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CRANK-NICOLSON LEGENDRE SPECTRAL APPROXIMATION

FOR SPACE-FRACTIONAL ALLEN-CAHN EQUATION

WENPING CHEN, SHUJUAN LÜ, HU CHEN, HAIYU LIU

Abstract. In this article, we consider spectral methods for solving the initial-

boundary value problem of the space fractional-order Allen-Cahn equation. A
fully discrete scheme based on the modified Crank-Nicolson scheme in time

and the Legendre spectral method in space is established. The existence and

uniqueness of the fully discrete scheme are derived, and the stability and
convergence analysis of the fully discrete scheme are proved rigorously. By

constructing a fractional duality argument, the corresponding optimal error
estimates in L2 and Hα norm are derived, respectively. Also, numerical ex-

periments are performed to support the theoretical results.

1. Introduction

Research of fractional differential equations has been a lively topic in mathe-
matical theory and real applications in the last few decades. For most fractional
differential equations, however, we cannot obtain the exact solutions, it is natural
to resort to numerical solutions. Up to now, there are several numerical techniques
to solve fractional differential equations, such as finite difference methods [8, 17],
finite element methods [7, 15, 21], spectral methods [9, 10, 12, 19].

Allen-Cahn equation was introduced in 1979 [2] to model phase transitions in
iron alloys, it has become a basic model equation for the diffuse interface approach
developed to study phase transitions and interfacial dynamics in materials science.
There has been an increasing interests in Allen-Cahn equation from local to mem-
ory (time fractional) or nonlocal (space fractional) case [6, 20]. The fractional
Allen-Cahn equation replaced the standard temporal or/and spatial integer order
differential operator by a corresponding fractional order one, such as Riemann-
Liouville, Caputo, Riesz, fractional Laplacian operators, etc.

In this article, we study the spectral approximation to the following space-
fractional Allen-Cahn equation (SFACE)

ut − ε2L(α)u+ f(u) = 0, x ∈ Λ, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Λ,

u(±1, t) = 0, t ∈ [0, T ],

(1.1)
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where Λ = (−1, 1), α ∈ (1/2, 1), u = u(x, t) represents the concentration of one
of the species of the alloy, the parameter ε represents the diffuse interface width,
f(u) = u3 − u, the nonlinear term, is the derivative of a free energy double-well
potential F (u) = 1

4 (u2 − 1)2. Operator L(α) in the Riesz case is defined by

L(α)u =
∂2αu

∂|x|2α
= − 1

2 cosπα

(
−1D

2α
x u+ xD

2α
1 u
)
,

where −1D
2α
x , xD

2α
1 represent the left and right Riemann-Liouville (R-L) fractional

derivatives operators, respectively. For n− 1 < β < n, n ∈ N, the operators −1D
β
x

and xD
β
1 are defined as

−1D
β
xu =

1

Γ(n− β)

dn

dxn

∫ x

−1

(x− s)n−β−1u(s) ds,

xD
β
1u =

(−1)n

Γ(n− β)

dn

dxn

∫ 1

x

(s− x)n−β−1u(s) ds,

(1.2)

where Γ(·) is the standard Gamma function.
The fractional Allen-Cahn equation (1.1) can be viewed as an L2-gradient flow of

the following fractional version of Ginzburg-Landau-Wilson free energy functional

E(u) =

∫
Λ

(
F (u)− ε2

2
uL(α)u

)
dx =

ε2

2
|u|2α +

∫
Λ

F (u) dx.

Recently, there have been several studies on the SFACE. Akagi, et al. [1] proved
the existence and uniqueness of weak solutions to the related initial-boundary value
problem of the SFACE after setting a proper functional framework. Hou et al.
[8] considered Crank-Nicolson scheme in time and second order central difference
approach in space for solving the SFACE with small perturbation and strong non-
linearity, a nonlinear iteration algorithm is proposed and the unique solvability, en-
ergy stability and convergence are proved. Burrage et al. [5] solved the SFACE by
implicit finite element method on both structured and unstructured grids. Bueno-
Orovio et al. [4] provided a numerical algorithm based on Fourier spectral method
in space and backward Euler discretization in time to solve the SFACE. However,
there is no theoretical analysis has been provided in [4, 5].

In this article, we construct a numerical approach by applying the modified
Crank-Nicolson scheme in temporal and the Legendre Galerkin spectral method in
spatial discretizations to (1.1). The existence and uniqueness of the fully discrete
scheme are proved. The stability and convergence are derived strictly by introducing
a fractional duality argument. It will be shown that the convergence rate of the
numerical scheme is O(τ2 +N−m) in L2-norm.

The organization of this article is as follows. We commence by reviewing some
preliminaries of fractional order functional spaces endowed with inner products
and norms, and give some useful lemmas in the next section. In section 3, The
fully discrete spectral scheme is constructed by applying Crank-Nicolson difference
scheme to temporal discretization and Legendre spectral method to the spatial
component, the existence and uniqueness of the fully discrete scheme are derived.
In section 4, the stability and convergence analysis of the fully discrete scheme are
strictly proved, respectively. We present some numerical experiments in section 5,
which support the theoretical results. We conclude by summary and discussion in
the last section.
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2. Preliminaries

In this section, we introduce some definitions and notation of fractional derivative
spaces endowed with inner products and norms, then give some basic properties of
fractional derivative and some lemmas, which will be used in the context.

The L2(Λ) inner product is denoted by (·, ·) and the Lp(Λ) norm by ‖ · ‖Lp
with the special case of L2(Λ) and L∞(Λ) norms being written as ‖ · ‖ and ‖ · ‖∞,
respectively. For k ∈ N, we denote the seminorm and norm associated with the
Sobolev space Hk(Λ) by | · |k and ‖ · ‖k, respectively. For nonnegative real number
r ∈ R+\Z+, we use Hr(Λ) to denote the fractional Sobolev spaces, the semi-norm
| · |r and norm ‖ · ‖r will defined below. Let E be a Sobolev space, we define
space-time functional space L2(0, T ;E) as

L2(0, T ;E) :=
{
u : (0, T ) 7→ E :

∫ T

0

‖u‖2E dt <∞, u is measurable
}
,

and similarly we can define some other spaces for space-time functions. Throughout
this article we use C to denote a generic nonnegative constant whose actual value
may change from line to line.

Definition 2.1 (see [7, 15]). Let r > 0. Define the semi-norm

|u|r =
∥∥ |ω|rû∥∥

L2(R)
=
(∫

R
|ω|2r|û|2 dω

)1/2

,

and the norm

‖u‖r =
(
‖u‖2 + |u|2r

)1/2
,

where û denote the Fourier transform of u. Define Hr
0 (Λ) as the closure of C∞0 (Λ)

in Hr(Λ) with respect to norm ‖ · ‖r, and use H−r(Λ) to denote the dual space of
Hr

0 (Λ), with norm denoted by ‖ · ‖−r.

Remark 2.2 (see [15]). Let ũ be the expansion of u by zero outside of Λ, then
|u|r = |ũ|Hr(R).

Next, we introduce some useful fractional derivative spaces and related proper-
ties, which are used in the formulation of the numerical analysis, one can refer to
[7, 15] for more details.

Definition 2.3 (see [7, 15]). Let µ > 0. Define the semi-norm

|u|JµL(Λ) = ‖−1D
µ
xu‖,

and the norm

‖u‖JµL(Λ) =
(
‖u‖2 + |u|2JµL(Λ)

)1/2

.

Denote JµL,0(Λ) as the closure of C∞0 (Λ) with respect to norm ‖ · ‖JµL(Λ).

Definition 2.4 (see [7, 15]). Let µ > 0. Define the semi-norm

|u|JµR(Λ) = ‖xDµ
1u‖,

and the norm

‖u‖JµR(Λ) =
(
‖u‖2 + |u|2JµR(Λ)

)1/2
.

Denote JµR,0(Λ) as the closure of C∞0 (Λ) with respect to norm ‖ · ‖JµR(Λ).
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Definition 2.5 (see [7, 15]). Let µ > 0, µ 6= n− 1
2 , n ∈ N. Define the semi-norm

|u|JµS (Λ) =
∣∣(−1D

µ
xu, xD

µ
1u)
∣∣1/2,

and the norm

‖u‖JµS (Λ) =
(
‖u‖2 + |u|2JµS (Λ)

)1/2
.

Define JµS,0(Λ) as the closure of C∞0 (Λ) with respect to norm ‖ · ‖JµS (Λ).

Remark 2.6. If the domain Λ in definitions 2.3–2.5 replaced by the entire line R,
the corresponding semi-norms should be denoted, respectively, by

|u|JµL(R) = ‖−∞Dµ
xu‖L2(R),

|u|JµR(R) = ‖xDµ
∞u‖L2(R),

|u|JµS (R) =
(
|(−∞Dµ

xu, xD
µ
∞u)|

)1/2
.

Let JµL(R), JµR(R), JµS (R), and Hµ(R) denote the closure of C∞0 (R) with respect
to ‖u‖JµL(R), ‖u‖JµR(R), ‖u‖JµS (R) and ‖u‖Hµ(R), respectively.

Lemma 2.7 (see [7, 15]). Let µ > 0, µ 6= n− 1/2, n ∈ N. Then

(1) JµL,0(Λ), JµR,0(Λ), JµS,0(Λ), and Hµ
0 (Λ) are equal, with equivalent semi-

norms and norms;
(2) JµL(R), JµR(R), JµS (R), and Hµ(R) are equal, with equivalent semi-norms

and norms;
(3) A function u ∈ L2(R) belongs to JµL(R) if and only if |ω|µû ∈ L2(R), specif-

ically |u|JµL(R) = ‖|ω|µû‖L2(R) = |u|Hµ(R). Similarly, |u|JµR(R) = |u|Hµ(R).

In what follows, we will use Hα
0 (Λ) uniformly by the equivalent property of

JαL,0(Λ), JαR,0(Λ) and Hα
0 (Λ), and make no distinction between the three of them

unless otherwise stated.

Lemma 2.8 (see [7, 15]). Let µ > 0 be given. Then

(−1D
µ
xu, xD

µ
1u) = (−∞D

µ
x ũ, xD

µ
∞ũ)

= cos(πµ)‖−∞Dµ
x ũ‖2L2(R)

= cos(πµ)‖xDµ
∞ũ‖2L2(R).

Hence we have the following relations.

Lemma 2.9 (see [7, 15]). Let µ > 0, Λ = (−1, 1), u ∈ Hµ
0 (Λ). Then

(−1D
µ
xu, xD

µ
1u) = cos(πµ)|u|2µ.

Proof. We can obtain the result by Remark 2.2 and Lemmas 2.7, 2.8, immediately.
�

Via integration by parts, one can verify readily the following result.

Lemma 2.10 (see [16]). Let 0 < s < 1, u ∈ H2s
0 (Λ), v ∈ Hs

0(Λ). Then we have

(−1D
2s
x u, v) = (−1D

s
xu, xD

s
1v), (xD

2s
1 u, v) = (xD

s
1u,−1D

s
xv).

Lemma 2.11 (Fractional Poincaré-Friedrichs inequality [7, 15]). For u ∈ Hµ
0 (Λ),

‖u‖ 6 C|u|µ,
and for 0 < s < µ, s 6= n− 1/2, n ∈ N, |u|s 6 C|u|µ.
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Lemma 2.12 (Gagliardo-Nirenberg inequality [13]). Let Ω ⊂ Rn be a bounded
domain having the cone property and let u ∈ Lq(Ω) and its derivatives of order m,
Dmu, belong to Lr(Ω), 1 6 q, r 6∞. For the derivatives Dju, 0 6 j < m, we have

‖Dju‖Lp 6 c
(
‖Dmu‖Lr + ‖u‖Lq

)s‖u‖1−sLq ,

where
1

p
=
j

n
+ s
(1

r
− m

n

)
+ (1− s)1

q

for all s in the interval j
m 6 s 6 1, (the constant c depending only on n,m, j, q, r, s),

with the following exceptional case:
If 1 < r <∞, and m− j − n/r is a nonnegative integer then (2.12) holds only for
s satisfying j/m 6 s < 1.

The following discrete Gronwall’s inequality is also used in the theoretical anal-
ysis.

Lemma 2.13 (Discrete Gronwall Lemma [14]). Assume that kn is a non-negative
sequence, and that the sequence φn satisfies

φ0 6 g0,

φn 6 g0 +

n−1∑
s=0

ps +

n−1∑
s=0

ksφs, n > 1.

Then if g0 > 0 and pn > 0 for n > 0, it follows that

φn 6
(
g0 +

n−1∑
s=0

ps

)
exp

( n−1∑
s=0

ks

)
, n > 1.

The following lemma will be used in the proof of the existence of numerical
solutions.

Lemma 2.14 ([18]). Let X be a finite dimensional Hilbert space with inner product
(·, ·) and norm ‖ · ‖, and Let P be a continuous mapping from X into itself such
that

(P (ξ), ξ) > 0 for ‖ξ‖ = K > 0.

Then there exists ξ ∈ X, ‖ξ‖ 6 K, such that P (ξ) = 0.

We define

a(u, v) ,
1

2 cosπα

(
(−1D

α
xu, xD

α
1 v) + (xD

α
1 u,−1D

α
xv)
)
, ∀u, v ∈ Hα

0 (Λ), (2.1)

for convenience. By the linearity of the left and right R-L derivatives, we can verify
readily that a(u, v) is a symmetric bilinear form, which has the following property.

Lemma 2.15. The bilinear form a(·, ·) is continuous and coercive.

Proof. By Hölder inequality, Lemmas 2.7 and 2.11, yield

|a(u, v)| 6 1

2| cosπα|
(‖−1D

α
xu‖ ‖xDα

1 v‖+ ‖xDα
1 u‖ ‖−1D

α
xv)‖)

6 C1

∣∣u∣∣
α

∣∣v∣∣
α
, ∀u, v ∈ Hα

0 (Λ),

i.e., a(·, ·) is continuous on Hα
0 (Λ)×Hα

0 (Λ).
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On the other hand, by Lemmas 2.9 and 2.11, we have

a(u, u) =
1

2 cosπα

(
(−1D

α
xu, xD

α
1 u) + (xD

α
1 u,−1D

α
xu)
)

= |u|2α, ∀u ∈ Hα
0 (Λ),

viz., a(·, ·) is coercive on Hα
0 (Λ). The proof is complete. �

Let PN (Λ) be the set of all algebraic polynomials defined on domain Λ with
the degree less than or equal to N ∈ Z+. V 0

N = PN (Λ) ∩ H1
0 (Λ). The following

projector Π1,0
N , which is used below, can be found in [3].

Let Π1,0
N : H1

0 (Λ) 7→ V 0
N be the orthogonal projection operator such that(
∂x(u−Π1,0

N u), ∂xϕ
)

= 0, ∀ϕ ∈ V 0
N .

Lemma 2.16 (see [3]). Let s be a real number. For any nonnegative real number
r, 0 6 s 6 1 6 r, there exists a positive constant C depending only on r such that
for any function u in Hs

0(Λ) ∩Hr(Λ), the following estimate holds

‖u−Π1,0
N u‖s 6 CNs−r‖u‖r.

We define projection Πα,0
N : Hα

0 (Λ) 7→ V 0
N , such that

a(u−Πα,0
N u, v) = 0, ∀v ∈ V 0

N . (2.2)

For the operation Πα,0
N , we have the following result.

Lemma 2.17. Let α ∈ (1/2, 1), r > 1 be a real number. There exists a positive
constant C depending only on r, such that for any u ∈ Hα

0 (Λ)∩Hr(Λ), the following
estimates hold

|u−Πα,0
N u|α 6 CNα−r‖u‖r,

‖u−Πα,0
N u‖ 6 CN−r‖u‖r.

Proof. By (2.2) and the continuous and coercivity of the bilinear form a(·, ·), we
have

|u−Πα,0
N u|2α = a(u−Πα,0

N u, u−Πα,0
N u)

= a(u−Πα,0
N u, u−Π1,0

N u)

6 C|u−Πα,0
N u|α‖u−Π1,0

N u‖α, ∀u ∈ V 0
N .

Therefore, by Lemma 2.16, we obtain

|u−Πα,0
N u|α 6 C‖u−Π1,0

N u‖α 6 CNα−r‖u‖r,
1

2
< α 6 r.

Next we estimate the error ‖u − Πα,0
N u‖ by using a duality argument. For any

g ∈ L2(Λ), we consider the auxiliary problem

−L(α)w = g, in Λ,

w = 0, on ∂Λ.
(2.3)

By the definition of L(α) and Lemma 2.7, we obtain

‖w‖2α 6 C‖g‖. (2.4)

The weak form of (2.3) is as follows:

a(ϕ,w) = (g, ϕ), ∀ϕ ∈ Hα
0 (Λ).
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Taking ϕ = u−Πα,0
N u, we obtain

(g, u−Πα,0
N u) = a(u−Πα,0

N u,w)

6 C1‖u−Πα,0
N u‖α‖w −Π1,0

N w‖α
6 CN−r‖u‖r‖w‖2α.

(2.5)

Using (2.4) and (2.5), we have

‖u−Πα,0
N u‖ = sup

g∈L2(Λ), g 6=0

|(g, u−Πα,0
N u)|

‖g‖
6 CN−r‖u‖r. (2.6)

The proof is complete. �

3. Fully discrete scheme

In this section, we study the existence and uniqueness of the fully discrete scheme
based on the modified Crank-Nicolson scheme in time and the Legendre spectral
method in space .

Firstly, we introduce some notation. Let τ be the step size for time t, tk = kτ ,
k = 0, 1, . . . , nT and T = nT τ , tk− 1

2
= (tk+ tk−1)/2. For convenience, we introduce

the following notation for the function u(x, t),

uk = uk(·) = u(·, tk), uk−
1
2 = u(tk− 1

2
), ∂̄tu

k =
uk − uk−1

τ
, uk̄ =

uk + uk−1

2
.

The fully discrete spectral method for the problem (1.1) is: find ukN ∈ V 0
N ,

k = 1, . . . nT , such that for all ϕ ∈ V 0
N ,(

∂̄tu
k
N , ϕ

)
+ ε2a(uk̄N , ϕ) +

1

2

((
(ukN )2 + (uk−1

N )2
)
uk̄N , ϕ

)
= (uk̄N , ϕ), (3.1)

u0
N = Πα,0

N u0. (3.2)

For simplicity in what follows, we denote g(u) = u3, f̃(u, v) = 1
4 (u + v)(u2 + v2).

A priori estimates are needed in the following analyses.

Lemma 3.1. Suppose that ukN (k = 0, 1, . . . , nT ) be the solution of (3.1)-(3.2),
then we have

ε2|ukN |2α +
1

2
‖ukN‖4L4 − ‖ukN‖2 6 ε2|u0

N |2α +
1

2
‖u0

N‖4L4 − ‖u0
N‖2.

Moreover, if u0 ∈ Hα(Λ), we have

‖ukN‖∞ 6 C(|ukN |α + ‖ukN‖)
1
2α ‖ukN‖1−

1
2α 6 C|u0|α.

Proof. Taking ϕ = ukN − u
k−1
N in (3.1), we obtain

τ‖∂̄tukN‖2 + ε2a(uk̄N , u
k
N − uk−1

N ) +
(
f̃(ukN , u

k−1
N ), ukN − uk−1

N

)
− 1

2
(‖ukN‖2 − ‖uk−1

N ‖2) = 0.
(3.3)

For the middle two terms on the left hand side of (3.3), a simple computation yields

a(uk̄N , u
k
N − uk−1

N ) =
1

2
a(ukN , u

k
N )− 1

2
a(uk−1

N , uk−1
N )

=
1

2
(|ukN |2α − |uk−1

N |2α),

(3.4)
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(
f̃(ukN , u

k−1
N ), ukN − uk−1

N

)
=

1

4

(
‖ukN‖4L4 − ‖uk−1

N ‖4L4

)
. (3.5)

Substituting (3.4) and (3.5) into (3.3), we obtain

τ‖∂̄tukN‖2 +
ε2

2
|ukN |2α +

1

4
‖ukN‖4L4 −

1

2
‖ukN‖2

=
ε2

2
|uk−1
N |2α +

1

4
‖uk−1

N ‖4L4 −
1

2
‖uk−1

N ‖2.

Then we can deduce that

ε2|ukN |2α +
1

2
‖ukN‖4L4 − ‖ukN‖2 6 ε2|u0

N |2α +
1

2
‖u0

N‖4L4 − ‖u0
N‖2.

From above inequality, we have

|ukN |2α 6 |u0
N |2α +

1

2ε2
(‖u0

N‖4L4 + 2).

By the definition of Πα,0
N , we obtain |u0

N |α 6 C|u0|α. Using Lemma 2.12, we have

‖u0
N‖L4 6 C|u0|α.

Therefore, we deduce that |ukN |2α 6 C(|u0|2α + 1). By Lemma 2.12, we have

‖ukN‖∞ 6 C|u0|α , c1.
The proof is complete. �

Remark 3.2. Similarly, for the solution u(x, t) of problem (1.1) we have ‖u‖∞ 6
C|u0|α.

Theorem 3.3 (Existence). For given {ujN}
k−1
j=0 , there exists ukN satisfying (3.1).

Proof. We defining the mapping P : V 0
N → V 0

N , such that

(P (w), ϕ) =(
w

τ
, ϕ) +

ε2

2
a(w + 2uk−1

N , ϕ) + (f̃(w + uk−1
N , uk−1

N ), ϕ)

− 1

2
(w + 2uk−1

N , ϕ), ∀ϕ ∈ V 0
N .

Obviously P is continuous. Letting ϕ = w, we have

(P (w), w) =
‖w‖2

τ
+
ε2

2
a(w + 2uk−1

N , w) + (f̃(w + uk−1
N , uk−1

N ), w)

− 1

2
(w + 2uk−1

N , w).

(3.6)

By a simple calculation, we obtain

(w + 2uk−1
N , w) =

(
(w + uk−1

N ) + uk−1
N , (w + uk−1

N )− uk−1
N

)
= ‖w + uk−1

N ‖2 − ‖uk−1
N ‖2.

(3.7)

Similarly, we have

a(w + 2uk−1
N , w) = |w + uk−1

N |2α − |uk−1
N |2α, (3.8)

(f̃(w + uk−1
N , uk−1

N ), w) =
1

4

(
‖w + uk−1

N ‖4L4 − ‖uk−1
N ‖4L4

)
. (3.9)

Substituting (3.7)-(3.9) into (3.6) yields

(P (w), w) =
‖w‖2

τ
+

1

2

(
ε2|w + uk−1

N |2α +
1

2
‖w + uk−1

N ‖4L4 − ‖w + uk−1
N ‖2

)
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− 1

2

(
ε2|uk−1

N |2α +
1

2
‖uk−1

N ‖4L4 − ‖uk−1
N ‖2

)
>
‖w‖2

τ
− 1

2

(
ε2|uk−1

N |2α +
1

2
‖uk−1

N ‖4L4 − ‖uk−1
N ‖2 + 1

)
.

By Lemma 3.1, we have

(P (w), w) >
‖w‖2

τ
− 1

2

(
ε2|u0

N |2α +
1

2
‖u0

N‖4L4 − ‖u0
N‖2 + 1

)
.

Thus we have (P (w), w) > 0, for ‖w‖ = K > [τ/2(ε2|u0
N |2α + 1

2‖u
0
N‖4L4 − ‖u0

N‖2 +

1)]1/2. By Lemma 2.14, there exists wk−1 ∈ V 0
N , ‖wk−1‖ 6 K, such that P (wk−1) =

0. Let ukN = uk−1
N + wk−1, therefore the existence of ukN is proved. �

Theorem 3.4 (Uniqueness). Suppose τ < 1, then the solution of (3.1)-(3.2) is
unique.

Proof. Let {ukN}, {vkN} be the two solutions of the discrete scheme (3.1)-(3.2) with
the same initial condition. Let wkN = ukN − vkN , thus we have

(∂̄tw
k
N , ϕ) + ε2a(wk̄N , ϕ) +

(
f̃(ukN , u

k−1
N )− f̃(vkN , v

k−1
N ), ϕ

)
= (wk̄N , ϕ), ∀ϕ ∈ V 0

N .

Setting ϕ = ∂̄tw
k
N , we obtain

‖∂̄twkN‖2 +
ε2

2τ

(
|wkN |2α − |wk−1

N |2α
)

+
(
f̃(ukN , u

k−1
N )− f̃(vkN , v

k−1
N ), ∂̄tw

k
N

)
(3.10)

= (wk̄N , ∂̄tw
k
N ). (3.11)

Now, we estimate the last two terms of the above equation. For the last term, by
Young inequality, we have

(wk̄N , ∂̄tw
k
N ) =

1

2

(
wkN − wk−1

N , ∂̄tw
k
N

)
+ (wk−1

N , ∂̄tw
k
N )

6
τ

2
‖∂̄twkN‖2 +

1

4
‖∂̄twkN‖2 + ‖wk−1

N ‖2.
(3.12)

For the penultimate term, noting that

f̃(u, v) =
1

4
(u+ v)(u2 + v2) =

∫ 1

0

g(v + s(u− v)) ds, g′(s) = 3s2 > 0;

therefore, utilizing the mean-value theorem of differentials, we obtain(
f̃(ukN , u

k−1
N )− f̃(vkN , v

k−1
N ), ∂̄tw

k
N

)
= τ

(∫ 1

0

g′(ξ)sds, (∂̄tw
k
N )2

)
+
(∫ 1

0

g′(ξ)wk−1
N ds, ∂̄tw

k
N

)
>
(∫ 1

0

g′(ξ)wk−1
N ds, ∂̄tw

k
N

)
,

(3.13)

where ξ lies in the interval with endpoints uk−1
N + s(ukN −u

k−1
N ) and vk−1

N + s(vkN −
vk−1
N ). By Lemma 3.1, Hölder inequality and Young inequality yield∣∣∣( ∫ 1

0

g′(ξ) dswk−1
N , ∂̄tw

k
N

)∣∣∣ 6 1

4
‖∂̄twkN‖2 + 9c41‖wk−1

N ‖2. (3.14)

Substituting (3.12), (3.14) into (3.10), noticing that τ < 1, we deduce that

ε2

2τ

(
|wkN |2α − |wk−1

N |2α
)
6 (9c41 + 1)‖wk−1

N ‖2.
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Summing for k from 1 to n, and by using Lemma 2.11, we deduce that

|wnN |2α 6 |w0
N |2α + C(9c41 + 1)τ

n−1∑
i=0

|wiN |2α.

Thus by Lemma 2.13, we obtain

|wkN |2α 6 eTC(9c41+1)|w0
N |2α = 0.

Finally, using Lemma 2.11 once again, we have ‖wkN‖ = 0, i.e., ukN = vkN , k =
0, 1, . . . , nT . The proof of the uniqueness is complete. �

4. Stability and convergence of the fully discrete scheme

In this section, we give the stability and convergence analysis for the fully discrete
scheme (3.1)–(3.2).

Theorem 4.1 (Stability). Assume τ < 1, ukN , vkN (k = 1, 2, . . . , nT ) be the solu-
tions of the fully discrete scheme (3.1) with the initial value u0

N , v0
N , respectively.

Then we have

‖ukN − vkN‖α 6 eTC(9c41+1)‖u0
N − v0

N‖α, k = 1, 2, . . . , nT .

Proof. Let wkN = ukN − vkN in (3.1), then wkN satisfies

(∂̄tw
k
N , ϕ) + ε2a(wk̄N , ϕ) +

(
f̃(ukN , u

k−1
N )− f̃(vkN , v

k−1
N ), ϕ

)
= (wk̄N , ϕ), ∀ϕ ∈ V 0

N .

With the same line of the proof as for Theorem 3.4, we obtain the desired result.
The proof is complete. �

Now, we give the convergence result of the fully discrete scheme (3.1)-(3.2).

Theorem 4.2 (Convergence). Let u and unN (1 6 n 6 nT ) be the solutions of (1.1)
and (3.1)-(3.2), respectively. Assume that u ∈ L∞(0, T ;Hm(Λ)), m > 2α, ut ∈
L4(0, T ;L4(Λ)) ∩ L2(0, T ;Hm(Λ)), utt ∈ L2(0, T ;H2α(Λ)), uttt ∈ L2(0, T ;L2(Λ)).
Then for τ < 1, there exists a positive constant c independent of τ and N , such
that

‖un − unN‖ 6 c(τ2 +N−m) and |un − unN |α 6 c(τ2 +Nα−m).

Proof. Setting uk − ukN = (uk − Πα,0
N uk) + (Πα,0

N uk − ukN ) = θk + ηk. By (1.1),

(3.1)-(3.2) and the definition of Πα,0
N , we have the error equation

(∂̄tη
k, v) + ε2a(ηk̄, v) = (∂̄tu

k − uk−
1
2

t , v)− (∂̄tθ
k, v) + (uk−

1
2 − uk̄N , v)

+ ε2a(uk̄ − uk− 1
2 , v) +

(
f̃(ukN , u

k−1
N )− g(uk−

1
2 ), v

)
,

η0 = 0.

(4.1)

Taking v = ∂̄tη
k in (4.1), we have

‖∂̄tηk‖2 +
ε2

2τ
(|ηk|2α − |ηk−1|2α)

= (∂̄tu
k − uk−

1
2

t , ∂̄tη
k)− (∂̄tθ

k, ∂̄tη
k) + (uk−

1
2 − uk̄N , ∂̄tηk)

+ ε2a(uk̄ − uk− 1
2 , ∂̄tη

k) +
(
f̃(ukN , u

k−1
N )− g(uk−

1
2 ), ∂̄tη

k
)

,
5∑
i=1

Gi.

(4.2)
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Now we estimate terms on the right-hand side of (4.2). Via Taylor’s theorem
with integral remainder, Hölder inequality and Young inequality, we deduce that

|G1|

=|(∂̄tuk − u
k− 1

2
t , ∂̄tη

k)|

6
1

2τ
‖∂̄tηk‖

(
‖
∫ t

k− 1
2

tk−1

(tk−1 − t)2uttt dt‖+ ‖
∫ tk

t
k− 1

2

(tk − t)2uttt dt‖
)

6
1

16
‖∂̄tηk‖2 +

2

τ2

(
‖
∫ t

k− 1
2

tk−1

(tk−1 − t)2uttt dt‖2 + ‖
∫ tk

t
k− 1

2

(tk − t)2uttt dt‖2
)
.

(4.3)

By Hölder’s inequality, we obtain

‖
∫ t

k− 1
2

tk−1

(tk−1 − t)2uttt dt‖2 6
∫ 1

−1

(∫ t
k− 1

2

tk−1

(tk−1 − t)4 dt
)(∫ t

k− 1
2

tk−1

|uttt|2 dt
)

dx

=
τ5

5 · 25

∫ t
k− 1

2

tk−1

‖uttt‖2 dt,

and

‖
∫ tk

t
k− 1

2

(tk − t)2uttt dt‖2 6 τ5

5 · 25

∫ tk

t
k− 1

2

‖uttt‖2 dt.

Substituting two inequalities above into (4.3) yields

|G1| 6
1

16
‖∂̄tηk‖2 +

τ3

80

∫ tk

tk−1

‖uttt‖2 dt. (4.4)

By Hölder inequality and Young inequality, we have

|G2| = |(∂̄tθk, ∂̄tηk)| 6 1

16
‖∂̄tηk‖2 + 4‖∂̄tθk‖2.

From Hölder inequality and Lemma 2.17, we obtain

‖∂̄tθk‖2 =
1

τ2

∥∥∫ tk

tk−1

θtdt
∥∥2
6

1

τ

∫ tk

tk−1

‖θt‖2 dt 6
C

τ
N−2m

∫ tk

tk−1

‖ut‖2m dt.

Thus we obtain

|G2| 6
1

16
‖∂̄tηk‖2 +

C

τ
N−2m

∫ tk

tk−1

‖ut‖2m dt. (4.5)

Next, via a simple derivation, we have

|G3| = |(uk−
1
2 − uk̄N , ∂̄tηk)| 6 |(uk− 1

2 − uk̄, ∂̄tηk)|+ |(uk̄ − uk̄N , ∂̄tηk)|. (4.6)

Similar to (4.3), by Taylor’s theorem with integral remainder, Hölder and Young
inequalities, we find that

|(uk− 1
2 − uk̄, ∂̄tηk)|

6
1

2
‖∂̄tηk‖

(
‖
∫ t

k− 1
2

tk−1

(t− tk−1)utt dt‖+ ‖
∫ tk

t
k− 1

2

(tk − t)utt dt‖
)

6
1

32
‖∂̄tηk‖2 +

τ3

6

∫ tk

tk−1

‖utt‖2 dt
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and

|(uk̄ − uk̄N , ∂̄tηk)| 6|(θk̄ + ηk−1, ∂̄tη
k)|+

∣∣(τ
2
∂̄tη

k, ∂̄tη
k
)∣∣

6
(τ

2
+

1

32

)
‖∂̄tηk‖2 + 16(‖θk̄‖2 + ‖ηk−1‖2).

Thus, substituting above two inequalities into (4.6), we obtain

|G3| 6
(τ

2
+

1

16

)
‖∂̄tηk‖2 + 16(‖θk̄‖2 + ‖ηk−1‖2) +

τ3

6

∫ tk

tk−1

‖utt‖2 dt. (4.7)

Next, by using Lemma2.7 and analogous to the estimation of G3, we deduce that

|G4| =ε2|a(uk−
1
2 − uk̄, ∂̄tηk)|

=ε2
∣∣(L(α)(uk−

1
2 − uk̄), ∂̄tη

k
)∣∣

6
ε2

| cosπα|
‖∂̄tηk‖|uk−

1
2 − uk̄|2α

6
1

16
‖∂̄tηk‖2 + Cτ3

∫ tk

tk−1

|utt|22α dt.

(4.8)

Now we estimate the last term on the right-hand side of (4.2). It is easy to
obtain

G5 =
(
f̃(ukN , u

k−1
N )− g(uk−

1
2 ), ∂̄tη

k
)

=
(
f̃(ukN , u

k−1
N )− f̃(uk, uk−1), ∂̄tη

k
)

+
(
f̃(uk, uk−1)− g(uk−

1
2 ), ∂̄tη

k
)
.

(4.9)

For the first term of the right hand side of (4.9), analogous to (3.13) and (3.14),
we find that(

f̃(ukN , u
k−1
N )− f̃(uk, uk−1), ∂̄tη

k
)

= −
(∫ 1

0

3ξ2
1 dsθk−1, ∂̄tη

k
)
−
(∫ 1

0

3ξ2
1sds(θk − θk−1), ∂̄tη

k
)

−
(∫ 1

0

3ξ2
1 dsηk−1, ∂̄tη

k
)
−
(∫ 1

0

3ξ2
1sds(ηk − ηk−1), ∂̄tη

k
)

6
3

16
‖∂̄tηk‖2 + 36c41(‖θk−1‖2 + ‖θk‖2 + ‖ηk−1‖2),

where c1 depends on u.
For the last term of the right-hand side of (4.9), applying Taylor’s formula for

multivariate functions, we find that(
f̃(uk, uk−1)− g(uk−

1
2 ), ∂̄tη

k
)

= 3
(
(uk−

1
2 )2(uk̄ − uk− 1

2 ), ∂̄tη
k
)

+
1

4

(
(3ξ2 + ξ3)(uk − uk− 1

2 )2, ∂̄tη
k
)

+
1

4

(
(ξ2 + 3ξ3)(uk−1 − uk− 1

2 )2, ∂̄tη
k
)

+
1

2

(
(ξ2 + ξ3)(uk−1 − uk− 1

2 )(uk − uk− 1
2 ), ∂̄tη

k
)

6
1

16
‖∂̄tηk‖2 + Cτ3

∫ tk

tk−1

(
c21‖ut‖4L4 + c41‖utt‖2

)
dt.
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Substituting the two inequalities above into (4.9), we have

|G5| 6
1

4
‖∂̄tηk‖2 + 36c41(‖θk−1‖2 + ‖θk‖2 + ‖ηk−1‖2) (4.10)

+ Cτ3

∫ tk

tk−1

(
c21‖ut‖4L4 + c41‖utt‖2

)
dt. (4.11)

Substituting (4.4), (4.5), (4.7), (4.8) and (4.10) into (4.2), in view of τ < 1, we
obtain

ε2

2τ
(|ηk|2α − |ηk−1|2α)

6 C(1 + c41)‖ηk−1‖2 + CN−2m
(

(1 + c41)‖u‖2L∞(0,T ;Hm(Λ)) +
1

τ

∫ tk

tk−1

‖ut‖2m dt
)

+ Cτ3

∫ tk

tk−1

(
c21‖ut‖4L4 + c41‖utt‖2 + ‖utt‖22α + ‖uttt‖2

)
dt.

Summing for k from 1 to n (n 6 nT ) we have

|ηn|2α 6 C(1 + c41)τ

n−1∑
j=0

‖ηj‖2 + c2(τ4 +N−2m),

where c2 = max(c3, c4), and

c3 =C
(
c21‖ut‖4L4(0,T ;L4(Λ)) + c41‖utt‖2L2(0,T ;L2(Λ)) + ‖utt‖2L2(0,T ;H2α(Λ))

+ ‖uttt‖2L2(0,T ;L2(Λ))

)
,

c4 = C
(
(1 + c41)‖u‖2L∞(0,T ;Hm(Λ)) + ‖ut‖2L2(0,T ;Hm(Λ))

)
.

Using Lemma 2.13, we have

|ηn|2α 6 c2eCT (1+c41)(τ4 +N−2m).

Utilizing Lemma 2.11 and the triangle inequality, we have

‖un − unN‖ 6 c(τ2 +N−m), |un − unN |α 6 c(τ2 +Nα−m),

where c = C(1 + c2eCT (1+c41)). The proof is complete. �

5. Numerical experiments

Example 5.1. To guarantee the exact solution have enough regularity, we add a
forcing term on the equation.

ut − ε2L(α)u+ u3 − u = h(x, t), x ∈ (−1, 1), t ∈ (0, T ],

u(x, 0) = (1− x2)2, x ∈ (−1, 1),

u(±1, t) = 0, t ∈ [0, T ].

(5.1)

where

h(x, t) =
4ε2et

Γ(5− 2α) cosπα
(1 + x)2−2α

[
3(1 + x)2 − 3(4− 2α)(1 + x)

+ (4− 2α)(3− 2α)
]

+
4ε2et

Γ(5− 2α) cosπα
(1− x)2−2α

[
3(1− x)2

− 3(4− 2α)(1− x) + (4− 2α)(3− 2α)] + e3t(1− x2)6.
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The exact solution is u(x, t) = et(1− x2)2. Here we select ε = 0.01.

To confirm the temporal accuracy, we choose N = 50, which is large enough
such that the spatial error is negligible compared with the temporal error. Table
1 lists the errors ‖u − uN‖ and temporal convergence orders at time T = 2 with
different order α. From the table, we can check that temporal convergence order,
almost second-order, are in accordance with the theoretical result in Theorem 4.2.

Table 1. L2 errors and temporal convergence order for Example 5.1.

τ
α = 0.55 α = 0.75 α = 0.95

Error Order Error Order Error Order
1/10 1.1110e-02 − 1.1110e-02 − 1.1110e-02 −
1/20 2.7896e-03 1.9937 2.7896e-03 1.9937 2.7897e-03 1.9937
1/40 6.9817e-04 1.9984 6.9817e-04 1.9984 6.9817e-04 1.9984
1/80 1.7459e-04 1.9996 1.7459e-04 1.9996 1.7459e-04 1.9996
1/160 4.3650e-05 1.9999 4.3652e-05 1.9998 4.3651e-05 1.9999

Next, we investigate the spatial accuracy. We take α = 0.9, T = 2, and τ = 0.001
in order that the temporal discretization error is negligible compared with the
spatial discretization error. As shown in Figure 1, the L2 errors of the numerical
solution decay exponentially as the polynomial degree N increased. Solution u is
sufficient smooth with respect to spatial variable x, thus the numerical result is
coincide with Theorem 4.2.

N

•

•

•

•

•
•

• • • •
0 10

|
20
|

30
|

40
|

50
|10−6

10−5−

10−4

Figure 1. L2-errors versus polynomial degree N , in Example 5.1
with α = 0.9.

,

Example 5.2. Consider the problem

ut − L(α)u+ f(u) = 0, x ∈ (−1, 1), t ∈ (0, 2],

u(x, 0) = (1− x2)2x
11
3 , x ∈ (−1, 1),

u(±1, t) = 0, t ∈ [0, 2].

(5.2)
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We can easily to verify that u0 is finite regular. The reference solution is with
N = 70 and τ = 0.001. The temporal convergence orders are shown in Table 2. We
observe that the convergence orders are almost 2.

Table 2. L2 errors and temporal convergence orders for Example 5.2.

τ
α = 0.55 α = 0.75 α = 0.95

Error Order Error Order Error Order
1/10 4.2154e-04 − 4.2113e-04 − 4.2031e-04 −
1/20 1.0526e-04 2.0017 1.0516e-04 2.0017 1.0495e-04 2.0017
1/40 2.6277e-05 2.0020 2.6252e-05 2.0021 2.6201e-05 2.0021
1/80 6.5375e-06 2.0070 6.5312e-06 2.0070 6.5184e-06 2.0070
1/160 1.6032e-06 2.0278 1.6014e-06 2.0280 1.5981e-06 2.0282

Figure 2 shows the errors with respect to the polynomial degree N in a log-log
scale with various α for Example 5.2. We can see from Figure 2 that the convergence
rate is between 2 and 3.

10
1

10
2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Polynomial degree N

E
rr
o
r

 

 

α = 0.55
α = 0.75
α = 0.95
N

−2

N
−3

Figure 2. L2-errors versus polynomial degree N in Example 5.2.

From above two numerical examples, we can see that when solution is sufficient
smooth, the error is decay exponentially in space, when solution is finite regular,
the error is Algebraic decay in space.

Conclusions. In this article, we studied the spectral approximation for an initial
boundary value problem of the space fractional Allen-Cahn equation. A modified
Crank-Nicolson Legendre spectral fully discrete scheme is established. We discussed
the existence and uniqueness of the fully discrete scheme. The stability and con-
vergence of the fully discrete scheme are proved strictly. By constructing a dual
auxiliary problem, the convergence order of the scheme proved to be optimal in L2

and Hα norm. The numerical experiments confirm the convergence analysis.
There are several avenues for further research, it is of interest to extend the

results to other types of boundary conditions, time-/space-time fractional model
and higher dimensional problems.
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