
2

〈Qv, Qv〉
,

where Qv ∈ H1/2(R3), Qv 6= 0 is an optimizer for (2.6) and it satisfies

√
−∆Qv + i(v · ∇)Qv − (

1

4π|x|
∗ |Qv|2)Qv = −Qv.
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In addition, the following estimates hold:

Sv=0 ≤ Sv ≤ (1− |v|)−1Sv=0.

Definition 2.3. We say that N∗ is a critical stellar mass if

N∗v = ‖Qv‖2L2(R3) =
2

Sv
,

where Qv is obtained in Lemma 2.2.

We consider the following minimization problem

Iv(N) = inf{Ev(ϕv) : ϕv ∈ H1/2(R3), N (ϕv) = N}, (2.8)

where Ev,N is defined by (2.5) and (2.6), N > 0, v ∈ R3, with |v| < 1 denote
given parameters. Any minimizer ϕv ∈ H1/2(R3) for minimization problem (2.8)
is referred to as ground state solution of equation (1.6). Concerning existence of
ground states, we have the following theorems.

Theorem 2.4. Suppose m > 0 is sufficiently large, then

(a) If 0 < N < N∗v , there exists at least one minimizer for (2.8), i.e., (1.6) has
at least a ground state solution;

(b) If N > N∗v , no minimizer exists for (2.8), i.e., there is no solution for
equation (1.6).

Theorem 2.5. Suppose m > 0 is sufficiently large, N = N∗v and

lim inf
|x|→0

1− e−µ|x|

4π|x|
≥ 2m

N∗v
.

Then there exists at least one minimizer for (2.8). Hence (1.6) has at least a ground
state solution at the critical stellar mass N = N∗v .

Theorems 2.4 and 2.5 imply that the existence of minimizer depends greatly on
m and N . In particular, Theorem 2.5 shows that the existence of minimizer may
occur at the critical stellar mass N = N∗v . On the other hand, we address orbital
stability of travelling solitary waves

ψ(x, t) = eitωϕv(x− vt), (2.9)

where ϕv ∈ H1/2(R3) is a ground state solution for equation (1.6).

Theorem 2.6. Suppose m > 0 is sufficiently large.

(a) If 0 < N < N∗v , or

(b) If N = N∗v and lim inf |x|→0
1−e−µ|x|

4π|x| ≥
2m
N∗v

.

Let Gv,N denote the corresponding set of ground states, i.e.,

Gv,N = {ϕv ∈ H1/2(R3) : Iv(N) = Ev(ϕv), N (ϕv) = N},
which is non-empty by Theorems 2.4 and 2.5.

Then the travelling solitary waves given in (2.9), with ϕv ∈ Gv,N are stable in
the following sense. For every ε > 0, there exists δ > 0 such that

inf
ϕv∈Gv,N

‖ψ0(x)− ϕv‖H1/2(R3) ≤ δimplies sup
t≥0

inf
ϕv∈Gv,N

‖ψ(t)− ϕv‖H1/2(R3) ≤ ε.

Here ψ(x, t) denotes the solution of equation (1.3) with initial condition ψ0(x) ∈
H1/2(R3).
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3. Proof of Theorem 2.4

To reach this end we use the concentration-compactness lemma and variational
arguments.

Lemma 3.1. Suppose m > 0 is sufficiently large. Then

Ev(ϕv) ≥
1

2
(1− N

N∗v
)〈ϕv, (

√
−∆ + iv · ∇)ϕv〉 −

1

2
mN, (3.1)

for all ϕv ∈ H1/2(R3) with N (ϕv) = N , where N∗v is defined by definition 2.3.
Moreover, we have Iv(N) ≥ − 1

2mN for 0 < N < N∗v , and Iv(N) = −∞ for
N > N∗v .

Proof. Since m > 0 is sufficiently large, we have the operator inequality√
−∆ +m2 ≥

√
−∆. (3.2)

By (2.5) and (3.2), we have

2Ev(ϕv) ≥ 〈ϕv, (
√
−∆ + iv · ∇)ϕv〉 −

1

2

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv|2)|ϕv|2dx−mN

≥ 〈ϕv, (
√
−∆ + iv · ∇)ϕv〉 −

1

2

∫
R3

(
1

4π|x|
∗ |ϕv|2)|ϕv|2dx−mN.

From Lemma 2.2, we have

2Ev(ϕv) ≥ 〈ϕv, (
√
−∆ + iv · ∇)ϕv〉 −

Sv
2
N〈ϕv, (

√
−∆ + iv · ∇)ϕv〉 −mN

= (1− Sv
2
N)〈ϕv, (

√
−∆ + iv · ∇)ϕv〉 −mN

= (1− N

N∗v
)〈ϕv, (

√
−∆ + iv · ∇)ϕv〉 −mN.

Hence, inequality (3.1) is proved. Furthermore, that Iv(N) ≥ − 1
2mN for N < N∗v

is a consequence of (3.1). To see that Iv(N) = −∞ when N > N∗v . Indeed, we
define a L2-norm preserving rescalings

Q∗v(x) 7→ a3/2Qv(ax),

with a > 0, Qv(x) is defined by (2.7). By Lemma 2.2 and (3.2), we have

Ev(Q
∗
v(x)) ≤ 1

2
〈Q∗v(x), (

√
−∆ + iv · ∇)Q∗v(x)〉

− 1

4

∫
R3

(
e−µ|x|

4π|x|
∗ |Q∗v(x)|2)|Q∗v(x)|2dx

=
Na

2N∗v
〈Qv(x), (

√
−∆ + iv · ∇)Qv(x)〉

− N2a

4(N∗v )2

∫
R3

(
e−µ|

x
a |

4π|x|
∗ |Qv(x)|2)|Qv(x)|2dx

=
Na

4N∗v

∫
R3

(
1

4π|x|
∗ |Qv(x)|2)|Qv(x)|2dx

− N2a

4(N∗v )2

∫
R3

(
e−µ|

x
a |

4π|x|
∗ |Qv(x)|2)|Qv(x)|2dx
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=
Na

4N∗v
[(1− N

N∗v
)

∫
R3

(
1

4π|x|
∗ |Qv(x)|2)|Qv(x)|2dx

+
N

N∗v

∫
R3

(
1− e−µ| xa |

4π|x|
∗ |Qv(x)|2)|Qv(x)|2dx].

Hence, when a→∞ , we find that

Iv(N) ≤ Ev(Q∗v(x))

≤ Na

4N∗v
[(1− N

N∗v
)

∫
R3

(
1

4π|x|
∗ |Qv(x)|2)|Qv(x)|2dx+ o(1)]→ −∞,

for N > N∗v . Therefore, Iv(N) = −∞ when N > N∗v . �

Remark 3.2. By Lemma 3.1, we deduce that any minimizing sequence for (2.8) is
bounded in H1/2(R3) whenever 0 < N < N∗v . Indeed, we note that

√
−∆+ iv ·∇ ≥

(1− |v|)
√
−∆ holds. Hence, we see that supn〈ϕv,n,

√
−∆ϕv,n〉 ≤ C <∞ thanks to

(3.1).

Lemma 3.3. Suppose m > 0 is sufficiently large. Then we have

Iv(N) < −1

2
(1−

√
1− v2)mN + I1v (N), (3.3)

and I1v (N) < 0, where

I1v (N) = inf {E1
v(ϕv) : ϕv ∈ H1(R3),

∫
R3

|ϕv|2dx = N}, (3.4)

E1
v(ϕv) =

√
1− v2
4m

∫
R3

|∇ϕv|2dx−
1

4

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv|2)|ϕv|2dx. (3.5)

Proof. We select an spherically symmetric function, ρ(x) ∈ H1(R3) with∫
R3

|ρ(x)|2dx = N,

and we introduce the one-parameter family ρb(x) = eib|v|zρ(x) with b > 0. Here
and in what follows, we assume that v is parallel to the z-axis. One checks that

i

2
〈ρb, (v · ∇)ρb〉 = −bv

2

2
N.

Hence, we obtain

Ev(ρb) ≤
1

4b
(b2v2N + 〈ρ,−∆ρ〉+ (m2 + b2N))− 1

2
mN − 1

2
v2bN

− 1

4

∫
R3

(
1

4π|x|
e−µ|x| ∗ |ρ|2)|ρ|2dx.

Let b = m√
1−v2 , we have

Ev(ρb) ≤ −
1

2
(1−

√
1− v2)mN + E1

v(ρ).

On the other hand, we define ρc = c3/2ρ(cx), c > 0 with
∫
R3 |ρc(x)|2dx = N , then

we have

E1
v(ρc) =

c2
√

1− v2
4m

∫
R3

|∇ρ|2dx− c

4

∫
R3

(
1

4π|x|
e−µ|x| ∗ |ρ|2)|ρ|2dx.
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Hence, we can choose c = 1 and ρ1 > 0 is a suitable test function. Then we have
E1
v(ρ1) < 0, when m > 0 is sufficiently large. So, we have I1v (N) ≤ E1

v(ρ1) < 0,
and the proof is complete. �

Proof of Theorem 2.4. (1) Let {ϕv,n(x)} be a minimizing sequence for (2.8). By

Remark 3.2, we obtain that {ϕv,n(x)} is a bounded sequence in H1/2(R3). Now,
we apply concentration-compactness lemma [13], and conclude that a suitable sub-
sequence {ϕv,nk(x)} satisfies “vanishing”, “dichotomy” or “compactness”.

Suppose that {ϕv,nk(x)} satisfies “vanishing”. Then we conclude that

lim
k→∞

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv,nk(x)|2)|ϕv,nk(x)|2dx = 0.

Hence, we have Iv(N) ≥ − 1
2 (1 −

√
1− v2)mN , which is contradicts (3.3). Hence,

“vanishing” can not occur.
Suppose that {ϕv,nk(x)} satisfies “dichotomy”, we have

Iv(N) ≥ Iv(r) + Iv(N − r) for 0 < r < N and 0 < N < N∗v . (3.6)

By Lemma 3.3 and the same method as employed in [4, Lemma 2.3], we have

Iv(N) < Iv(r) + Iv(N − r) for 0 < r < N and 0 < N < N∗v . (3.7)

So, inequality (3.6) contradicts the strict subadditivity condition (3.7), and “di-
chotomy” can not occur.

By the discussion so far, we conclude that there exists a subsequence {ϕv,nk(x)}
and {yk} ⊂ R3 such that the subsequence ϕ̃v,n = ϕv,nk(·+ yk) satisfies

ϕ̃v,n → ϕv strongly in H1/2(R3) ask →∞

and ∫
R3

(
e−µ|x|

4π|x|
∗ |ϕ̃v,n|2)|ϕ̃v,n|2dx→

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv|2)|ϕv|2dx, as k →∞,

for some ϕv ∈ H1/2(R3). We therefore conclude that
∫
R3 |ϕv|2dx = N and Iv(N) =

Ev(ϕv) by the weak lower semicontinuity. This implies that (1) of Theorem 2.4
holds.

(2) Clearly, there is no minimizer if N > N∗v . Since in this case, we have
Iv(N) = −∞ by Lemma 3.1. �

4. Critical stellar mass

In this section, we prove the existence of minimizers for (2.8) at N = N∗v . We
consider the manifold

M =
{
ϕv : ϕv ∈ H1/2(R3) and

∫
R3

|ϕv|2dx = N∗v big},

and define the metric

d(ϕv, φ) = ‖ϕv − φ‖H1/2(R3), ϕv, φ ∈M.

So that (M,d) is a complete metric space. For the minimizing problem

Iv(N
∗
v ) := inf{Ev(ϕv) : ϕv ∈ H1/2(R3),N (ϕv) = N∗v }.
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By Ekeland variational principle [18], we obtain that there exists a minimizing
sequence {ϕv,n(x)} of Iv(N

∗
v ) such that

Iv(N
∗
v ) ≤ Ev(ϕv,n) ≤ Iv(N∗v ) +

1

n
, , (4.1)

Ev(φ) ≥ Ev(ϕv,n)− 1

n
‖ϕv,n − φ‖H1/2(R3), for any φ ∈M. (4.2)

By applying (4.1) and (4.2), we shall prove that

{ϕv,n(x)} is uniformly bounded in M. (4.3)

Indeed, if (4.3) holds, by using the same arguments of (1) in the proof of Theorem
2.4, we obtain the existence of minimizers for (2.8) at critical stellar mass N = N∗v .

In the rest of this section we derive claim (4.3). On the contrary, suppose (4.3) is
false, then there exists a subsequence {ϕv,nk(x)}, such that ‖ϕv,nk(x)‖H1/2(R3) →∞
as n→∞, and we shall finally derive a contradiction.

Lemma 4.1. Suppose m > 0 is sufficiently large, and we define

η̃n(x) = λ3/2n ϕv,n(λnx), ηn(x) = η̃n(x+ yλn), (4.4)

λ−1n :=

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv,n|2)|ϕv,n|2dx. (4.5)

Then there exist positive constants R and C satisfying

lim inf
λn→0

∫
BR(0)

|ηn(x)|2dx ≥ C > 0. (4.6)

Proof. From (4.1)and (4.2), we have

0 ≤ 1

2
〈ϕv,n, (

√
−∆ + iv · ∇)ϕv,n〉 −

1

4

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv,n|2)|ϕv,n|2dx

≤ Iv(N∗v ) +
1

n
+

1

2
mN∗v .

(4.7)

Hence, we have

1

2
〈ϕv,n, (

√
−∆ + iv · ∇)ϕv,n〉 → ∞, as n→∞, (4.8)

1

4

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv,n|2)|ϕv,n|2dx ≤ Iv(N∗v ) +

1

n
+

1

2
mN∗v →∞, as n→∞.

(4.9)

From the definition of λn
−1 in (4.5), we have λn → 0 as n→∞. By (4.7), it follows

from that there exists a constant K > 0 independent of n such that

0 < Kλn
−1 ≤ 1

2
〈ϕv,n, (

√
−∆ + iv · ∇)ϕv,n〉

≤ 1

K
λn
−1 + Iv(N

∗
v ) +

1

2
mN∗v , as n→∞.

(4.10)

Using (4.5) and (4.10), we have∫
R3

(
e−µ|λnx|

4π|x|
∗ |η̃n(x)|2)|η̃n(x)|2dx = λn

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv,n|2)|ϕv,n|2dx = 1,

(4.11)
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K ≤ 1

2
〈η̃n, (

√
−∆ + iv · ∇)η̃n〉 ≤

1

K
+ λn(Iv(N

∗
v ) +

1

2
mN∗v ). (4.12)

Claim: There exists a sequence {yλn} and positive constant R and C such that

lim inf
λn→0

∫
BR(yλn )

|η̃n|2dx ≥ C > 0.

Indeed, suppose that (4) is false. A proof similar to [4, Lemma A.2] then gives that∫
R3

(
e−µ|λnx|

4π|x|
∗ |η̃n(x)|2)|η̃n(x)|2dx→ 0, as n→∞,

which contradicts (4.11). Hence, the claim holds, and (4.6) is proved. �

Lemma 4.2. Suppose m > 0 is sufficiently large, and ηn ∈ H1/2(R3) be defined by
(4.4). Then we have ηn → η0 strongly in Lp(R3) for all p ∈ [2, 3), where η0 satisfies
the nonlinear equation

(
√
−∆ + iv · ∇)η0(x) +

1

N∗v
η0(x)− (

1

4π|x|
∗ |η0(x)|2)|η0(x)| = 0, onR3. (4.13)

Proof. For any u(x) ∈ C∞c (R3), we define

ũ(x) = λ
− 1

2
n u(

x− λnyλn
λn

), j(α, σ) =
1

2

∫
R3

|ϕv,n + αϕv,n + σũ|2dx− N∗v
2
.

Then the function j(α, σ) satisfies

j(0, 0) = 0,
∂j(0, 0)

∂α
=

∫
R3

|ϕv,n|2dx = N∗v ,
∂j(0, 0)

∂σ
=

∫
R3

ϕv,nũ(x)dx.

Using the implicit function theorem in [18], we obtain that there exist c > 0 and a
function α(σ) ∈ C1((−c, c),R), where |σ| > 0 is sufficiently small, such that

α(0) = 0, α′(0) = − 1

N∗v

∫
R3

ϕv,nũ(x)dx and j(α(σ), σ) = 0.

Therefore, ϕv,n + α(σ)ϕv,n + σũ ∈M , where α ∈ (−c, c). From (4.3), we have

Ev(ϕv,n + α(σ)ϕv,n + σũ)− Ev(ϕv,n) ≥ − 1

n
‖α(σ)ϕv,n + σũ‖H1/2(R3), (4.14)

and so we have

|〈E′v(ϕv,n), α′(0)ϕv,n + ũ〉| ≤ 1

n
‖α′(0)ϕv,n + ũ‖H1/2(R3). (4.15)

On the other hand,

1

2
〈E′v(ϕv,n), ũ〉 =

∫
R3

u(

√
−∆ +m2λn

2 −mλn)ηn(x)dx+

∫
R3

u(x)i(v · ∇)ηn(x)dx

−
∫
R3

(
e−µ|λnx|

4π|x|
∗ |ηn(x)|2)ηn(x)u(x)dx.

(4.16)
By setting µn = 〈E′v(ϕv,n), ϕv,n〉, combining (4.14), (4.15) and (4.16), we have

|µnλn + 1| = |µnλn + λn

∫
R3

(
e−µ|x|

4π|x|
∗ |ϕv,n|2)|ϕv,n|2dx| → 0, as n→∞,

‖α′(0)ϕv,n + ũ‖H1/2(R3) ≤ Cλ1/2n , (4.17)
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α′(0) = − λn
N∗v

∫
R3

ηn(x)u(x)dx.

Thus, estimates (4.15)–(4.17), yield

|
∫
R3

u(

√
−∆ +m2λn

2 −mλn)ηn(x)dx+

∫
R3

u(x)i(v · ∇)ηn(x)dx

−µnλn
N∗v

∫
R3

ηn(x)u(x)dx−
∫
R3

(
e−µ|λnx|

4π|x|
∗ |ηn(x)|2)ηn(x)u(x)dx|

= |〈E′v(ϕv,n), ũ〉+ µnα
′(0)| = |〈E′v(ϕv,n), α′(0)ϕv,n + ũ〉| ≤ Cλ

1/2
n

n
.

(4.18)

From this equality and Lemma 4.1, we have that ηn ⇀ η0 6= 0 in H1/2(R3) and

0 ≤
∫
R3

|η0|2dx ≤ lim inf
λn→∞

∫
R3

|ηn|2dx = N∗v . (4.19)

On the other hand, by the Pohozaev identity [17], we derive from (4.13) that

1

N∗v

∫
R3

|η0|2dx =

∫
R3

η0(
√
−∆+ iv ·∇)η0(x)dx =

1

2

∫
R3

(
1

4π|x|
∗ |η0(x)|2)|η0(x)|2dx.

Furthermore, this and (2.7) imply that

N∗v
2
≤
∫
R3 η0(

√
−∆ + iv · ∇)η0(x)dx

∫
R3 |η0|2dx∫

R3( 1
4π|x| ∗ |η0(x)|2)|η0(x)|2dx

=
1

2

∫
R3

|η0|2dx.

This and (??) indicate that ηn → η0 strongly in Lp(R3) for all p ∈ [2, 3). In view
of the H1/2(R3) boundness, the proof is complete. �

Proof of Theorem 2.5. By Lemma 4.2, we have

lim inf
n→∞

∫
R3

(
1− e−µ|x|

4π|x|
∗ |ϕv,n(x)|2)|ϕv,n(x)|2dx

= lim inf
n→∞

∫
R3

(
1− e−µ|λnx|

4π|λnx|
∗ |ηn(x)|2)|ηn(x)|2dx

≥
∫
R3

lim inf
n→∞

(
1− e−µ|λnx|

4π|λnx|
∗ |ηn(x)|2)|ηn(x)|2dx

≥ 2m

N∗v
(N∗v )2 = 2mN∗v .

By (2.7), we have

Iv(N
∗
v ) = lim inf

n→∞
Ev(ϕv,n)

= −1

2
mN∗v + lim inf

n→∞
{1

2
〈ϕv,n, (

√
−∆ + iv · ∇)ϕv,n〉

− 1

4

∫
R3

(
1

4π|x|
∗ |ϕv,n(x)|2)|ϕv,n(x)|2dx

+
1

2
〈ϕv,n, (

√
−∆ +m2 −

√
−∆)ϕv,n〉

+
1

4

∫
R3

(
1− e−µ|x|

4π|x|
∗ |ϕv,n(x)|2)|ϕv,n(x)|2dx}
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≥ −1

2
mN∗v +

1

4
lim inf
n→∞

∫
R3

(
1− e−µ|x|

4π|x|
∗ |ϕv,n(x)|2)|ϕv,n(x)|2dx ≥ 0,

which contradicts Lemma 3.1. This verifies that (4.3) holds, and the proof is com-
plete. �

5. Orbital stability

In this section, we prove the orbital stability of travelling solitary wave by a
general idea which is introduced by [1, 2].

Proof of Theorem 2.6. (1) We choose δ > 0 sufficiently small such that

inf
ϕv∈Gv,N

‖ψ0(x)− ϕv(x)‖H1/2(R3) ≤ δ.

By Lemma 2.1, we have that the corresponding solution ψ(t) exists for all times
t ≥ 0 with 0 < N < N∗v .

Now, argue by contradiction, we assume that orbital stability does not hold.
Then this means that there exist ε0 > 0, a sequence of initial value {ψn(0)} ∈
H1/2(R3) and {tn} ∈ R with

inf
ϕv∈Gv,N

‖ψn(0)− ϕv‖H1/2(R3) → 0 as n→∞, (5.1)

and some ε0 > 0 such that

inf
ϕv∈Gv,N

‖ψn(tn)− ϕv‖H1/2(R3) > ε0, as n ≥ 0, (5.2)

where {ψn(tn)} denotes the solution to equation (1.3) with initial datum {ψn(0)}.
Note that (5.1) implies that N (ψn(0))→ N as n→∞. Since 0 < N < N∗v , we

can assume that N (ψn(0)) < N∗v holds for all n ≥ 0, which guarantees that {ψn(t)}
exists globally in time. Define

αn = ψn(tn)inH1/2(R3).

By conservation of N (ψ(t)) and Ev(ψ(t)), we have

lim
n→∞

Ev(αn) = Iv(N) and lim
n→∞

N (αn) = N.

Next, we consider the rescaled sequence

α̃n = anαn, where an =

√
N

N (αn)
.

Using Remark 3.2, we deduce that

‖α̃n − αn‖H1/2(R3) ≤ C|1− an| → 0, as n→∞.

By continuity of Ev(ϕv), we deduce that

lim
n→∞

Ev(α̃n) = Iv(N), lim
n→∞

N (α̃n) = N, for all n ≥ 0.

Therefore, {α̃n} is a minimizing sequence for (2.8), and we have a contradiction.

(2) By Theorem 2.5, the solution ψ(t) of equation (1.3) is a global solution in

H1/2(R3), when N = N∗v and lim inf |x|→0
1−e−µ|x|

4π|x| ≥ 2m
N∗v

. In a similar way, this

completes the proof of Theorem 2.6. �
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