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NON-PERTURBATIVE WEAK HOLDER CONTINUITY OF
LYAPUNOV EXPONENT OF DISCRETE ANALYTIC JACOBI
OPERATORS WITH SKEW-SHIFT MAPPING

KAI TAO

ABSTRACT. In this article, we study the continuity of the Lyapunov expo-
nent of discrete analytic Jacobi operators with the skew-shift mapping. We
prove that the Lyapunov exponent is weak Holder continuous in E for any
Diophantine frequency in the large coupling regimes.

1. INTRODUCTION

In this article, we study the discrete analytic Jacobi operators on 1%(Z),
(Hywo)(n) = —a(m(T3,(2))¢(n + 1) — a (mi(T7,,(x))) d(n — 1) (L.1)
+ Av (,/Tl (Tgw(g))) ¢(n)7 ne Za
where v : T — R is a real analytic function called potential, a : T — C is a com-
plex analytic function and not identically zero, A is a real positive constant called
coupling number, the transformation 777  called shew-shift mapping is defined on
T<: ,
Tiw(x=(z1,...,24)) = (¥1 + 22, T2 + T3, ..., Tag—1 + Ta, Tqg + W), (1.2)
and 7; is a projection from T to its j-th coordinate. Their characteristic equations
H, ¢ = E¢ can be expressed as

(¢($(Z)1)> — M (T}, (), E) Q&i@l)) ’

where
. 1 Xo(my (T, (2)) — B ™1 (T (2))
M (T3, (z), E) :a(m(Y’g:jl(x)))( (( %”“m) ) m 0 ))
Then
(¢(n+ 1)) — M (2, B, w) (¢(1)>
(n) e ¢(0))"
where
M, (z, B, w) H M( E) (1.3)

j=n—1
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is called the transfer matrix of (1.1f). Define
1
L,(E,w) := —/ log || My, (z, E,w)||dz.
n Jod

By the Kingman’s subadditive ergodic theorem and the fact that transformation
T4, is ergodic on T4, we have
1
L(E,w):= lim L,(E,w)= lim —log|M,(z, E,w)||
n—oo n—oo n

for almost all z € T¢. Simple computations yield
(T, (2)) = sa(n)w + sa—1(n)xq + sa—2(n)Ta—1 + -+ s1(n)ra + 21, (1.4)

where

n—j+1  yj Y2 1 Jj—1

sj(n) = Z Z Z 1= H(nfm), i=1,2,...,d.

zj=1 yj_1=1 y1=1 J: m=0
Thus, (1.4) satisfies the definition of the transformation studied in [9]. By the results
of that reference, the Lyapunov exponent is always positive in the large coupling
regimes as follows: There exists A\g = Ag(v,a) > 0 such that if the coupling number
|A| > Ao, then for any irrational w, we have

L(E,w) > clog|\| for all E,

where c is a constant depending only on v and a.

In this article, we consider the continuity of the Lyapunov exponent in E for
the Diophantine w. When we say that w € (0, 1) is Diophantine, it means that w
satisfies the Diophantine condition

Co
[lnw|| > - for all n # 0. (1.5)

(log n)”
It is well known that for a fixed « > 1, almost every w satisfies ((1.5)). Note that if
d = 1, then the transformation becomes a shift on T:

T w(z)=2+w. (1.6)

The operators with the transformation is called analytic quasi-periodic
Jacobi operators. In [8], we proved that the Lyapunov exponent of these operators
is Holder continuity in E for any Diophantine w. But we do not think it is still
true when d > 2. Here we prove the non-perturbative weak Holder continuity of
the Lyapunov exponent as follows.

Theorem 1.1. Assume d > 2. There exists g = Ao(v,a) such that if X > Ao then
for any Diophantine w,

|L(E,w) — L(E",w)| < Cyexp (— ca|log |E — E'||V/*°),  when E' — E,
where C1 = C1(N) and ¢3 = ca(A\, v, a).

In [2], the authors also obtained the weak Holder continuity of the Lyapunov
exponent of the following analytic Schrédinger equations with the same mapping;:

(Jzwrw®)(n) = d(n+1) + ¢(n — 1) + M(Ti,(2)¢(n) = E(n),

where v(z) is an analytic function on T¢. But their result is perturbative: there
exist a small constant § > 0, a large constant A\, = A((v,d) and a set Qs C T
satisfying meas (T\Qs) < 0 such that for any w € Q5 and A > X}, the continuity
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of the Lyapunov exponent holds. The first non-perturbative result for the discrete
analytic operators is [I0]. In that reference, we first proved the positive Lyapunov
exponent of the discrete Schrédinger equations with analytic potentials given by a
class of transformations as follows:

(S@yr®) () = ¢(n +1) + ¢(n — 1) + do(mr(T" (2, 9)))¢(n) = E¢(n),  (1.7)

where v(z) is a real analytic function on T and 7 is a projection from Y x T to
T. Here we denote by (Y, %, m) the probability space and T := R/Z the torus
equipped with its Haar measure, and let the measure preserving transformation
T:TxY — T xY have the form

T(z,y) = (x+ f(y),9(), (1.8)
where g : Y — Y and f: Y — T. Choosing Y = T, g(y) = g(y1, Y2, -, Ya—1) =

(y1 + y2,92 + ¥3,-..,¥a—1 +w) and f(y) = f(y1,92,...,¥a—1) = y1 makes the
transformation become to be our skew-shift . Then we obtained the weak
Holder continuity of the Lyapunov exponent for the equations . Therefore, the
highlight of our paper is that we extend the non-perturbative continuity of the
Lyapunov exponent from the discrete analytic Schrodinger operators (1.7]) to our
discrete analytic Jacobi operators .

We organize this article as follows. Some definitions and tools are presented in
Section 2, which help us obtain the non-perturbative large deviation theorem in
Section 3. Applying it with the avalanche principle, we prove the main theorem in
the last section.

2. PRELIMINARIES

For simplicity, we assume d = 2. Then

(n—1)

n
m(T () = o+ ny + e,

1
1 [a(x +G+y+ 7j(j;1)w)

n
y (x4 jy + ngl)w) - F —d(x +jy + ji(jgl)w)
a(z+ (j+ Dy + 2450) 0 ’

1
Lu(B) = 5 [[ 108 1M (o9 Bl dady

LEw) = lim - [ [ og M, (e, Bow) dady,
T2

The methods we use are complex analytic, so we will work with an extension of
the operator to a neighbourhood of the real line. We will use the notation

H, ={z € C:|3z| <y}

It is known that v(x), a(x) and a(z) admit complex analytic extensions v(z), a(z)
and a(z) to H, with p = p(v,a). Note that the complex analytic extension of a(x)
should be defined by

a(z) := a(%).
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Then, the extension of M, (z,y, E,w) is
0

1
Mn(z7y7E7w): H . ) (7
jon ta(z G+ Dy + 25 w)

y Av(z+jy+j(jT_l?og)—E —a(z + jy + 29700) ]
a(z+ (j + Dy + 2H0) 0 '

(2.1)

In the proof of the main theorem, we will in fact work with the following two
matrices associated with M,,:

n—1

. i(j+1
M2y 5,0 = (T e+ G+ D+ D0 bz, 5,09
j=0
- 1] Jy+ Fw) a(z + jy + H5w)
Pt a(z+(j+1)y+7](35r )w) 0
(2.2)
and
Mn(z7yaE7w) Mn(z,y,E,w)
MY E,w)= = — . (2.3
n(zay7 aw) |det Mn(Z,y,EﬂJJ)‘l/Q | Hn_l a(ZJijJr](Jz_l)w) |1/2 ( )
7=0 a(24(j+1)y+ 25 w)
Based on the definitions, it is straightforward to check that
log || M (2, y, E,w)|| = log [| M} (z,y, B, w)|| = Sn(z + 4,y + w,w)
= log | M (2,5, B, )| 2.0
1/~
+5 (Sn(z,yw) —Sn(z+y,y+ ww)) ;
where
S iG—1)
Sn(z,yw) = Z log ’a(z + jy + 5 w) |, (2.5)
j=0
; S iG-1
Sn(z,y,w) = Zlog|d(z+jy+ 5 w)’ (2.6)
j=0

Note that S, (z,y, E,w) = S, (z,y, E,w) when z € T. We also consider the quan-
tities L*(F,w), L%(F,w), L"(F,w) and L*(E,w) which are defined analogously.
Furthermore, let

D= /log |a(z)|dz.
T
From (2.4) and (2.4), it follows that
L(E,w) = L*(E,w) = L*(E,w) — D. (2.7)

It is well known that L(F,w) is C* function on the resolvent set with fixed w.
So we only need to consider E € &, where

& = [-2[a(z)| ) = Mv(@)llLe ), 2lla(@)]|Les )y + Alo(@)|| Lo (m)]-
Simple computations yield that for any irrational w and 1 <n € N,
sup || My (z,y, E,w)|| < My, (2.8)

Eecé&,xcH,
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where
M, = (3llallL> ) + 2M vl L= a,) -
The following three lemmas, all from the same reference, are essential to the
successful proof of the non-perturbative large deviation theorem in Section 3.

Lemma 2.1 (Weyl-differencing, [5, Lemma 12]). Let f(x) be a polynomial of degree

d>2:
f(x) =ap+ a1z + - - - + agz?.
Then for any k > 1, it has

P—1 Py—1 Prya

|zp:eif(a:) 2k < 22k 1P2k (k+1) Z Z | Z eilyr, . f (@) |
r=1

y1=0 ye=0 z=1

where P, = P and under v = 1,2...,k, quantities P,y are determined by the
equality P,11 = P, —y,. Here A\, f(x) denotes the finite difference of a function
f(x) with an integer y; > 0:

Dy, f () = [z +y1) — f(2),
and when k > 1, the finite difference of the k-th order Ay, . .. f(x) is determined
with the help of the equality

ylﬁ ykf( ) [Aylwuvyk—lf(‘r)]’

Lemma 2.2 (cite[Lemma 13]K). Let M and my,ma, ..., my be positive integers.
Denote by 1,(M) the number of solutions of the equation my...m, = M. Then
under any €(0 < € < 1) we have

(M) < Ch(e)M
where the constant Cp(€) depends on n and € only.

Lemma 2.3 ([5, Lemma 14]). Let P > 2 and

p 0
=—-+ = ’ b,q) = 17 0 S 1
P (p,q) 6]
Then under any positz’ve integer Q@ and an arbitrary real 8 we have
1 Q
min ( <4(1+ =) (P+qlogP).

In this article, the reason that we need the functions a(x), a(x) and v(x) to be
analytic and to define the complex analytic matrix M?(z,y, E,w) is to obtain the
subharmonic function

a 1 a
un(z,y, B,w) = —log || My (2, y, E,w)|

with fixed y € T,E € £ and irrational w. The following lemmas show that the
subharmonicity is the key to our paper.

Lemma 2.4 (Riesz’s representation theorem [ Lemma 2.1]). Let u : @ — R be
a subharmonic function on a domain  C C. Suppose that 0S) consists of finitely
many piece-wise C' curves. There exists a positive measure p on Q such that for
any O € Q (i.e., Q1 is a compactly contained subregion of 1),

u(z) = / log |z — ¢ du(C) + h(2),
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where h is harmonic on 1 and u is unique with this property. Moreover, u and h
satisfy the bounds

1(€21) < C(2, ) (supu — supw),
Q Qq

[ = supul| Lo (q,) < C(€2,Q1,92) (supu — sup u)
Ql Q Ql

for any Qs € Q4.

Lemma 2.5 ([I, Corollary 4.7]). Suppose u is subharmonic on H,. Then there
ezist a constant C, := C,(p) such that the Fourier coefficients of u satisfy

B Colnyy2) + [lhll Lo )]
— |k| )
where p1 and h come from Lemma [24}

ik Yk # 0,

Lemma 2.6 (BMO Bound [2, Lemma 2.3]). Suppose u is subharmonic on H, with
(M, 2) + (|l oem,) < Cpn. Furthermore, assume that u = ug + uy, where
T

HUQ— < Uug > ||Loo(’]1‘) <e€ and ||u1||L1('JT) < €. (29)
Then for some constant C’p depending only on p,

ull Baro(ry < ép<€0 log (g) + \/nel).

3. NON-PERTURBATIVE LARGE DEVIATION THEOREM
Recall that with fixed y, E' and w,
a 1 a

un(z,y, B,w) = —log [ My (2, y, E,w)|

is a subharmonic function on z € H, with the upper bound
sup ul(z) < log (3Ha||Loo(Hp) + 2)\Hv||Loo(Hp)).
Define )
Ly Bow) = - [ Jog |33, Bo0)
nJr

If

|U||L°°(Hp)’ K

then by the definitions and the subadditivity, it implies that for any F € &, irra-
tional w and n > 1,

)

o ) I
A> Mg = max{'a”L (H,) exp( [vllz (Hp))}

LYE,w) < Ly (E,w) <log (5A[[v]|pem,)) < (14 k)logA, (3.1)
and for any y € T,
La(y7an) < L;lz(ya E,CU) < log (5A||’U||L°°(Hp)) < (1 + H) log A. (32)

By [9, Lemma 1.2], we have that there exists Ay such that if A > A, then
LY(F,w) > (1 —k)log\ and L*(y,F,w) > (1—k)logA.
Above all, if A > A\g(k) := max{A1, A2}, then
(1 -r)log) < LYE,w) < Ly(E,w) < (1+ k) logA, (3.3)
(1—-kr)logA < L%y, E,w) < L:(y, E,w) < (1 + k) log . (3.4)
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From now on, we assume that A > Ag(x). The constant x will be chosen later.
Let @ = H,, 0y = H,/5 and Q» = He in Lemma Due to this lemma and ({3.1)),
there exists C; = C1(\, v, a, p) such that for any y € T, E € & and irrational w,

#(Ep2) + Al ooy ) < G,

where p and h come from the Riesz’s representation of u,(z). By Lemma it
implies that

C
where the constant C' = C’pC’1 does not depend on y, E or w. Note that

ul (T (2, ), B,w) = Loy, Byw) + Y i, y, B,w)e ot ),

k0
Then
lizu TJ (x,y), E,w) — Ln(y7E,w)’
j=1
Ly i i)
=20 Yl Bw)e )|
J=1kezZ\{0}
1 NG
SN| Z n(k, y,Ew)Zek(ﬂH- T )|
0<|k|<K =1
N i(i—1)
7| Z k y, )Z ik(jy+25 w)‘ — (a) + (b)
|k|>K j=1
From we have

(B3 < Z [a% (k,y, E,w)|> < C2K .
|k|>K

To estimate (a), recalling Lemmam we have

N-1
’Zezk(ﬂﬁ’(] 1)‘“)‘ < 2N +2 Z min (N — m, 2[|kmw]| ")
j=1 m=1
N-1
< Cq Z min (N, 2||kmw| ") .
m=1

And from the Cauchy inequality,

N
. i(j— 2
@ <N ST Jaathy, Bl Y (DD ettt

0<|k|<K 0<|k|<K j=1
K N-1
< CsN72) S min (N, 2[|kmew| 1) (3.6)
k=1m=1
KN

< CNT2H(EN)SY min (N, 2[|kw| "),
k=1
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where the arbitrary small positive parameter ¢ > 0 and the inequality (3.6) come
from Lemma [2.2} By Dirichlet’s principle there is an integer 1 < ¢ < N and an

integer p so that ged(p,q) = 1 and ‘w — IE)‘ < qiN. Thus from the definition of

Diophantine number, one has

N
N>qg>cp—.
== “log Ny
Combining it with Lemma [2.3] we have
KN
(@)]* < C-NT2(KN)< > min (N, 2[|kw| ")
k=1

<4CN(KN)“(1+ ﬂ)(N + qlog N)
q

1
< 4C.N"2(KN)* (N + Nlog N + —KN(log N)? + KN log N)
Cw

S N2671K‘1+26’

for any N > Ny(e,w). Let K =n'/>, N > n'/? and e = 1/16. Then for any fixed
y € T, E € £ and Diophantine w,

meas(%) < n~2/15,

N , 3.7
(93 = {x: |%ZuZ(Tj}(x,y),E,w)—Lﬁ(y,E,w)| >2n_1/15}). (8.7)
j=1

Note that the sum of subharmonic functions is also subharmonic. Thus, with fixed
y, B and w, u(z) = %Zjvzl u2(T(z,y), E,w) is a subharmonic function with
M(Hp/g) + ||h||Loo(H§) < Cpn. Let

u(x) — (u(-)) = uo + u1,
where up = 0 on £ and u; = 0 on T\#A. Then

14/15 13/15

[[uo = (uo)||Loe () < 21 and  fJurllzyry <

Applying Lemma [2.6] we have

llull Brroery < épn29/30~

Then, compared to , the well-known John-Nirenberg inequality [7] will give
a better deviation estimation as follows: Let f be a function of bounded mean
oscillation on T. Then there exist the absolute constants C' and ¢ such that for any
v >0,

meas{acE"JI‘:|f(x)—<f>|>7}§C’eXp(—”u”CT7Mo). (3.8)

Applying (3.8)) to u(z), we have

c
meas{z € T : |u(z) — (u)| >~} < C’exp(— WZ)/SO)'
p
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Choose v = %nlog A. Then, for any y, F and w,

N
1 . . 1
meas {x € T : |N ;un(Tjj(z,y),E,w) — L (y, E,w)| > o log A}
< Cexp(—cpn1/30 log/\).

(3.9)

Now we estimate Zjvzl ud (T (z,y), E,w) — u®(z,y, F,w). Recall that
M (2,9, E,w) = M* (T5(2,y), B, w)
_ (/\U (m(T5(%,9) —E —a (Wl(TB(Zvy)))>
a(m1(Ti(z,y))) 0 ’
and define

m—1
Mg, (29, Byw) = Mf, 0 (T(2,y =[] M*(Ti(zy),E,w).
j=n—1
It is easily seen that M2(z,y, E,w) = M[1 n] (Tg(z,y),E,w). From (2.8) and the
definition of \g, for any y, F and w, we have
sup ||M(z,y, B,w)|| < A'TF (3.10)
2€A,/2

and i
sup || (M) (2,y, B, w)||
2€A,/2

1
= sup ||

2€A,/2 d(ﬂl(TB(z,y)))a( ( ( )))
0 —a (7r1 T0 (2,9)))
x (a (m(Tw(z,9))) v (7 (T9(z,9))) — E) |

)\1+n
< — .
~la(m(TH(z,9))) a(m(Tu(z,9))) |
Thus, from (3.10), (3-1T), the definition of M, o (T5(2,y), E,w) and

1

1 22 (152, ). B.w)

(3.11)

0
= M® (T (z,y), H M (T9(2,y), B,w) - (M)~ (T(2,y), B, w) ,
we have ]
log [| My (Too(2,9), B, w) | < 2(1 + &) log A+ log | My, (T5(2,y), E,w) ||
—loga (m1(T5(2,9))) a (m1(Tu(z,y))) |
Similarly,
log || My (T3(2,9), E,w) || < 2(1 + &) log A + log || My (T(2,y), E,w) |
—logla (mi (T3~ 1(z,y))) a (m (T3 (z,9))) |-
Therefore,
—2(1+ &) log A +logla (11 (T3(2,9))) a (m1(Tw(2,1))) |
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<log | M (T)(2,y), E,w) || = log | My} (T (2,), E,w) ||
<2(1+4 k)logX —logla (7T1(T[f_1(z, y))) a(m (T} (z,v))) |-
It is obvious that for any k& > 1,

k—1
—2k(1+k)log A+ Z logla (m (T (z,y))) a (71'1(T1,”+1(z,y))) |
m=0
<log||M;! (TS(2,y), E,w) | —log | My (TS (2,9), E,w) |
k-1
< (14 w)log A — 3 loga (m1 (T2 (2.9) @ (ma (T4 (2,9)) |
m=0

It implies that

2k(1 + ) log A log/\ =
- N (T2 (12 2.0)
a 1 a
S Nun (TB(Z,y),E,w) - N n (To]j(z’y)7E’w)
2k(1+ k) log A =1 _ S -
< PGS = 5 sl (7207 o)) (727 ) |

and

N-1
2N (1 log A N —
(1+r)log +Z m

log |a (m1 (T7 () a (w1 (T (2, 9))) |

" m=0
1 & .
<y (2,9, B,w) — N;UZ (Ti(x,y), B,w) (3.12)
k—1
2N(1+ k)log A N—m B b e
< % — Z N log\a (ﬂl(Tw"‘ 1($,y))) a(ﬂ.l(Tw-‘r (x,y))) |

Recall the Lojasiewicz inequality ([6]): For any analytic function f(z), there exists
a = «(f) such that for any § > 0,

meas{zr € T : |f(z)] < §} < &°. (3.13)
Define
d;(z,y,w) = det M* (Ti(m,y),E,w) =a (7T1(T£(Z‘,y))) a (771(T£+1(x,y))) .

It is obvious that for any j > 0, d;(x,y,w) is an analytic function with fixed y and
w. Moreover, the constant a; = «;(d;) in the inequality (3.13]) only depends on
a(z) and a(zx), not on j, which can be denoted by ay4. Thus, for fixed y and w,

meas (B; := {z € T : |d;(z,y,w)| < exp(fn‘s)}) < exp(—agn®).
Thus, if = gUJ o Bj, then

N-1

N tog a (m2 (T (2, 9)) 0 ( (T34 () | >

m=0
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Similarly, if = ¢ Un+N ! Bj, then

N +1
+ nd=1.

fz N L log |a (1 (T2, ) a (1 (T2 (2, ) | < 5

Combining this with (3.12]), we have that there exists a set B’ satisfying meas(B’) <
2N exp(—agn®) such that if z ¢ B, then

1 :
s (2,9, Bow) = 2 D ui (T (), B,w)| <
j=1

Recall that for any N > n'/3,

2N(1+x)logh N +1
(L R)logA | N b1,5y
n

N

meas {z € T : ’% ZuZ(Ti(x,y),E,w) — L} (y, E,w)| > ﬁlog)\}
j=1

< Cexp( Cp nt/30 log)\)

Choose N = n'/3 and § = % We obtain that there exists ng = ng(\, ag) such that
for any n > ny,

meas{z € T : |ul(z,y, E,w) — L (y, E,w)| > — log)\} (3.14)

< Cexp ( — 20pn1/30 log )\).

Finally, we obtain a similar estimation for ul(z,y, E,w) := 2 log||MY(z,y, E,w)||.
Then using the key lemma, called large deviation theorem, to prove the main theo-
rem in Section 4. Note that for fixed y, F and w, u¥(z,y, E,w) is not a subharmonic
function but satisﬁes the assumption of the avalanche principle in the next section.

By (2.4) and (2.4), we have

1 /-
ﬁ@%am+;(am%m+&@+%wWw0=%@%EM»<mm

Recall , and the definitions of S, (z,y,w) and S, (x,y,w). By the sub-
harmonlclty of log |a(z)| and log|a(z)|, the estimation (3.9) also holds for log |a(z)]
and log |a(z)], i.e.,for any fixed y € T and Diophantine w,

1
meas {z € T : |ESn(x,y, w)—D| > Elog)\} < Cexp(— c,nt/% logA), (3.16)

1 -
meas{z € T : |gSn(a:,y,w) - D| > Elog A} < Cexp(— ¢,/ log A). o (3.17)

Combining (2.7)), (3.14), (3.15)), (3.16)) and (3.17)), we have that

meas {z eT: |uy(z,y, E,w) — Ly (y, E,w)| > 3 log /\}
40 (3.18)
< 3Cexp (—cpnl/BO log )\) ,
where

u 1 u 1 a
L Bw) = [ S log M (@ Bo)ds = - [ 10g 104209, B o = D

1
=L (y,E,w)—D = / Elog My (z,y, E,w)||de = L, (y.E,w).
T
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Choose £ = 1/100 in Xg(x). By (3.4), if A > Ao (135, then

99 101
—log A\ < L%y, E < L%y, F < — log \.
100 1082 < (y, B,w) < Ly (y, B,w) < Top 108

Recall that
D= / log |a(z)|dz.
T

Therefore, there exists A3 = exp(100|D|) such that for any A > A3,
1
D| < —log \.
DI < 1gg o8

Redefine \g = max {)\0 ( ,)\3}. So, if A > Ao, then

1
W)
49 51
701082 < La(y, Byw) = Ly(y, B, w) < o5 log A,
a u a 1
‘Ln(yava) - Ln(yava” = |Ln(y,E;W) - Ln(y7E7w)| S mlog)\a

3
L,(y,E,w) — L,(E, — log A
Ly, Fr0) — La(B, )| < 1o o
Replacing L (y, E,w) by L, (F,w) in (3.18]), we obtain the following large deviation

theorem for wu;..

Lemma 3.1. Assume A > Ag. Then there exists ng = ng(\, aq) such that for any
n > no,

1
meas { (z,y) € T? : |[u(z,y, E,w) — L, (E,w)| > §10g A} <exp(-— cgnl/30 log \).

4. PROOF OF MAIN THEOREM

In this section, we will apply the following lemma, called the avalanche principle,
to prove the main theorem.

Proposition 4.1. Let Aq,..., A, be a sequence of 2 X 2-matrices whose determi-
nants satisfy
max |det A;| < 1.

1<j<m
Suppose that
. o> .
min 4] > 5> m, (4.1)
1
1glja<xn[10g 145411 + log [|4;]] — log [ 4;+145]]] < S log - (4.2)

Then

m—1 m—1

m

log | A - Aull+ 3 log |45 = D log 14,14 | < €7
j=2 j=1

with some absolute constant C'.
For a proof of the above proposition see [3].

Lemma 4.2. Let A > \g (ﬁ), Ny > no(A, aq) and

C'U.
NNt = m ~ exp (gpNg/?’O log \).
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Then we have
Cp o 11/30
|Ln, (E,w) + Ly, (E,w) — 2Lan, (E,w)| < log Aexp ( — ZNO log \).
Proof. Note that for any n > ny,

5% log A < L(E,w) < Lon(E,w) < L (E,w) < % Lioe . (4.3)

Then, we will use the avalanche principle on A;(z,y, E,w) = My (TN (z,y), E,w)
with (x,y) restricted to the set A C T? defined by 2m — 1 conditions:

1 .
|F010g”Aj(m7yu ’ )H_LNO( )‘ < 910g>\, VOSJ <m-—1, (44)
1 1
|2—NOlogHAj+1Aj(x,y,E,w)|| — LQNO(E,W)’ < §10g)\, YO<j<m-—2. (4.5)

By Lemma [3.1]

CU
meas{T?\A} < (2m — 1) exp (—CZN&/?’O log /\) < exp (—?i)Né/gO log A) .

By (4.4), and (£.3)), for each A;(x,y) with (z,y) € A, we have
451 > exp (2 1og AN ),
and
| log || 4| +log [[ A1 — log [|4;+1 4] |
< |log||A;j]l = NoLn, | + | 1og[|Aj 1]l = NoLn, |
+ |2NoLn, — 2NoLan, | + |2NoLan, — log || A1 A;l|

1 2 3
— Nyl — Nyl —Npl .
<3 Oog)\+25 oog>\<7 olog A

This implies that all assumptions of the avalanche principle have been satisfied with
the setting 1 = exp(SNolog A). Thus,

m—1 m—1

| log | H Ajll + Z log ||4;]| — Z log || A1 4| < C— < exp ( - ?NO log)\)

j=m j=2 Jj=1

Intergrading on A, we have

m—2
/ /A log | M, (9. Bl | dedy + 3 [ /A log [IMY, (T2 (2, ), B,w) || dz dy
j=1

m—2
— Z //A log || M3y, (T‘ZNO(.%,y),E,OJ) I dxdy’
§=0

< exp ( — gNO log)\).

We want to replace integration over A by integration over T2. Then (2.4)) and .
imply

m—2

log || M, (z,y, E,w)|| + Y log || MR, (T3 (z,y), E) |
j=1
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m—2

— 3 log [ Mgy, (T2 (a,y), B) |
7=0
m—2

= log ||Mf,, (x,y, B,w)| + Y log||M, (15" (z,y), E) |

j=1
m—2 )

= > log Mgy, (T2 (), E) |.
j=0

Therefore,

[ sl (o, Bl dody
']1‘2\A

+ Z //T log || My, (TN (2,y), E,w) || dz dy
_ Z //T2 AlogHJW;N0 (TZ;NO(Q;,y),EM) ||dxdy‘

< 4N1%10g)\exp( §n1/3olog)\).

In summary,

|Ln, (B, w) + LNO( ;W) = 2Lan, (B, w)|

< Ly (Byw) + P2 L (Byw) = A1)
+ % (Lo (B, w) + Lan, (E,w))

Lo, (E,w)|

< iexp(

6 408 Cp Ar1/30
N, Nolog)\) —|—Elog)\exp(— gpNO/ log)\)

7
C’LL
< log Aexp ( — ZpNol/BO log)\).

O
Similarly,
Cu
[ Lo, (B.w) + Ly (B,w) = 2Lan, (B,0)] < log Aexp (— —Ny/* log A).
Thus,
C’LL
Lo (B, w) = L, (B,w)| < 2exp (= 7 Ny/*log A).
In general, setting Ns41 = msNg with ms ~ exp ( 1/30 log )\), we have
Cu
|LN.: (B,w) + L, (E,w) = 2Lan, (E,w)| < log Aexp ( - ZpNsl/?’O log \),
(4.6)

Cu
Lon.. (B w) — Ly (B,w)| < 2log Aexp ( — £ N/3%10g \),
s+1 s+1 g 4 K] g
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and
|LN.., (E,w) — Ly, (E,w)|
<|Ln.,(E,w)+ Ln,(E,w) = 2Lan, (E,w)| + |LN, (E,w) — Lan, (E,w)]|

s+1 (

(4.7)
cy .
< 3log Aexp ( — Z”Nsl/jolog)\).

Combining Lemma [4.2] ([@.6)) and (£.7)), we have

|L(E w) + LNO(E w) - 2L2N0(E,w)|
|Z LN7+1 — L, (E w)) + L, (E’w) + LNO(va) - 2L2N0(E7w)|

j>1

<D 1N, (Byw) = Ly, (B,w)| + | Ly, (B, w) + Ly (B, w) = 2Lan, (B, w)|

j>1

cY cY

< Z310gx\exp (- z”le/?’o log ) 4 log Aexp (— ZpN&/SO log \)

>

Cu

< log Aexp ( - EPNOUP’O log)\).

(4.8)
On the other hand, we need to estimate |L,(E,w) — L,(E’,w)|. Note that

|||Mﬁ(x,y,E,w)H - ”MS(‘T,yaElvw)M
< ||Ms(xay,an) _Mr?(xvy7Elvw)”
n—1 )
< Z (HMCL (Tﬁil(xay%an) X oo x M® (T$+1($,y),E,W) H
j=0
2 ”Ma (Tg(xﬂJ)anw) - M (Tf;(x,y),E/,w) ”
X HMH (Tu].;_l(xay)vElvw) X oo x M® (TB(I‘,y),E’,w) ||)
< ne%(n_l)log)‘|E—E/|.
Then (2.2) and (2.3]) imply that
M2 (2,9, B w)l| — 1M (2,9, B, )|
_ || M (2, B, w)|| = || M3 (2, B, w)|
IH;?;&&(z+jy+—”*” Ja(z + (j + Dy + 2FHw)[1/2

< peso(r=Dlog oy ( - 7(5 (x,y,w) +Sn(a:+y,y+w,w)))|E— E'|.

By and there exists a set B” C T? satisfying
meas B” < 2C exp ( — c,nt/* log A)
such that for any (z,y) € B”,
Sn(z,y,w), Sp(z+ v,y + w,w) >nD — %nlog)\ > —2—10n10g)\.
Thus, for any (z,y) ¢ B”,
M2 ey, B, )| — My, B ) ] < med™ o83 B — B,
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This implies
|log [[ M} (z,y, E,w)|| — log || My (2,y, E', w)]|

g (1+ 1M (2, y, B, w)|| — HM#(w,y,E’,w)III)
M (2, y, B, w) |
<| My (x, y, B, w)|| — ||Mff(x,y,E’,W)|||

M (z,y, E,w)|
< 1My (z, y, E,w)|| — | My (z,y, E', w)]]
< nes"OSNE — F).

Therefore,

— L, (E',w)|

L
// —‘1og||M x,y, E,w)| —log | M (z,y, E', )||’dwdy
T\B” n

// o 1M, B, )| — log M, y, B, )| ey

< egnlog/\|E — FE'|+ // — |log || M (x,y, E,w)| — log || M (x,y, E',w)||| dz dy

2C
< ’”log/\|E E’|+ log Aexp (— ¢, n1/3010g)\)

- 100
Now we can give the proof of the main theorem.
Proof of Theorem [1.1].

|L(E7w) _L(El7w)|
< L(B,0) + Ly (B, 0) — 2Ly (B,0)| + [ (B ) + Loy (B, 0) — 2L, (B, )
+ LN, (B,w) — Ly, (E',w)| + 2| Lan, (E,w) — Lan, (E', )|
cu
< 2logXexp (— EpNg/gO log \) + e%NologHE - F'|

202C
100

+2e TNl g Y| 4

+

log A exp (—cpN&/?’O log )\)

404C
100
1/30 12 Np log A /

< 10Clog Aexp ( — 2¢,Ny' ™" log A) + 3e’s |E — E'|.

If B/ — E, then there exists large Ny satisfying

log A exp ( - 2cpN3/30 log )\)

1
goClog)\exp (—3Nplog\) < |E — E'|

10 12
< gClog)\eXp ( — QCpNol/SO log A — ENO log )\).
Then 10
log|E — E’'| > log (EClog A) — 3Nglog A > —4Nglog A.
Therefore,
|L(E,w) — L(E',w)| < 20Clog Aexp ( — QCPN&/?)O log \)
< 20C log Mexp ( — 2¢,|log |E — E'|['/3* log \).
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