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GENERALIZED SPREADING SPEEDS FOR LATTICE

DIFFERENTIAL EQUATIONS WITH TIME AND

SPACE DEPENDENCE

NING WANG, ZHI-CHENG WANG

Abstract. This article concerns the spatial spreading speeds for lattice differ-

ential equations with general time and space dependence. Firstly, we give the

concept of spreading speed intervals. Then, under the suitable assumptions
we show the existence and properties of spreading speed intervals.

1. Introduction

In this article we explore the spatial spreading speeds for the lattice differential
equation

u̇i(t) = ui+1(t)− 2ui(t) + ui−1(t) + fi(t, ui(t)), i ∈ Z, t ∈ R. (1.1)

Let

X := l∞(Z) = {u = {ui}i∈Z : sup
i∈Z
|ui| <∞}

equipped with norm ‖u‖∞ = supi∈Z |ui|. For given u1, u2 ∈ X, we define u1 <
u2 (u1 ≤ u2) if u1i < u2i (u1i ≤ u2i ) for each i ∈ Z. We make an assumption on
f(t, s) := {fi(t, s)}i∈Z:

f(t, s) := {fi(t, s)}i∈Z ∈ C1(R2, X).

Under the assumption above, for any given u0 ∈ X and t0 ∈ R, (1.1) has a unique
(local) solution, denoted by u(t; t0, u

0, f) with u(t0; t0, u
0, f) = u0. We denote by

u(t; t0, j, u
0(j′), f) the solution of the space shifted equation of (1.1),

u̇i(t) = ui+1(t)− 2ui(t) + ui−1(t) + fi+j(t, ui(t)), i ∈ Z, t ∈ R (1.2)

with initial condition ui(t0; t0, j, u
0(j′), f) = u0i+j′ for u0 ∈ X. Note that for any

(i, t) ∈ Z×R, ui(t; t0, j, u
0(j′), f) = ui+j(t; t0, u

0(j′−j), f) and u(t; t0, 0, u
0(0), f) =

u(t; t0, u
0, f).

Equation (1.1) comes directly from many biological models in patchy environ-
ments [14, 13], which describes the growth of population or biological invasion
process. In fact, it is also the spatially discrete version of the reaction diffusion
equation

ut = uxx + f(t, x, u). (1.3)
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Since the pioneer works [5, 8] for the evolutionary take-over of a habitat by a fitter
genotype in 1937, there have been many studies on the spatial spreading dynamics
in spatially and temporal homogeneous media or spatially and/or temporal periodic
media. Because of the existence of various heterogeneities in many natural envi-
ronments, it is of great importance to investigate the spatial spreading and front
propagating dynamics for reaction diffusion equations in temporal and/or spatially
heterogeneous environment.

The spatial spreading and front propagating dynamics of KPP models (1.3) in
time almost periodic and space periodic media were studied in [1, 2, 7]. Shen [11]
explored the spatial spreading speeds for two-dimensional discrete KPP models
in time recurrent and space independent environments. In the case where the
nonlinearity of (1.1) are homogeneous in space variable, that is, fi(t, s) ≡ fj(t, s)
for all i, j ∈ Z, the spatial spreading speeds has been characterized in [3]. After
then, under the assumption that there is a transition wave of (1.1), Cao and Shen
[4] established a method to test the stability and uniqueness of it. However, there
are few investigation on spatial spreading speeds for lattice differential equations
with general time and space dependence.

The objective of this article is to study the spatial spreading speeds for lat-
tice differential equation in general heterogeneous media. We need the following
assumptions:

(H1) There exist 0 < m̃0 < M̃0 such that for all (i, t) ∈ Z× R and s ≥ 0,

∂sf
−
i (t, 0)s− M̃0s

2 ≤ f−i (t, s) ≤ fi(t, s) ≤ f+i (t, s) ≤ ∂sf+i (t, 0)s− m̃0s
2,

where f±i (t, s) (i ∈ Z) are C1 in t ∈ R, and are C2 in s ∈ R with
∂f±i
∂s (t, s)

and
∂2f±i
∂s2 (t, s) being bounded uniformly in (t, s) ∈ R2. Moreover, f±i (t, s) =

f±i+N (t, s) (N is a positive integer) for all i ∈ Z and (t, s) ∈ R2.

For the sake of simplicity, we denote (1.1)− and (1.1)+ (resp. (1.2)− and
(1.2)+) as the equation (1.1) (resp. (1.2)) with f being replaced by f− and f+

respectively. Let u(t; t0, u
0, f−) and u(t; t0, u

0, f+) (resp. u(t; t0, j, u
0(j′), f−) and

u(t; t0, j, u
0(j′), f+)) be the solution of (1.1)− and (1.1)+ (resp. (1.2)− and (1.2)+)

respectively, where u0 ∈ X and

u(t0; t0, u
0, f−) = u0, u(t0; t0, u

0, f+) = u0

(resp.

ui(t0; t0, j, u
0(j′), f−) = u0i+j′ , ui(t0; t0, j, u

0(j′), f+) = u0i+j′ , i ∈ Z).

If no confusion occurs, we may write the solution u(t; t0, u
0, f) of (1.1) and the

solution u(t; t0, j, u
0(j′), f) of (1.2) as u(t; t0, u

0) and u(t; t0, j, u
0(j′)) respectively.

A solution û+(t) = {û+i (t)}i∈Z of (1.1)− (resp. ǔ+(t) = {ǔ+i (t)}i∈Z of (1.1)+)
is called a entirely positive solution if it is a solution of (1.1)− (resp. (1.1)+) for
t ∈ R and û+inf := inft∈R, i∈Z û

+
i (t) > 0 (resp. ǔ+inf := inft∈R, i∈Z ǔ

+
i (t) > 0).

A solution û+(t) (resp. ǔ+(t)) is globally stable in the sense that for any u0 ∈ X
with infi∈Z u

0
i > 0,

‖u(t+ t0; t0, u
0, f−)− û+(t+ t0)‖∞ → 0 as t→∞,

(resp. ‖u(t+ t0; t0, u
0, f+)− ǔ+(t+ t0)‖∞ → 0 as t→∞)

uniformly in t0 ∈ R.
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Also, we can define û+(t; j) = {û+i (t; j) = û+i+j(t)}i∈Z and ǔ+(t; j) = {ǔ+i (t; j) =

ǔ+i+j(t)}i∈Z as the globally stable entirely positive solution of (1.2)− and (1.2)+

respectively.
Cao and Shen [4, Proposition 2.1] obtained the existence, uniqueness and global

stability of uniformly bounded entirely positive solutions for (1.1)± being repre-
sented in the form

u̇i(t) = ui+1(t)− 2ui(t) + ui−1(t) + uif̃
±
i (t, ui(t)), i ∈ Z, t ∈ R

where f̃±i (t, s) (i ∈ Z) are of mono-stable or Fisher-KPP type and satisfy the

regularity assumption in (H1); for some M0 > 0, f̃±i (t, s) < 0 when s ≥ M0;
∂f̃±i
∂s (t, s) < 0 for s ≥ 0; and

lim inf
t−t0→∞

1

t− t0

∫ t

t0

inf
i∈Z

f̃±i (τ, 0)dτ > 0.

This ensures the validity of the assumption (H2) in the following. It is not clear to
us if such solutions still exist without hypotheses above. Therefore, we make the
further assumptions on f± as follows:

(H2) There are the unique uniformly bounded globally stable positive solution
û+(t) and ǔ+(t) with û+inf ≤ ǔ

+
inf of (1.1)± respectively.

This paper is organized as follows. In Section 2, we introduce some important
definitions and state our main results. Section 3 is devoted to investigating spatial
spreading speeds for general time and space dependent lattice differential equations
(1.1).

2. Preliminaries and statement of main results

In this section, we present some standard notation and state the main results of
this article. Let

X1 = {u0 ∈ X : 0 ≤ u0 < û+inf , 0 < lim inf
i→−∞

u0i < û+inf , u
0
i = 0 (i� 1)}.

For a given function t→ u(t) ∈ X and c ∈ R, we define

lim sup
i≥ct,t→∞

ui(t) = lim sup
t→∞

sup
i∈Z,i≥ct

ui(t), lim inf
i≤ct,t→∞

ui(t) = lim inf
t→∞

inf
i∈Z,i≤ct

ui(t).

For (1.1) involving not globally stable positive solution, we make the following
definitions:

c∗sup = inf
{
c : ∀u0 ∈ X1, lim sup

i≥ct,t→∞
ui(t+ t0; t0, u

0) = 0 uniformly in t0 ∈ R
}
,

č∗sup = inf
{
c : ∀u0 ∈ X1, lim sup

i≥ct,t→∞
ui(t+ t0; t0, u

0, f+) = 0

uniformly in t0 ∈ R
}
,

c∗inf = sup
{
c : ∀u0 ∈ X1, lim inf

i≤ct,t→∞
(ui(t+ t0; t0, u

0)− û+i (t+ t0)) ≥ 0

uniformly in t0 ∈ R
}
,

ĉ∗inf = sup
{
c : ∀u0 ∈ X1, lim inf

i≤ct,t→∞
(ui(t+ t0; t0, u

0, f−)− û+i (t+ t0)) = 0

uniformly in t0 ∈ R
}
.
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In fact, [c∗inf , c
∗
sup] can be called the spreading speed interval of (1.1). We then state

our main results. The next theorem is about spreading properties.

Theorem 2.1.

(1) ĉ∗inf and č∗sup are finite.

(2) If c < ĉ∗inf , then for any u0 ∈ X1,

lim inf
i≤ct,t→∞

(ui(t+ t0; t0, j, u
0)− û+i (t+ t0; j)) ≥ 0 (2.1)

uniformly in t0 ∈ R and j ∈ Z. In particular, ĉ∗inf ≤ c∗inf .
(3) If c > č∗sup, then for any u0 ∈ X1,

lim sup
i≥ct,t→∞

u(t+ t0; t0, j, u
0) = 0 (2.2)

uniformly in t0 ∈ R and j ∈ Z. In particular, č∗sup ≥ c∗sup.

(4) Assume that 0 ≤ u0 < û+inf(u
0 ∈ X) with u0i = 0 for i � 1, then for any

c > č∗sup,

lim sup
i≥ct,t→∞

ui(t+ t0; t0, j, u
0) = 0

uniformly in t0 ∈ R and j ∈ Z.

Let g(t) ∈ L∞(R). Define

ginf = lim inf
t≥s,t−s→∞

1

t− s

∫ t

s

g(τ)dτ, gsup = lim sup
t≥s,t−s→∞

1

t− s

∫ t

s

g(τ)dτ,

bgcT = inf
k∈Z

1

T

∫ kT

(k−1)T
g(τ)dτ, dgeT = sup

k∈Z

1

T

∫ kT

(k−1)T
g(τ)dτ.

Introduce the N ×N matrix Cλ := [cλ;i,j ] defined by

cλ;j,j(t) = −2, j ∈ {1, . . . , N},

cλ;j,j+1 = e−λ, j ∈ {1, . . . , N − 1},

cλ;j+1,j = eλ, j ∈ {1, . . . , N − 1},

cλ;1,N = eλ, cλ;N,1 = e−λ,

cλ;i,j = 0, |i− j| ≥ 2 (i, j) /∈ {(1, N), (N, 1)}

for λ ∈ R. Furthermore, call Dinf(f
−) := [ai,j ] the diagonal N ×N matrix defined

by ai,i = ∂sf
−
i (t, 0)inf for all i ∈ {1, . . . , N}; call Dsup(f+) := [bi,j ] the diagonal

N × N matrix defined by bi,i = ∂sf
+
i (t, 0)sup for all i ∈ {1, . . . , N}. Lastly, call

bDcT (f−) := [ci,j ] the diagonal N × N matrix defined by ci,i = b∂sf−i (t, 0)cT for
all i ∈ {1, . . . , N}; call dDeT (f+) := [di,j ] the diagonal N × N matrix defined by
di,i = d∂sf+i (t, 0)eT for all i ∈ {1, . . . , N}.

The matrices Cλ+Dinf(f
−), Cλ+Dsup(f+), Cλ+bDcT (f−) and Cλ+dDeT (f+)

have principle eigenvalue Minf(f
−;λ), Msup(f+;λ), bMcT (f−;λ) and dMeT (f+;λ)

respectively (see [6, Lemma 2.1]).

Theorem 2.2. (1) Let u0 ∈ X with 0 ≤ u0i ≤ û+inf for i ∈ Z and γ′ ∈ R be given.
If

lim inf
j≤γ′t,t→∞

uj(t+ t0; t0, u
0, f−) > 0
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uniformly in t0 ∈ R, then for any γ < γ′,

lim inf
j≤γt,t→∞

(uj(t+ t0; t0, u
0, f−)− û+j (t+ t0)) = 0 (2.3)

uniformly in t0 ∈ R. Moreover,

lim inf
j≤γt,t→∞

(uj(t+ t0; t0, u
0)− û+j (t+ t0)) ≥ 0

uniformly in t0 ∈ R.
(2) One has

c− := inf
λ>0

Minf(f
−;λ)

λ
≤ c∗inf ≤ c∗sup ≤ c+ := inf

λ>0

Msup(f+;λ)

λ
.

Remark 2.3. If ∂sf
±
i (t, 0) are unique ergodic for each i ∈ Z, namely the limit

lim
t≥t0,t−t0→∞

1

t− t0

∫ t

t0

∂sf
±
i (τ, 0)dτ, i ∈ Z

exist (see [11, 12] for details), and

lim
t≥t0,t−t0→∞

1

t− t0

∫ t

t0

∂sf
−
i (τ, 0)dτ = lim

t≥t0,t−t0→∞

1

t− t0

∫ t

t0

∂sf
+
i (τ, 0)dτ, i ∈ Z.

Thus c− = c∗inf = c∗sup = c+. In this case, c− is called the spreading speed of (1.1).
This implies that under well-fitted perturbation, there still exists the spreading speed
for lattice mono-stable equations with time and space periodic dependence.

3. Spreading speeds

In this section, we investigate the fundamental properties of (generalized) spatial
spreading speeds of (1.1) and prove Theorems 2.1 and 2.2. First we present some
important lemmas to be used in the proofs of the main results. In the following,
we establish a basic comparison principle for (1.1)± in terms of sub-solutions and
super-solutions. A function v(t) ∈ C([t0, T ), X) is called a super-solution or sub-
solution of (1.1)± if v(t) is absolutely continuous in t ∈ [t0, T ) and

v̇i(t) ≥ vi+1(t)− 2vi(t) + vi−1(t) + f±i (t, vi(t)) for i ∈ Z, t ∈ [t0, T )

or

v̇i(t) ≤ vi+1(t)− 2vi(t) + vi−1(t) + f±i (t, vi(t)) for i ∈ Z, t ∈ [t0, T ).

Similarly, we can also define a function v(t; j) ∈ C([t0, T ), X) which is super-
solution or sub-solution of (1.2)±, respectively.

Lemma 3.1. (1) Suppose that v1(t) and v2(t) are bounded super-solution and sub-
solution of (1.1)− on [t0, T ) respectively, and v1(t0) ≥ v2(t0), then v1(t) ≥ v2(t)
for t ∈ [t0, T ). In particular, for any u1, u2 ∈ X with u1 ≤ u2, we have

ui(t; t0, u
1, f−) ≤ ui(t; t0, u2), i ∈ Z,

where t > t0 is such that both u(t; t0, u
1, f−) and u(t; t0, u

2) exist.
(2) Suppose that w1(t) and w2(t) are bounded super-solution and sub-solution

of (1.1)+ on [t0, T ) respectively, and w1(t0) ≥ w2(t0), then w1(t) ≥ w2(t) for
t ∈ [t0, T ). In particular, for any u1, u2 ∈ X with u1 ≤ u2, we have

ui(t; t0, u
2, f+) ≥ ui(t; t0, u1), i ∈ Z,

where t > t0 is such that both u(t; t0, u
2, f+) and u(t; t0, u

1) exist.
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Proof. We prove (1), while (2) can be proved similarly. Let wi(t) = ect(v1i (t) −
v2i (t)), where c is a constant to be determined later. Then

ẇi(t) = cect(v1i (t)− v2i (t)) + ect(v̇1i (t)− v̇2i (t))

≥ wi+1(t) + wi−1(t) + (ai(t)− 2 + c)wi(t)
(3.1)

for all i ∈ Z and t ∈ [t0, T ), where

ai(t) =

∫ 1

0

∂f−i
∂s

(t, τv1i (t) + (1− τ)v2i (t))dτ for i ∈ Z, t ∈ [t0, T ).

Let pi(t) = ai(t) − 2 + c. Since v1(t) and v2(t) are bounded on t ∈ [t0, T ), then
there is a c > 0 such that

inf
i∈Z,t∈[t0,T ]

pi(t) > 0.

In the following, one claims that wi(t) ≥ 0 for i ∈ Z and t ∈ [t0, T ). Denote
p0 = supi∈Z,t∈[t0,T ) pi(t). It is obviously sufficient to prove the claim for i ∈ Z and

t ∈ [t0, t0 + T0] with T0 = 1
2 min

{
T − t0, 1

p0+2

}
. Assume, towards contradiction,

that there exists ĩ ∈ Z and t̃ ∈ [t0, t0 + T0] such that wĩ(t̃) < 0. Thus

winf = inf
i∈Z,t∈[t0,t0+T0]

wi(t) < 0.

Hence, we can find some sequences in ∈ Z and tn ∈ [t0, t0 + T0] such that

win(tn)→ winf as n→∞.

From (3.1) and the fundamental theorem of calculus for Lebesgue integrals, we
obtain

win(tn)− win(t0) ≥
∫ tn

t0

[win+1(t) + win−1(t) + pin(t)win(t)]dt

≥
∫ tn

t0

[2winf + pin(t)winf ]dt

≥ T0(2 + p0)winf for n ≥ 1.

Recall that win(t0) ≥ 0, then win(tn) ≥ T0(2 + p0)winf for n ≥ 1. It follows that

winf ≥ T0(2 + p0)winf >
1

2
winf as n→∞,

which is a contradiction to winf < 0. Therefore, v1(t) ≥ v2(t) for t ∈ [t0, T ). �

Remark 3.2. Clearly, the results in Lemma 3.1 are still valid for (1.2)±.

Let η(s) = 1
2 (1 + tanh s

2 ) for s ∈ R. Observe that

η′(s) = η(s)(1− η(s)) and η′′(s) = η(s)(1− η(s))(1− 2η(s)), s ∈ R.

In addition, there exists a constant M > 0 such that, for any s′, s′′ ∈ R with
|s′ − s′′| ≤ 1, ∣∣ η′(s′)

η′(s′′)

∣∣ ≤M. (3.2)

Without loss of generality, we may assume that f−i (t, s) = 0 (resp. f+i (t, s) = 0)
for s� 0 and i ∈ Z. For otherwise, let ζ(·) ∈ C∞(R) be such that ζ(s) = 1 for s ≥ 0
and ζ(s) = 0 for s � 0. We replace f−i (t, ui) (resp. f+i (t, ui)) by f−i (t, ui)ζ(ui)



EJDE-2019/74 GENERALIZED SPREADING SPEEDS 7

(resp. f+i (t, ui)ζ(ui)). Hence, we may also assume that there is a u− ∈ X with
u− < 0, such that for any t0 ∈ R and any u0 with u− ≤ u0 ≤ 0,

u− ≤ u(t; t0, u
0, f−) ≤ 0 for t ≥ t0 (3.3)

(resp. u− ≤ u(t; t0, u
0, f+) ≤ 0 for t ≥ t0).

Lemma 3.3. There is C0 > 0 such that for any α± with u− ≤ α− ≤ 0 < α+ ≤ û+inf ,
C ≥ C0, t0 ∈ R and j ∈ Z, the following holds:

(1) Let

v±i (t; t0, j)

= ui(t; t0, j, α±, f
−)η(i+ C(t− t0)) + ui(t; t0, j, α∓, f

−)(1− η(i+ C(t− t0))).

Then v+(t; t0, j) = {v+i (t; t0, j)}i∈Z and v−(t; t0, j) = {v−i (t; t0, j)}i∈Z are super-
and sub-solutions of (1.2)− on [t0,∞), respectively.

(2) Let

w±i (t; t0, j)

= ui(t; t0, j, α∓, f
−)η(i− C(t− t0)) + ui(t; t0, j, α±, f

−)(1− η(i− C(t− t0))).

Then w+(t; t0, j) = {w+
i (t; t0, j)}i∈Z and w−(t; t0, j) = {w−i (t; t0, j)}i∈Z are super-

and sub-solutions of (1.2)− on [t0,∞), respectively.

Proof. Without loss of generality, one can assume that j = 0. We prove that
v+(t; t0, 0) is a super-solution of (1.1)−. The other statements can be proven simi-
larly.

First of all, owing to Taylor expansion, for any i ∈ Z, one has

f−i
(
t, ui(t; t0, α+, f

−)
)
η(i+ C(t− t0))

+ f−i (t, ui(t; t0, α−, f
−))(1− η(i+ C(t− t0)))

− f−i (t, ui(t; t0, α+, f
−)η(i+ C(t− t0))

+ ui(t; t0, α−, f
−)(1− η(i+ C(t− t0))))

= f−i (t, ui(t; t0, α+, f
−)− ui(t; t0, α−, f−) + ui(t; t0, α−, f

−))η(i+ C(t− t0))

+ f−i (t, ui(t; t0, α−, f
−))(1− η(i+ C(t− t0)))

− f−i (t, (ui(t; t0, α+, f
−)− ui(t; t0, α−, f−))η(i+ C(t− t0)) + ui(t; t0, α−, f

−))

=
(∂f−i
∂s

(t, u∗i (t) + ui(t; t0, α−, f
−))− ∂f−i

∂s
(t, u∗i (t)η(i+ C(t− t0))

+ ui(t; t0, α−, f
−))
)
· (ui(t; t0, α+, f

−)− ui(t; t0, α−, f−))η(i+ C(t− t0))

=
∂2f−i
∂s2

(t, u∗∗i (t))u∗i (t)(ui(t; t0, α+, f
−)− ui(t; t0, α−, f−))η′(i+ C(t− t0)),

where u∗i (t) and u∗∗i (t) are between ui(t; t0, α−, f
−) and ui(t; t0, α+, f

−).
Next, for any i ∈ Z, a straightforward calculation then gives

v̇+i (t; t0)− v+i+1(t; t0) + 2v+i (t; t0)− v+i−1(t; t0)− f−i (t, v+i (t; t0))

= η′(i+ C(t− t0))
{
C(ui(t; t0, α+, f

−)− ui(t; t0, α−, f−))

+ [ui+1(t; t0, α+, f
−)− ui+1(t; t0, α−, f

−)]

× [η(i+ C(t− t0))− η(i+ 1 + C(t− t0))][η′(i+ C(t− t0))]−1
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+ [ui−1(t; t0, α+, f
−)− ui−1(t; t0, α−, f

−)][η(i+ C(t− t0))

− η(i− 1 + C(t− t0))][η′(i+ C(t− t0))]−1

− ∂2f−i
∂s2

(t, u∗∗i (t))u∗i (t)(ui(t; t0, α+, f
−)− ui(t; t0, α−, f−))

}
.

we know from (3.2) that for all i ∈ Z and t ≥ t0,∣∣η(i+ 1 + C(t− t0))− η(i+ C(t− t0))

η′(i+ C(t− t0))

∣∣ ≤M.

By (H2), there is a δ0 > 0 such that

ui(t; t0, α+, f
−)− ui(t; t0, α−, f−) ≥ δ0 for all i ∈ Z and t ≥ t0.

Therefore, there is a C0 > 0 such that for any α± with u− ≤ α− ≤ 0 < α+ ≤ û+inf ,
C ≥ C0 and t0 ∈ R, v+(t; t0, 0) = {v+i (t; t0, 0)}i∈Z is a super-solution of (1.1)− on
[t0,∞). This completes the proof. �

Remark 3.4. We can give super- and subsolutions of (1.2)+ in a similar way to
Lemma 3.3.

Proof of Theorem 2.1. (1) Let α− = 0 < α+ ≤ û+inf be given constants. There is
u0,∗ ∈ X1 such that

α−η(i) + α+(1− η(i)) ≥ u0,∗i , i ∈ Z.

Then by Remarks 3.2 and 3.4, there is C1 > 0 such that

w+
i (t+ t0; t0, j) =ui(t+ t0; t0, j, α−, f

+)η(i− C1t)

+ ui(t+ t0; t0, j, α+, f
+)(1− η(i− C1t))

≥ui(t+ t0; t0, j, u
0,∗, f+)

for t ≥ 0, t0 ∈ R, and i, j ∈ Z. Therefore, one has that for any C > C1,

lim sup
i≥Ct,t→∞

ui(t+ t0; t0, j, u
0,∗, f+) = 0 (3.4)

uniformly in t0 ∈ R and j ∈ Z.
For any u0 ∈ X1, by (H2) and Remark 3.4, there are T > 0 and iT ∈ Z such

that

ui+iT (t0; t0 − T, u0,∗, f+) ≥ u0i , i ∈ Z
for all t0 ∈ R. It then follows that

ui+iT (t+ t0; t0 − T,−iT , u0,∗, f+) ≥ ui(t+ t0; t0, u
0, f+)

for any t0 ∈ R, t ≥ 0, i ∈ Z. This together with (3.4) implies that for any C ′ > C
and u0 ∈ X1,

0 = lim sup
i+iT≥Ct,t→∞

ui+iT (t+ t0; t0 − T,−iT , u0,∗, f+)

≥ lim sup
i≥C′t,t→∞

ui+iT (t+ t0; t0 − T,−iT , u0,∗, f+)

≥ lim sup
i≥C′t,t→∞

ui(t+ t0; t0, u
0, f+) ≥ 0

uniformly in t0 ∈ R. Therefore, č∗sup ≤ C1.
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Now let û+inf > α+ > 0 > α− ≥ u− be given constants, where u− satisfies (3.3).
There is u0,∗∗ ∈ X1 such that

α−η(i) + α+(1− η(i)) ≤ u0,∗∗i , i ∈ Z.
Then by Remark 3.2 and Lemma 3.3,

v−i (t+ t0; t0, j) = ui(t+ t0; t0, j, α−, f
−)η(i+ C0t)

+ ui(t+ t0; t0, j, α+, f
−)(1− η(i+ C0t))

≤ ui(t+ t0; t0, j, u
0,∗∗, f−)

for t ≥ 0, t0 ∈ R and i, j ∈ Z. This implies that for C < −C0,

lim inf
i≤Ct,t→∞

(ui(t+ t0; t0, j, u
0,∗∗, f−)− û+i (t+ t0; j)) = 0 (3.5)

uniformly in t0 ∈ R and j ∈ Z.
For any u0,∗ ∈ X1, by (H2) and Lemma 3.3, there are T > 0 and iT ∈ Z such

that
û+i−iT (T + t0) ≥ ui−iT (T + t0; t0, u

0,∗, f−) ≥ u0,∗∗i , i ∈ Z
for any t0 ∈ R. This implies that

û+i (t;−iT ) ≥ ui(t;T + t0,−iT , u(T + t0; t0,−iT , u0,∗(−iT ), f−), f−)

≥ ui(t;T + t0,−iT , u0,∗∗, f−), i ∈ Z
and hence

û+i (t) ≥ ui(t;T + t0, u(T + t0; t0, u
0,∗, f−), f−)

≥ ui+iT (t;T + t0,−iT , u0,∗∗, f−), i ∈ Z

for t ≥ T + t0. This and (3.5) imply that for any C ′ < C,

0 ≥ lim inf
i≤C′t,t→∞

(ui+iT (t+ T + t0;T + t0,−iT , u0,∗∗, f−)− û+i (t+ T + t0))

≥ lim inf
i+iT≤Ct,t→∞

(ui+iT (t+ T + t0;T + t0,−iT , u0,∗∗, f−)− û+i (t+ T + t0)) = 0

uniformly in t0 ∈ R. Therefore,

lim inf
i≤C′t,t→∞

(ui(t+ t0; t0, u
0,∗, f−)− û+i (t+ t0)) = 0

uniformly in t0 ∈ R. Therefore, ĉ∗inf ≥ −C0.
As a conclusion, ĉ∗inf and č∗sup are finite.

(2) Assume c < ĉ∗inf . Let c < c1 < ĉ∗inf . For any u0 ∈ X1, note that there is

u0,∗ ∈ X1 such that u0i−j ≥ u0,∗i for all i ∈ Z and j ∈ {1, . . . , N}. By Lemma 3.1,
we have

ui+j(t; t0, u
0(−j), f−) ≥ ui+j(t; t0, u0,∗, f−), i ∈ Z, t > t0

for all t0 ∈ R and j ∈ {1, . . . , N}. By the assumption,

lim inf
i≤c1t,t→∞

(ui(t+ t0; t0, u
0,∗f−)− û+i (t+ t0)) = 0

uniformly in t0 ∈ R. This implies that

lim inf
i+j≤c1t,t→∞

(ui+j(t+ t0; t0, u
0,∗, f−)− û+i+j(t+ t0)) = 0

and then

lim inf
i+j≤c1t,t→∞

(ui+j(t+ t0; t0, u
0(−j), f−)− û+i+j(t+ t0)) = 0
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uniformly in t0 ∈ R and j ∈ {1, . . . , N}. Hence

lim inf
i≤ct,t→∞

(ui(t+ t0; t0, j, u
0, f−)− û+i (t+ t0; j)) = 0

uniformly in t0 ∈ R and j ∈ {1, . . . , N}. By the periodicity of f− with respect to
i, it then follows that

lim inf
i≤ct,t→∞

(ui(t+ t0; t0, j, u
0, f−)− û+i (t+ t0; j)) = 0

uniformly in t0 ∈ R and j ∈ Z. This and Remark 3.2 imply that the limit in (2.1)
is uniform in t0 ∈ R and j ∈ Z.

(3) Assume c > č∗sup. Let c > c1 > č∗sup. For any u0 ∈ X1, note that there is

u0,∗ ∈ X1 such that u0,∗i ≥ u0i−j for all i ∈ Z and j ∈ {1, . . . , N}. By Lemma 3.1,

ui+j(t+ t0; t0, u
0(−j), f+) ≤ ui+j(t+ t0; t0, u

0,∗, f+), i ∈ Z, t > t0

for all t0 ∈ R and j ∈ {1, . . . , N}. By the assumptions,

lim sup
i≥c1t,t→∞

ui(t+ t0; t0, u
0,∗, f+) = 0

uniformly in t0 ∈ R. This implies that

lim sup
i+j≥c1t,t→∞

ui+j(t+ t0; t0, u
0,∗, f+) = 0

and then

lim sup
i+j≥c1t,t→∞

ui+j(t+ t0; t0, u
0(−j), f+) = 0

uniformly in t0 ∈ R and j ∈ {1, . . . , N}. Hence

lim sup
i≥ct,t→∞

ui(t+ t0; t0, j, u
0, f+) = 0

uniformly in t0 ∈ R and j ∈ {1, . . . , N}. This and the periodicity of f+ with respect
to i and Remark 3.2 implies that the limit in (2.2) is uniform in t0 ∈ R and j ∈ Z.

(4) Take any c > č∗sup and fix it. First, for given 0 ≤ u0 < û+inf (u0 ∈ X)

satisfying u0i = 0 for i� 1, there is ũ0 ∈ X1 such that u0 ≤ ũ0. Then

0 ≤ u(t+ t0; t0, j, u
0) ≤ u(t+ t0; t0, j, ũ

0)

for t > 0 and t0 ∈ R. It then follows from (3) that

0 ≤ lim sup
i≥ct,t→∞

ui(t+ t0; t0, j, u
0) ≤ lim sup

i≥ct,t→∞
ui(t+ t0; t0, j, ũ

0) = 0

uniformly in t0 ∈ R and j ∈ Z. The proof is complete. �

Lemma 3.5. For given γ′ < c−, there is T > 0 such that γ′ < infλ>0
bMcT (f−;λ)

λ .

Proof. By [10, Proposition 3.1], we have

∂sf
−
i (t, 0)inf = lim

T→∞
inf
t∈R

1

T

∫ t+T

t

∂sf
−
i (τ, 0)dτ, i ∈ Z.

This and [6, Lemma 2.1] imply the statement of the lemma. �
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Lemma 3.6. For a given C > 0, consider

u̇i(t) = ui+1(t)− 2ui(t) + ui−1(t) + ui(t)(b∂sf−i (t, 0)cT − Cui(t)), i ∈ Z. (3.6)

Then

c∗ := inf
λ>0

bMcT (f−;λ)

λ

is the spreading speed of (3.6) which coincides with the minimal speed.

The above lemma follows from [6, Lemma 2.1] and [9, Theorems 4.1, 4.2].

Proof of Theorem 2.2. (1) Let

δ0 = lim inf
t0∈R,j≤γ′t,t→∞

uj(t+ t0; t0, u
0, f−).

Then there is T > 0 such that

uj(t+ t0; t0, u
0, f−) ≥ δ0

2
∀t0 ∈ R, j ≤ γ′t, t ≥ T.

Assume that there is γ0 < γ′ such that (2.3) does not hold. Then there are ε0 > 0,
t0;n ∈ R, jn ∈ Z, and tn > 0 such that jn ≤ γ0tn, tn →∞ and

ujn(tn + t0;n; t0;n, u
0, f−)− û+(tn + t0;n) ≤ −ε0. (3.7)

Let ũ0 = {ũ0j}j∈Z where ũ0j = δ0
2 for all j ∈ Z. By (H2), there is T̃ ≥ T such

that

|uj(t+ t0; t0, ũ
0, f−)− û+j (t+ t0)| ≤ ε0

2
(3.8)

for any t0 ∈ R, j ∈ Z, t ≥ T̃ . Let ũn = {ũnj }j∈Z be given by

ũnj =

{
δ0/2 j ≤ (γ′ − γ0)(tn − T̃ ),

0, otherwise.

Next we claim that for each t > 0,

lim
n→∞

uj(t+ t0; t0, ũ
n, f−) = uj(t+ t0; t0, ũ

0, f−)

uniformly for j in bounded subsets of Z and t0 ∈ R. Let vnj (t + t0; t0) = uj(t +

t0; t0, ũ
0, f−)− uj(t+ t0; t0, ũ

n, f−). Then vn(t+ t0; t0) satisfies

v̇nj (t+t0) = vnj+1(t+t0)−2vnj (t+t0)+vnj−1(t+t0)+anj (t+t0)vnj (t+t0), j ∈ R, t > 0,

where

anj (t+ t0; t0) =

∫ 1

0

∂f−j
∂s

(t, τuj(t+ t0; t0, ũ
0, f−) + (1− τ)uj(t+ t0; t0, ũ

n, f−))dτ.

Observe that (an(t + t0; t0))n∈Z is uniformly bounded. Then we can find M > 0
such that

‖an(t+ t0; t0)‖ ≤M ∀n ∈ Z, t > 0, t0 ∈ R.
We consider

V̇ nj (t+ t0) = V nj+1(t+ t0)− 2V nj (t+ t0) + V nj−1(t+ t0) +MV nj (t+ t0),

j ∈ R, t > 0,

V n(t0) = vn(t0).

(3.9)
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Giving the definition of discrete Fourier transform and inverse Fourier transform
[15] as follows:

V̂ n(t+ t0, ω) =
1√
2π

∞∑
j=−∞

e−i(ωj)V nj (t+ t0), ω ∈ [−π, π], t > 0, t0 ∈ R (3.10)

and

V nj (t+ t0) =
1√
2π

∫ π

−π
ei(ωj)V̂ n(t+ t0, ω)dω, j ∈ Z, t > 0, t0 ∈ R, (3.11)

where i is the imaginary unit. Applying the discrete Fourier transform (3.10) to
(3.9) yields

∂

∂t
V̂ n(t+ t0, ω) = (eiω + e−iω − 2 +M)V̂ n(t+ t0, ω) for t > 0.

This equation can be solved easily as

V̂ n(t+ t0, ω) = exp[(eiω + e−iω − 2 +M)t]V̂ n(t0, ω) for t > 0.

Using the inverse discrete Fourier transform (3.11) we obtain

V nj (t+ t0) =
1

2π

∞∑
k=−∞

V nk (t0)e(M−2)t
∫ π

−π
eiω(j−k)e2(cosω)tdω

=
1

2π

∞∑
k=−∞

V nk (t0)e(M−2)t
∫ π

−π
cos((j − k)ω)e2(cosω)tdω t > 0, t0 ∈ R.

Note that

1 =
1

2π

∞∑
k=−∞

e−2t
∫ π

−π
cos((j − k)ω)e2(cosω)tdω ∀t > 0

and by [16, Lemma 2.1],∫ π

−π
cos((j − k)ω)e2(cosω)tdω > 0 ∀t > 0.

This and Lemma 3.1 imply that

0 ≤ vnj (t+ t0; t0) ≤ V nj (t+ t0; t0)

=
δ0
4π
e(M−2)t

∞∑
k=[Jn]+1−j

∫ π

−π
cos(kω)e2(cosω)tdω → 0 as n→∞

uniformly for j in bounded subsets of Z and t0 ∈ R, where Jn := [(γ′−γ0)(tn−T̃ )] ∈
Z and Jn → +∞ as n→∞. Hence the claim holds. By the above claim, we have

lim
n→∞

uj(tn + t0;n; t0;n + tn− T̃ , ũn, f−) = uj(tn + t0;n; t0;n + tn− T̃ , ũ0, f−) (3.12)

uniformly for j in bounded subsets of Z. Observe that

ujn
(
tn + t0;n; t0;n, u

0, f−
)

= ujn

(
tn + t0;n; tn + t0;n − T̃ , u

(
tn + t0;n − T̃ ; t0;n, u

0, f−
)
, f−

)
= u0

(
tn + t0;n; tn + t0;n − T̃ , jn, u

(
tn + t0;n − T̃ ; t0;n, jn, u

0(jn), f−
)
, f−

)
≥ u0

(
tn + t0;n; tn + t0;n − T̃ , ũn, f−

)
for n� 1.



EJDE-2019/74 GENERALIZED SPREADING SPEEDS 13

This together with (3.8) and (3.12) imply that

ujn(tn + t0;n; t0;n, u
0, f−) > û+jn(tn + t0;n)− ε0

for n� 1, which contradicts to (3.7). (1) is thus proved.
(2) First we prove that for any given γ′ < c− and u0 ∈ X1,

lim inf
i≤γ′t,t→∞

ui
(
t+ t0; t0, u

0, f−
)
> 0. (3.13)

For the given γ′ < c−, let T > 0 be as in Lemma 3.5. Then we have γ′ <

infλ>0
bMcT (f−;λ)

λ . Note that from the proof of [10, Lemma 3.2], we can get that

for given T > 0, there is Gi(t) ∈W 1,∞(R) such that

ess inft∈R(G′i(t) + ∂sf
−
i (t, 0)) = b∂sf−i (t, 0)cT ∀ i ∈ Z.

Call vi(t) = ui
(
t+ t0; t0, u

0, f−
)
eGi(t) (i ∈ Z). Then vi(t) is absolutely continuous

in and differentiable in t ∈ R and satisfies

v̇i(t) = u̇i
(
t+ t0; t0, u

0
)
eGi(t) +G′i(t)ui

(
t+ t0; t0, u

0
)
eGi(t)

= vi+1(t) + vi−1(t)− 2vi(t) + f−i
(
t, ui

(
t+ t0; t0, u

0, f−
))
eGi(t) +G′i(t)vi(t)

≥ vi+1(t) + vi−1(t)− 2vi(t)

+ vi(t)
(
∂sf
−
i (t, 0)− M̃0ui

(
t+ t0; t0, u

0, f−
)

+G′i(t)
)

≥ vi+1(t) + vi−1(t)− 2vi(t)

+ vi(t)
(
b∂sf−i (t, 0)cT − M̃0ui

(
t+ t0; t0, u

0, f−
))

= vi+1(t) + vi−1(t)− 2vi(t) + vi(t)
(
b∂sf−i (t, 0)cT − M̃0e

−Gi(t)vi(t)
)

≥ vi+1(t) + vi−1(t)− 2vi(t) + vi(t)
(
b∂sf−i (t, 0)cT − M̃vi(t)

)
, i ∈ Z

where M̃ = M̃0 supi∈Z,t∈R e
−Gi(t). By Lemmas 3.5 and 3.6,

lim inf
i≤γ′t,t→∞

vi(t) > 0.

This implies (3.13).
For any γ < c−, let γ′ ∈ (γ, c−). Then (3.13) and (1) imply

lim inf
i≤γt,t→∞

(
ui(t+ t0; t0, u

0)− û+i (t+ t0)
)
≥ 0.

Thus c− ≤ c∗inf .
Next we prove that for any γ > c+ and u0 ∈ X1,

lim sup
i≥γt,t→∞

ui(t+ t0; t0, u
0) = 0. (3.14)

For the given γ > c+, there is T̃ > 0 such that

γ > inf
µ>0

dMeT̃ (f+;λ)

λ
. (3.15)

Then by [10, Lemma 3.2], there is G̃i(t) ∈W 1,∞(R) such that

−d∂sf+i (t, 0)eT̃ = inf
k∈Z

1

T̃

∫ kT̃

(k−1)T̃
(−∂sf+i (τ, 0))dτ = ess inft∈R(−G̃′i(t)− ∂sf+i (t, 0))
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ll i ∈ Z. Let ṽi(t) = ui
(
t+ t0; t0, u

0
)
eG̃i(t). By (H1), fi(t, ui) ≤ ∂sf+i (t, 0)ui−m̃0u

2
i

for all i ∈ Z. Then ṽi(t) is absolutely continuous in t ∈ R and satisfies

˙̃vi(t) = u̇i(t+ t0; t0, u
0)eG̃i(t) + G̃′i(t)ui(t+ t0; t0, u

0)eG̃i(t)

= ṽi+1(t) + ṽi−1(t)− 2ṽi(t) + fi
(
t, ui

(
t+ t0; t0, u

0
))
eG̃i(t) + ṽi(t)G̃

′
i(t)

≤ ṽi+1(t) + ṽi−1(t)− 2ṽi(t) + ṽi(t)
(
∂sf

+
i (t, 0)− m̃0ui

(
t+ t0; t0, u

0
)

+ G̃′i(t)
)

≤ ṽi+1(t) + ṽi−1(t)− 2ṽi(t) + ṽi(t)
(
d∂sf+i (t, 0)eT̃ − m̃0ui(t+ t0; t0, u

0)
)

= ṽi+1(t) + ṽi−1(t)− 2ṽi(t) + ṽi(t)
(
d∂sf+i (t, 0)eT̃ − m̃0e

−G̃i(t)ṽi(t)
)

≤ ṽi+1(t) + ṽi−1(t)− 2ṽi(t) + ṽi(t)
(
d∂sf+i (t, 0)eT̃ − m̃ṽi(t)

)
, i ∈ Z

where m̃ = m̃0 infi∈Z,t∈R e
−G̃i(t). By Lemma 3.6 and (3.15),

lim sup
i≥γt,t→∞

ṽi(t) = 0.

This implies (3.14). Hence c+ ≥ c∗sup. The proof of Theorem 2.2 is now complete.
�
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