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Z2-SYMMETRIC PLANAR POLYNOMIAL HAMILTONIAN

SYSTEMS OF DEGREE 3 WITH NILPOTENT CENTERS

FABIO SCALCO DIAS, JAUME LLIBRE, CLAUDIA VALLS

Abstract. We provide the normal forms of all Z2-symmetric planar polyno-
mial Hamiltonian systems of degree 3 having a nilpotent center at the origin.

Furthermore, we complete the classification of the global phase portraits in

the Poincaré disk of the above systems initiated by Dias, Llibre and Valls [9].

1. Introduction and statement of results

In this article we study the global phase portrait of all Z2-symmetric planar
polynomial Hamiltonian systems of degree 3 having a nilpotent center at the origin.
Let H(x, y) be a real polynomial in the variables x and y. Then a system of the
form

x′ = Hy y′ = −Hx

is called a polynomial Hamiltonian system. Here the prime denotes derivative with
respect to the independent variable t.

Poincaré [22] defined a center for a vector field on the real plane as a singular
point having a neighborhood filled with periodic orbits with the exception of the
singular point. Let p ∈ R2 be a singular point of an analytic differential system
in R2, and assume that p is a center. Without loss of generality we can assume
that p is at the origin of coordinates. Then after a linear change of variables and
a rescaling of the time variable (if necessary), the system can be written in one of
the following three forms

x′ = −y + P (x, y), y′ = x+Q(x, y), (1.1)

x′ = y + P (x, y), y′ = Q(x, y), (1.2)

x′ = P (x, y), y′ = Q(x, y), (1.3)

where P (x, y) and Q(x, y) are real analytic functions without constant and linear
terms, defined in a neighborhood of the origin. In what follows a center of an
analytic differential system in R2 is called linear type, nilpotent or degenerate if
after an affine change of variables and a rescaling of the time it can be written as
system (1.1), (1.2) or (1.3), respectively.
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Without loss of generality we can assume that a Hamiltonian system of degree
three with a nilpotent center at the origin is given by

x′ = y + a2x
2 + 2a3xy + 3a4y

2 + a6x
3 + 2a7x

2y + 3a8xy
2 + 4a9y

3,

y′ = −3a1x
2 − 2a2xy − a3y2 − 4a5x

3 − 3a6x
2y − 2a7xy

2 − a8y3.
(1.4)

The classification of centers for real planar polynomial differential systems started
with the classification of centers for quadratic polynomial differential systems, and
these results go back mainly to Dulac [10], Kapteyn [13, 14] and Bautin [2]. In
[23] Vulpe provides all the global phase portraits of quadratic polynomial differ-
ential systems having a center. There are many partial results for the centers of
planar polynomial differential systems of degree larger than two. For instance for
polynomial differential systems of the form linear plus homogeneous nonlinearities
of degree greater than three the centers at the origin are not characterized, but
there are partial results for degree four and five for the linear type centers, see for
instance Chavarriga and Giné [3, 4]. Some results for higher degree are known see
for instance [12]. Recently Colak, Llibre and Valls [5, 6, 7, 8] provided the global
phase portraits on the Poincaré disk of all Hamiltonian planar polynomial vector
fields having only linear and cubic homogeneous terms which have a linear type
center or a nilpotent center at the origin, together with their bifurcation diagrams.
More recently, Dias, Llibre and Valls [9] classified the global phase portraits of all
Hamiltonian planar polynomial vector fields of degree three symmetric with respect
to the x−axis having a nilpotent center at the origin.

In this work we classify and provide the global phase portraits of all Z2-symmetric
planar polynomial Hamiltonian systems of degree 3 having a nilpotent center at the
origin.

Let X : U ⊂ R2 → R2 be the vector field associated to system (1.4). We define
the matrix

M =

(
−1 0
0 1

)
Then it is Z2-equivariant if either

MX (x, y) = X (−x, y), or (1.5)

−MX (x, y) = X (x,−y), or (1.6)

−X (x, y) = X (−x,−y), (1.7)

and X is Z2-reversible if either

MX (x, y) = −X (−x, y), or (1.8)

−MX (x, y) = −X (x,−y), or (1.9)

X (x, y) = X (−x,−y). (1.10)

Other classes of polynomial vector fields in R2 with a Z2-symmetry have been
studied by several authors, see for instance [15, 16, 17, 18, 24].

Systems (1.4) satisfying (1.7) and (1.9) were studied in the article [5, 6] and
[9], respectively. Systems (1.4) does not satisfy equations (1.5), (1.6) and (1.10).
Hence it remains only to study the nilpotent centers of the Z2-symmetric planar
polynomial Hamiltonian systems of degree 3 satisfying (1.8).

The classification will be done using the Poincaré compactification of polynomial
vector fields, see section 2. We say that two vector fields on the Poincaré disk are
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topologically equivalent if there exists a homeomorphism from one into the other
which sends orbits to orbits preserving or reversing the direction of the flow.

Our main results are the following ones.

Theorem 1.1. All planar polynomial Hamiltonian systems of degree 3 with a nilpo-
tent center at the origin satisfying (1.8), after a linear change of variables and a
rescaling of its independent variable t, can be written as one of the following seven
systems:

(I) x′ = y, y′ = −x3;
(II) x′ = y + x2, y′ = −2xy − x3/a2, with a 6= 0;

(III) x′ = y + ax2 + y3, y′ = −2axy − x3;
(IV) x′ = y + ax2 − y3, y′ = −2axy − x3;
(V) x′ = y + ax2 + y2 + by3, y′ = −2axy − x3;

(VI) x′ = y + ax2 + by2 − x2y + cy3, y′ = −2axy − x3 + xy2;
(VII) x′ = y + ax2 + by2 + x2y + cy3, y′ = −2axy − x3 − xy2,

where a ∈ (−1/
√

2, 1/
√

2) and b, c ∈ R.

Theorem 1.2. The global phase portraits of the seven families rm (I)-(VII) in
Theorem 1.1 are topologically equivalent to the phase portraits of Figures 1–4:

(a) 1 for systems (I) and (II);
(b) 2 for systems (III);
(c) 3 and 4 for systems (IV);
(d) 2, 3, 5− 14 for systems (V);
(e) 2, 3, 7− 11, 13− 57 for systems (VI);
(f) 1− 14, 37, 38, 57− 61 for systems (VII).

2. Preliminary results

In this section we summarize the Poincaré compactification that we shall use for
describing the global phase portrait of our Hamiltonian systems. For more details
on the Poincaré compactification see [11, Chapter 5]. Let S2 be the sphere of points
(s1, s2, s3) ∈ R3 such that s21 + s22 + s23 = 1, called the Poincaré sphere. Given a
polynomial vector field

X(x, y) = (x′, y′) = (P (x, y), Q(x, y))

in R2 of degree d (where d is the maximum of the degrees of the polynomials P and
Q) it can be extended analytically to the Poincaré sphere by projecting each point
x ∈ R2 identified with the point (x1, x2, 1) ∈ R3 in the Poincaré sphere using the
straight line through x and the origin of R3. The equator S1 = {(s1, s2, s3) ∈ S2 :
s3 = 0} corresponds to the infinity of R2. In this way we obtain a vector field X̄
in S2 \ S1. This vector field X̄ is formed by two copies of X: one on the northern
hemisphere {(s1, s2, s3) ∈ S2 : s3 > 0} and another on the southern hemisphere
{(s1, s2, s3) ∈ S2 : s3 < 0}. The local charts needed for doing the calculations on
the Poincaré sphere are

Ui = {s ∈ S2 : si > 0}, Vi = {s ∈ S2 : si < 0},

where s = (s1, s2, s3), with the corresponding local maps

ϕi(s) : Ui → R2, ψi(s) : Vi → R2,
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Figure 1. Global phase portraits of vector fields in Theorem 1.2.
(to be continued)

such that ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n 6= i, for
i = 1, 2, 3.

We extend X̄ to a vector field p(X) at the whole sphere S2 by taking p(X) = vdX̄.
The expression for the corresponding vector field on S2 in the local chart U1 is given
by

u′ = vd
[
− uP

(1

v
,
u

v

)
+Q

(1

v
,
u

v

)]
, v′ = −vd+1P

(1

v
,
u

v

)
; (2.1)

the expression for U2 is

u′ = vd
[
P
(u
v
,

1

v

)
− uQ

(u
v
,

1

v

)]
, v′ = −vd+1Q

(u
v
,

1

v

)
; (2.2)

and the expression for U3 is u′ = P (u, v), v′ = −Q(u, v). The expressions for the
charts Vi are those for the charts Ui multiplied by (−1)d−1, for i = 1, 2, 3. Hence
for studying the vector field X it is enough to study its Poincaré compactification
restricted to the northern hemisphere plus S1. To draw the phase portraits we
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Figure 2. Global phase portraits of vector fields in Theorem 1.2
(to be continued)

consider the projection, by π(s1, s2, s3) = (s1, s2), of the closed northern hemisphere
into the local disk D = {(s1, s2) : s21 + s22 ≤ 1}, called the Poincaré disk.

Finite singular points of X are the singular points Dπ ◦ p(X) in the interior of
D, and they can be studied using U3. Infinite singular points of X are the singular
points of Dπ◦p(X) contained in S1. Note that if s ∈ S1 is an infinite singular point,
then −s is also an infinite singular point. Hence to study the infinite singular points
it suffices to look for them only at U1|v=0 and at the origin of U2.

Now we see how to characterize the global phase portraits in the Poincaré disc
of all Z2-symmetric planar polynomial Hamiltonian systems of degree 3 having a
nilpotent center at the origin.

We recall that a separatrix of p(X) is an orbit which is either a singular point,
or a limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector
at a singular point. It was proved by Neumann [20] that the set of all separatrices
of p(X) is closed. We will denote it by S(p(X)). The canonical regions of p(X) are
the open connected components of D \ S(p(X)). The union of S(p(X)) with one
solution chosen from each canonical region will be called a separatrix configuration.
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Figure 3. Global phase portraits of vector fields in Theorem 1.2
(to be continued)

We say that two separatrix configurations S(p(X)) and S(p(Y )) are topologically
equivalent if there is an orientation preserving (or reversing) homeomorphism which
maps trajectories of S(p(X)) into trajectories of S(p(Y )). The following result is
due to Markus [19], Neumann [20] and Peixoto [21].

Theorem 2.1. The phase portraits in the Poincaré disc of the two compactified
polynomial differential systems p(X) and p(Y ) are topologically equivalent if and
only if their separatrix configurations S(p(X)) and S(p(Y )) are topologically equiv-
alent.

Finally we mention without getting into too much detail an important result that
classifies the finite singular points of Hamiltonian planar polynomial differential
systems. For a detailed definition of the (topological) index of a singular point see
for instance [11, Chapter 6], it can be computed easily using the Poincaré formula
which takes into account the parabolic sector, hyperbolic sector, and elliptic sectors
at a singular point, for details see [11, page 18]. A vector field is said to have the
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Figure 4. Global phase portraits of vector fields in Theorem 1.2

finite sectorial decomposition property at a singular point q if either q is a center, a
focus or a node, or it has a neighborhood consisting of a finite union of parabolic,
hyperbolic or elliptic sectors. We note that all the isolated singular points of a
polynomial differential system satisfy the finite vectorial decomposition property,
see [11].

Theorem 2.2 (Poincaré Formula). Let q be an isolated singular point having the
finite sectorial decomposition property. Let e, h an p denote the number of elliptic,
hyperbolic and parabolic sectors of q, respectively. Then the index of q is (e−h)/2+1.

From the above theorem the following result follows easily.

Corollary 2.3. The indices of a saddle, a center and a cusp are −1, 1 and 0,
respectively.

To determine the possible number and local phase portraits of the finite singular
points of the systems we will use the Poincaré-Hopf Theorem for vector fields in
the 2−dimensional sphere.
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Theorem 2.4. For every vector field on the sphere S2 with a finite number of
singular points, the sum of the indices of these singular points is 2.

We note that singular points with index 0 are more difficult to detect because
they do not contribute to the total index of the singular points of the vector fields
on the Poincaré sphere. To overcome this difficulty we present the following propo-
sition, but first we make a remark and give some definitions.

If a singular point p of an analytic vector field X has the two real parts of the
eigenvalues of DX(p) non-zero then p is hyperbolic. If the eigenvalues of DX(p)
are purely imaginary, then p is either a center or a focus. If only one eigenvalue of
DX(p) is 0, then p is semi-hyperbolic. The hyperbolic and semi-hyperbolic singular
points are called elementary. If both eigenvalues of DX(p) are 0 but DX(p) is not
identically zero, then p is nilpotent. Finally, if DX(p) is identically zero then p is
linearly zero. The local phase portraits of hyperbolic, semi-hyperbolic and nilpotent
singular points can be studied using, for instance, [11, Theorems 2.15, 2.19 and 3.5],
respectively. The linearly zero singular points must be studied using the changes
of variables known as blow-ups, see for instance [1] and [11].

Remark 2.5. Nilpotent singular points of Hamiltonian planar polynomial vector
fields are either saddles, centers, or cusps (for more details see [11, Theorem 3.5]
and taking into account that Hamiltonian systems cannot have foci).

3. Proof of Theorem 1.1

Without loss of generality we can assume that a Hamiltonian system of degree
three with a nilpotent center at the origin is given by

x′ = Hy, y′ = −Hx,

where

H(x, y) =y2/2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3 + a8x
4 + a9x

3y

+ a10x
2y2 + a11xy

3 + a12y
4.

Therefore, we have the Hamiltonian system

x′ = y + a5x
2 + 2a6xy + 3a7y

2 + a9x
3 + 2a10x

2y + 3a11xy
2 + 4a12y

3,

y′ = −(3a4x
2 + 2a5xy + a6y

2 + 4a8x
3 + 3a9x

2y + 2a10xy
2 + a11y

3).
(3.1)

In order that systems (3.1) be Z2-reversible as in (1.8) it must be invariant under
(x, y, t)→ (−x, y,−t) and so we have that a4 = a6 = a9 = a11 = 0. Hence systems
(3.1) become

x′ = y + a5x
2 + 3a7y

2 + 2a10x
2y + 4a12y

3,

y′ = −(2a5xy + 4a8x
3 + 2a10xy

2).
(3.2)

Since systems (3.2) must have a center at the origin, by [11, Theorem 3.5] we must
have 2a8 > a25.

Case 1. Assume a10 > 0. By the change of coordinates and reparametrization of
the time of the form

x→ αX, y → βY, t→ γτ, (3.3)
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with α = −1/
√

2a10, β = −√a8/a10 and γ =
√
a10/2a8, systems (3.2) can be

written as

X ′ = Y − a5
2
√
a8
X2 −

3a7
√
a8

a10
Y 2 +X2Y +

4a12a8
a210

Y 3,

Y ′ =
a5√
a8
XY −X3 −XY 2.

We obtain the normal form (VII). Note that, since 2a8 > a25, we have∣∣a =
−a5
2
√
a8

∣∣ < 1√
2
.

Case 2. Assume a10 < 0. By the change of coordinates and reparametrization
of the time of the form as in (3.3) with α = −1/

√
−2a10, β =

√
a8/a10 and

γ =
√
−a10/2a8, systems (3.2) can be written as

X ′ = Y − a5
2
√
a8
X2 +

3a7
√
a8

a10
Y 2 −X2Y +

4a12a8
a210

Y 3,

Y ′ =
a5√
a8
XY −X3 +XY 2.

We obtain the normal form (VI).

Case 3. Assume a10 = 0 and a7 6= 0. By the change of coordinates and

reparametrization of the time as in (3.3) with α = −1/(
√

6a7a
1/4
8 ), β = 1/3a7,

γ = −
√

3a7/(
√

2a
1/4
8 ) if a7 > 0, and α = 1/(

√
−6a7a

1/4
8 ), β = 1/3a7, γ =

−
√
−3a7/(

√
2 a

1/4
8 ) if a7 < 0, systems (3.2) can be written as

X ′ = Y ± a5
2
√
a8
X2 + Y 2 +

4a12
9a27

Y 3,

Y ′ = ∓ a5√
a8
XY −X3.

We obtain the normal form (V).

Case 4. Assume a7 = a10 = 0 and a12 6= 0. By the change of coordinates
and reparametrization of the time as in (3.3) with α = −1/(2(|a12|a8)1/4), β =

−1/(2
√
|a12|), γ = (|a12|/a8)1/4, systems (3.2) can be written as

X ′ = Y − a5
2
√
a8
X2 ± Y 3,

Y ′ =
a5√
a8
XY −X3.

We obtain the normal forms (III) and (IV).

Case 5. Assume a7 = a10 = a12 = 0 and a5 6= 0. By the change of coordinates
and reparametrization of the time as in (3.3) with α = β = 1/a5 and γ = 1 systems
(3.2) can be written as

X ′ = Y +X2,

Y ′ = −2XY − 4a8
a25

X3.

We obtain the normal form (II).
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Case 6. Assume a7 = a10 = a12 = a5 = 0. By the change of coordinates
and reparametrization of the time as in (3.3) with α = 1, β = −2

√
a8 and γ =

−1/(2
√
a8) systems (3.2) can be written as obtain the normal form (I). Therefore,

we have proved Proposition 1.1.

4. Proof of Theorem 1.2

4.1. Global phase portrait of system (I). The phase portrait of this system is
topologically equivalent to the phase portrait 1 of Figure 1, and this is proved in
[9].

4.2. Global phase portrait of system (II). Since a ∈ (−1/
√

2, 1/
√

2), a 6= 0,
we have that (0, 0) is the unique finite singular point of systems (II).

We now investigate the infinite singular points of systems (II). In the local chart
U1 from (2.1) system (II) is

u′ = − 1

a2
− 3uv − u2v2, v′ = −v2(uv + 1).

When v = 0 there are no infinite singular points on U1.
In U2 from (2.2) systems (II) becomes

u′ = v2 + 3vu2 +
u4

a2
, v′ =

uv(u2 + 2a2v)

a2
. (4.1)

The origin is an infinite singular point of the system, whose linear part is zero. So
we need to do blow-ups to describe the local dynamics at this point. We perform
the directional blow-up (u, v) 7→ (u,w) with w = v/u2 and we obtain

u′ = u3
( 1

a2
u+ 3uw + uw2

)
, w′ = −u3w

( 1

a2
+ 4w + 2w2

)
. (4.2)

Now we eliminate the common factor u3 between u′ and w′ and we obtain the
vector field

u′ =
1

a2
u+ 3uw + uw2, w′ = − 1

a2
w − 4w2 − 2w3. (4.3)

System (4.3) has the origin as its unique singular point. The eigenvalues of the
linear part at the origin are 1/a2 and −1/a2, so it is a hyperbolic saddle.

Going back through the changes of variables until system (4.1) as shown in Figure
5, we have that the global phase portrait of system (II) is topologically equivalent
to the phase portrait 1 of Figure 1.

u

v

u

ww

u

Systems (4.3) Systems (4.2) with common factor u3 Systems (4.1)

Figure 5. Blow-up of the origin of U2 of system (II).
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4.3. Global phase portrait of systems (III). Again the origin (0, 0) is the

unique finite singular point of these systems since a ∈ (−1/
√

2, 1/
√

2). We will now
investigate the infinite singular points of systems (III).

On the local chart U1 systems (III) become

u′ = −1− 3auv − u2v2 − u4, v′ = −v(av + uv2 + u3).

When v = 0 there are no infinite singular points on U1.
In U2, systems (III) can be written as

u′ = 1 + v2 + 3au2v + u4, v′ = uv(2av + u2).

Again when v = 0 there are no infinite singular points on U2. Therefore the global
phase portrait of systems (III) are topologically equivalent to the phase portrait 2
of Figure 1.

4.4. Global phase portrait of systems (IV). When a < 0 the singular points
are the origin,

(0,±1) and (±
√
−2a(1− 2a2)1/4,

√
1− 2a2).

In this case we have that (0, 1) is a center and the other singular points are saddles.
When a > 0 the singular points are the origin,

(0,±1) and (±
√

2a(1− 2a2)1/4,−
√

1− 2a2).

Here, we have that (0,−1) is a center and the other singular points are saddles.
Finally, when a = 0 the finite singular points are E0 = (0, 0) and E± = (0,±1).
We will study only the singular point E+ because the study of the other singular
point is analogous. Since the singular point E+ is nilpotent, using [11, Theorem
3.5] we obtain that (0, 1) is a saddle.

We will now investigate the infinite singular points of systems (IV).
On the local chart U1 systems (IV) become

u′ = −1− 3auv + u4 − u2v2, v′ = −v(av − u3 + uv2).

The infinite singular points are P± = (±1, 0). The eigenvalues of the linear part
at P+ are (4, 1). Hence it is an repelling hyperbolic node. On the other hand,
the eigenvalues of the linear part of the systems at P− are (−4,−1) Hence it is an
attracting hyperbolic node.

In U2 systems (IV) are given by

u′ = −1 + v2 + 3au2v + u4, v′ = uv(2av + u2).

Hence the origin is not a singular point in U2.
Taking into account the local information on the finite and infinite singular

points together with the fact that the system is Hamiltonian (and so the saddles

(±
√

2a(1−2a2)1/4,−
√

1− 2a2) are connected but are not connected with the saddle
at (0,−1)) we obtain that when a 6= 0 the global phase portrait of systems (IV)
are topologically equivalent to the phase portrait 3 of Figure 1. On the other hand,
when a = 0 the global phase portrait of systems (IV) are topologically equivalent
to the phase portrait 4 of Figure 1.

4.5. Global phase portrait of systems (V). We study the infinite singular
points of systems (V).
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4.5.1. Infinite singular points. In U1 systems (V) become

u′ = −1− 3auv − bu4 − u3v − u2v2,
v′ = −v(av + bu3 + u2v + uv2).

When v = 0 the candidates for singular points of systems (V) are the roots of the
polynomial 1 + bu4. Therefore, if b ≥ 0 there are no infinite singular points on the
local chart U1. If b < 0 the points (|b|−1/4, 0) are repelling hyperbolic nodes and
(−|b|−1/4, 0) are attracting hyperbolic nodes. Now we study the origin of U2 of
systems (V) which in U2 write as

u′ = b+ v + v2 + 3au2v + u4, v′ = uv(2av + u2). (4.4)

If b 6= 0 the origin is not singular. If b = 0 the origin is singular. Since the origin is
nilpotent, using [11, Theorem 3.5] we obtain that the phase portrait of the origin
consists of one hyperbolic, one elliptic and two parabolic sectors, see Figure 6.

u

Figure 6. Local phase portrait at the origin of system (4.4) for
b = 0.

Table 1. Infinite singular points in the local charts U1 and U2.

Parameters Infinite singular points in chart U1 and U2

b > 0 There are no infinite singular points
b < 0 In the chart U1 there are one attracting node and

one repelling node. In the chart U2 there are no
infinite singular points

b = 0 In the chart U1 there are no infinite singular
points. In the chart U2 the origin has a one hy-
perbolic, one elliptic and two parabolic sectors

4.5.2. Finite singular points. If b = 0 the finite singular points are

p0 = (0,−1) and p± = (±
√

2a(1− 2a2), 2a2 − 1) (whenever a > 0).

Computing the eigenvalues of the Jacobian matrix at these points we obtain that
(0,−1) is a center if a > 0 and a saddle if a < 0. If a = 0 it is nilpotent, using
Theorem 3.5 in [11] we obtain that it is a saddle. On the other hand, the points p±
exist if and only if a > 0. In this case, computing the eigenvalues of the Jacobian
matrix at these points we obtain that they are both saddles.

Assume now that b 6= 0. In this case the candidates for finite singular points of
systems (V) other than the origin are

E1,2 =
(

0,
−1±

√
1− 4b

2b

)
,
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E3,4 =
(
±

√
a(1−

√
A)

b
,−1−

√
A

2b

)
,

E5,6 =
(
±

√
a(1 +

√
A)

b
,−1 +

√
A

2b

)
where A = 4b(2a2 − 1) + 1. Note that E1,2 exist whenever b2 − 4c ≥ 0. On the

other hand, E3,4 exist whenever A = 0 and 0 < a < 1/
√

2 with b 6= 0, or A > 0

and 0 ≤ a < 1/
√

2 with b 6= 0 and E5,6 exist whenever A = 0 and 0 < a < 1/
√

2

with b 6= 0, or A > 0 and 0 ≤ a < 1/
√

2 with b > 0, or A > 0, −1/
√

2 < a < 0 and
b < 0. Computing the eigenvalues of the Jacobian matrix at these points we obtain
that all the points are either hyperbolic or nilpotent except the case A > 0, a = 0
and b = 1/4 in which case the point is linearly zero. In this last case, using blow-up
techniques we obtain that the point is the union of two hyperbolic sectors. Finally,
using Theorem 3.5 in [11] for the nilpotent points we obtain Table 2 for the finite

singular points. We recall that when we write a > 0 means that 0 < a < 1/
√

2 and

when we write a < 0 we mean −1/
√

2 < a < 0.

Table 2. Finite singular points of systems V .

Conditions Equilibria different from (0, 0)
A < 0 There are no singular points

b = 0 a > 0 p0 center, p± saddles
a ≤ 0 p0 saddle

A ≥ 0, a < 0, b > 1/4 There are no singular points
A = 0, a > 0 E3, E4 cusps

A > 0, a > 0 b > 1/4 E3, E4 saddles, E5, E6 centers
A > 0, a > 0 b = 1/4 E1 cusp, E3, E4 saddles, E5, E6 centers
A > 0, a > 0 0 < b < 1/4 E1, E5, E6 centers, E2, E3, E4 saddles
A > 0, a > 0 b < 0 E1 center, E2, E3, E4 saddles
A > 0, a = 0, 0 < b < 1/4 E1 saddle, E2 center

A > 0, a = 0, b < 0 E1, E2 saddles
A = 0, a = 0, b = 1/4 E1 union of 2 hyperbolic sectors

A > 0, a < 0 b = 1/4 E1 cusp
A > 0, a < 0 0 < b < 1/4 E1 saddle, E2 center
A > 0, a < 0 b < 0 E1, E5, E6 saddles, E2 center

Now taking into account the local information on the finite and infinite singu-
lar points together with the fact that our system is Hamiltonian (used whenever
convenient to obtain possible saddle connections), we have Table 3 where we have
listed the phase portraits that systems (V) can be topologically equivalent with,
taking into account the above mentioned regions.

4.6. Global phase portrait of systems (VI). Without loss of generality we can
assume that b ≥ 0 (otherwise changing (x, y, a, b, c)→ (−x,−y,−a,−b, c) we obtain
the same system with b ≥ 0). We recall that the Hamiltonian of system (VI) is

H =
1

2
y2 + ax2y +

b

3
y3 +

1

4
x4 − 1

2
x2y2 +

c

4
y4.
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Table 3. Topologically equivalent phase portraits of systems V .

Conditions Phase portraits
A < 0 2 in Figure 1

b = 0 a > 0 5 in Figure 1
b = 0 a ≤ 0 6 in Figure 1
A ≥ 0, a < 0, b > 1/4 2 in Figure 1

A = 0, a > 0 7 in Figure 1
A > 0, a > 0 b > 1/4 8 in Figure 1
A > 0, a > 0 b = 1/4 9 in Figure 1
A > 0, a > 0 0 < b < 1/4 10 in Figure 1
A > 0, a > 0 b < 0 3 in Figure 1
A > 0, a = 0, 0 < b < 1/4 11 in Figure 1

A > 0, a = 0, b < 0 12 in Figure 1
A = 0, a = 0, b = 1/4 13 in Figure 1

A > 0, a < 0 b = 1/4 13 in Figure 1
A > 0, a < 0 0 < b < 1/4 11 in Figure 1
A > 0, a < 0 b < 0 14 in Figure 1

We now study the infinite singular points of these systems. We distinguish
between the cases c ≥ 1, 0 ≤ c < 1 and c < 0.

4.6.1. Infinite singular points. In the local chart U1 systems (VI) can be written as

u′ = −1 + 2u2 − cu4 − v(3au+ u2v + bu3),

v′ = −v(av − u+ uv2 + bu2v + cu3).

When v = 0, the candidates for singular points are the roots of the polynomial
−1 + 2u2 − cu4, i.e.

±

√
c(1 +

√
1− c)

c
and ±

√
c(1−

√
1− c)

c
, c 6= 0.

In the local chart U2 systems (VI) can be written as

u′ = v2 + 3au2v + bv − 2u2 + c+ u4, v′ = uv(2av + u2 − 1). (4.5)

4.6.2. Case c ≥ 1. When c > 1 there are no infinite singular points on the local
chart U1. If c = 1 the points (±1, 0) are infinite singular points on U1. We will
study only the singular point (1, 0) because the study of the other singular point is
analogous. When b 6= −3a the point (1, 0) is nilpotent. First we translate (1, 0) the
origin. Applying [11, Theorem 3.5] we obtain that the phase portrait of the singular
point (1, 0) consists of one hyperbolic, one elliptic and two parabolic sectors, see
Figure 6.

When b = −3a, on the other hand, the point (1, 0) is an infinite singular point,
whose linear part is zero, hence we need to do a blow-up to characterize the local
dynamics at this point. First we translate (1, 0) to the origin. Doing the blow-up
(u, v) → (u,w) with w = v/u and eliminating the common factor u we obtain the
system

u′ = −4u− 4u2 + 6auw − u3 + 9au2w − uw2 + 3au3w − 2u2w2

v′ = 2w + uw − 4w2a− 3w2au+ w3 + w3u.
(4.6)
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When u = 0, since 2a2−1 < 0, the only singular point of system (4.6) is the origin,
and it is a saddle. The blow-up of the origin gives the same information as in the
case of systems (II), hence the point (1, 0) of U1 has two hyperbolic sectors, see
Figure 5. It is easy to check that the origin of chart U2 is not a singular point.

4.6.3. Case 0 ≤ c < 1. When 0 < c < 1 there are 4 infinite singular points on the
local chart U1. It is easy to see that all of them are nodes (two attracting nodes
and two repelling nodes). On the other hand, if c = 0 there are only two singular

points (±
√

2/2, 0) on U1 and both are nodes.
In U2 systems (VI) are given by (4.5). Therefore if 0 < c < 1 the origin is not

a singular point in U2. When c = 0 and b 6= 0 the origin of the chart U2 is a
nilpotent singular point, using [11, Theorem 3.5] we see that locally the origin of
U2 consists of one hyperbolic, one elliptic and two parabolic sectors. On the other
hand, when b = c = 0 the origin of the chart U2 is an infinite singular point of the
system, whose linear part is zero, hence we need to do a blow-up to characterize
the local dynamics at this point. Doing the blow-up (u, v) 7→ (u,w) with w = v/u
and eliminating the common factor u we obtain the system

u′ = −2u+ u(u2 + 3auw + w2), w′ = w(1− auw − w2). (4.7)

When u = 0 the singular points of system (4.7) are the roots of the polynomial
w(1 − w)(1 + w). Therefore we have three singular points. In this case the origin
is a saddle and the other singular points are nodes. Consequently the origin of the
local chart U2 has two elliptic and two parabolic sectors, see Figure 7.

Figure 7. Local phase portrait at the origin of system (4.7).

4.6.4. Case c < 0. In this case the systems (VI) have only two singular points

±

√
c(1−

√
1− c)

c
.

These points are nodes. Finally, the origin of chart U2 is not a singular point.
In short we have Tables 4 and 5.

4.6.5. Finite singular points. The candidates for singular points of systems (VI)
other than the origin are

E1,2 =
(

0,
−b±

√
b2 − 4c

2c

)
, c 6= 0

E3,4 =
(
±
√
y3(y3 − 2a), y3

)
, E5,6 =

(
±
√
y5(y5 − 2a), y5

)
, c 6= 1
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Table 4. Infinite singular points in chart U1.

Parameters Infinite singular points in chart U1

c > 1 There are no infinite singular points
c = 1 b 6= −3a Two singular points with one hyperbolic, one el-

liptic, and two parabolic sectors
b = −3a Two singular points with two hyperbolic sectors

0 < c < 1 Two attracting nodes and two repelling nodes
c = 0 b 6= 0

b = 0 One attracting node and one repelling node
c < 0

Table 5. The origin of the chart U2.

Parameters The origin of the chart U2

c > 1
c = 1 b 6= −3a There are no singular points

b = −3a
0 < c < 1

c = 0 b 6= 0 One hyperbolic, one elliptic and two parabolic
sectors

b = 0 Two elliptic and two parabolic sectors
c < 0 There are no singular points

where

y3,5 =
−(b+ 3a)±

√
(b+ 3a)2 + 4(1− c)(1− 2a2)

2(c− 1)
.

As we shall see, we need to study only the singularities E1,2 which are the singu-
larities that are on the y-axis. These singularities occur only when b2 − 4c ≥ 0.

Consider b2 − 4c ≥ 0 and c 6= 0. The calculations in this case are very similar to
the previous systems. So we will only present the final result in the Table 6.

When b2− 4c > 0 and c = 0. The singular points, on the y-axis, of systems (VI)
are the origin and (0,−1/b). The singular point (0,−1/b) is a saddle if ab < −1/2
and a center if ab > −1/2. When ab = −1/2 this point is nilpotent, using [11,
Theorem 3.5] we obtain that (0,−1/b) is a saddle.

When b2−4c = 0 and b 6= 0. Besides the origin, system (VI) have, on the y-axis,
one singular point, namely (0,−2/b). When ab 6= −1 the singular point (0,−2/b)
is nilpotent, using [11, Theorem 3.5] we obtain that (0,−2/b) is a cusp. When
ab = −1, on the other hand, the point (0,−2/b) is a finite singular point, whose
linear part is zero, hence we need to do a blow-up to characterize the local dynamics
at this point. First we translate (0,−2/b) to the origin. The systems (VI) become

x′ =
1

b
x2 − b

2
y2 − x2y +

b2

4
y3

y′ = −2

b
xy − x3 + xy2.

(4.8)
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We perform the directional blow-up (u, v)→ (u,w) with w = v/u and we have

u′ =
1

b
u2 − u2w(u+

b

2
w − b2

4
uw2)

w′ = −u2 − 3

b
uw + uw2(2u+

b

2
w − b2

4
uw2).

(4.9)

We eliminate the common factor u between u′ and w′, and get vector field

u′ =
1

b
u− uw(u+

b

2
w − b2

4
uw2)

w′ = −u− 3

b
w + w2(2u+

b

2
w − b2

4
uw2).

(4.10)

When u = 0 the singular points of system (4.10) are (0, 0) and (0,±
√

6/b) and all
of them are saddles. Consequently the local phase portrait at the point (0,−2/b)
of systems (VI), with ab = −1, has six hyperbolic, see Figure 8.

w

u

w

u u

v

Systems (4.10) Systems (4.9) with common factor u Systems (4.8)

Figure 8. Local phase portrait at the point (0,−2/b) of systems
(VI), with ab = −1.

When b2− 4c = 0 and b = 0, that is, b = c = 0 it is easy to check that the origin
is the only finite singular on the y-axis. In summary we have Table 6.

The next step is to count the indices of the finite and infinite singular points of
systems (VI) on the Poincaré sphere. First we need the following proposition. We
denote

c∗ = −4 + a2 + 6ab+ b2

4(2a2 − 1)
.

Proposition 4.1. System (VI) has non-elementary points with x 6= 0 if and only
if c = c∗. They exist when 3a+ b 6= 0, 1 + a2 + ab > 0 and they are two cusps.

Proof. We compute the Groebner basis between x′, y′ and the determinant of the
Jacobian matrix. The first component of the Groebner basis is

(2a2 − 1)2(b2 − 4c)(1 + 2ab+ 4a2c)2(4 + a2 + 6ab+ b2 − 4c+ 8a2c)y.

Note that if y = 0 the unique singular point is the origin. Moreover, since a ∈
(−1/

√
2, 1/
√

2) we have that 2a2 − 1 6= 0. When c = b2/4 the singular point which
is not hyperbolic is (0,−2/b) and belongs to the y-axis. If 1 + 2ab + 4a2c = 0, we
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Table 6. Finite singular points, on the y–axis, of systems (VI).

In this table a = −b+
√
b2−4c

4c and a∗ = −b−
√
b2−4c

4c .

Parameters Finite singular points on y–axis except
the origin.

b2 − 4c < 0 There are no singular points
b2 − 4c > 0 c > 0 a∗ < a < a One center and one saddle

a < a∗ < a
a∗ ≤ a ≤ a Two saddles

c < 0 a < a∗ ≤ a One center and one saddle
a ≤ a < a∗

a < a < a∗ Two centers
c = 0 ab ≤ −1/2 One saddle

ab > −1/2 One center
b2 − 4c = 0 b 6= 0 ab 6= −1 One cusp

ab = −1 One singular point with six hyperbolic
sectors

b = 0 There are no singular points

obtain the values a and a∗ given in Table 6 and the non-hyperbolic singular point
is (0, 2a) which again lyes in the y-axis.

Finally, when

4 + a2 + 6ab+ b2 − 4c+ 8a2c = 0, i.e. c = c∗

we obtain that the non-hyperbolic finite singular points are, whenever they exist,(
±

2
√

(1− 2a2)(1 + a2 + ab)

3a+ b
,

2(2a2 − 1)

3a+ b

)
.

They exist when 3a+ b 6= 0 and 1 + a2 + ab ≥ 0. Note that when 1 + a2 + ab = 0

then c∗ = 5a2−b2+2
4(2a2−1) and both points lye on the y-axis. Hence, in order that they

exist and are outside the y-axis we must have 3a + b 6= 0 and 1 + a2 + ab > 0.
Computing the eigenvalues of the Jacobian matrix at these points we see that they
are nilpotent and using Theorem 3.5 in [11] we conclude that they are cusps. This
concludes the proof of the proposition. �

We will study the different global phase portraits on the Poincaré sphere as
follows: c = 1 (that we will distinguish between b+ 3a = 0 and b+ 3a 6= 0); c = 0
(that we will distinguish between the cases b = 0 and b 6= 0); b2 = 4c with ab = −1;
c = c∗ with a+ 3b 6= 0 (otherwise c∗ = 1) and 1 + a2 + ab > 0 (otherwise there are
no non-hyperbolic singular points outside the y-axis), will be studied in full detail.
We recall that c∗ > 1 and c = b2/4 > 0. Later, we will study the cases c > 1 (so
that if c = c∗ then 1 + a2 + ab ≤ 0 and if b2 − 4c = 0 then ab 6= 1), c ∈ (0, 1)
(with c 6= c∗ and if b2 − 4c = 0 then ab 6= −1) and c < 0. These last three cases
will be studied using the information on the index taking into account the detailed
information on the infinite singular points and on the finite singular points lying in
the y-axis done above.

In the following subsections we will determine the different local phase portraits
in the different cases mentioned above.
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4.6.6. Case c = 1 and b + 3a = 0. If a ∈ (−2/3, 0) ∪ (0, 2/3) there are no finite
singular points among the origin. Taking into account the local information on the
infinite singular points given in Tables 4 and 5 we conclude that the global phase
portrait is topologically equivalent to 15 in Figure 1.

If a ∈ (−1/
√

2,−2/3) ∪ (2/3, 1/
√

2) there are two finite singular points (both of
them in the y-axis) which are a saddle and a center. Taking into account the local
information on the infinite singular points given in Table 5 we conclude that the
global phase portrait is topologically equivalent to 16 in Figure 1.

Finally, if a = ±2/3 among the origin, there is a cusp. Again, taking into account
the local information on the infinite singular points, we conclude that the global
phase portrait is topologically equivalent to 17 in Figure 2.

4.6.7. Case c = 1 and b + 3a 6= 0. If 1 + 4a2 + 2ab ≤ 0 and b > 2, among the
origin there are two saddles (both on the y-axis). Taking into account the local
information on the infinite singular points given in Table 5 we conclude that the
global phase portrait is topologically equivalent to 18 in Figure 2 (it is attained for
example when b = 3 and a = −1/2).

If 1 + 4a2 + 2ab = 0 and b = 2 among the origin, there is a finite singular point
in the y-axis formed by six hyperbolic sectors. Hence, the global phase portrait is
topologically equivalent to 19 in Figure 2.

If 1+4a2 +2ab > 0 and b > 2 among the origin, there is a center and a saddle on
the y-axis which are are a center and a saddle and two saddles outside the y-axis.
Taking into account the information on the infinite singular points given in Table
5 together with using the first integral H to obtain possible saddle connections
between the saddle at the y-axis with the other two saddles (always connected by
symmetry), we conclude that the global phase portraits are topologically equivalent
to 20 in Figure 2 (attained, for instance, when b = 3 and a = 1/2).

If 1 + 4a2 + 2ab > 0 and b = 2 then among the origin there are a cusp in the
y-axis and two saddles outside the y-axis. The global phase portrait is topologically
equivalent to 21 in Figure 2 (attained for example when a = 1/2).

If 1 + 4a2 + 2ab > 0 and b < 2 then among the origin there are two saddles
outside the y-axis. The global phase portrait is topologically equivalent to 22 in
Figure 2 (attained, for instance, when b = 1 and a = 1/2).

4.6.8. Case c = 0 and b = 0. In this case there are four saddles outside the y-axis.
Taking into account the information on the infinite singular points given in Table
5 and using the first integral H to obtain all the saddle connections, we conclude
that the global phase portraits are topologically equivalent to 23 in Figure 2 (it is
attained, for example, when a = 1/2) and to 24 in Figure 2 (attained when a = 0).

4.6.9. Case c = 0 and b 6= 0. In this case, among the origin, there exists always the
finite singular point (0,−1/b) studied in Table 6.

If b < −1/(2a) then there are four saddles outside the y-axis and if b ≥ −1/(2a)
there are two saddles outside the y-axis. Taking this into account, the information
on the infinite singular points given in Table 5 and using the first integral H to
obtain possible saddle connections, we conclude that the global phase portraits
are topologically equivalent to the following ones of Figure 3 (we have included in
parenthesis the possible values of a and b for which these global phase portraits are
attained): 25 (a = −1/2, b = 1/2); 26 (a = −1/2, b = 2); 27 (a = −1/2, b = 1); 28
(a = −1/3, b = 1); and 29 (a = −7/30, b = 1).
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4.6.10. Case b2 − 4c = 0 and ab = −1. In this case among the origin there always
exists the finite singular point (0,−2/b) (see Table 6). If b ≤

√
2 or b = 2 there are

no more finite singular points.
On the other hand, if b >

√
2 with b 6= 2, there are two finite singular points

outside the y-axis which are: two saddles if b ∈ (
√

2, 2) and two centers if b > 2.
Taking this into account, the information on the infinite singular points given in
Table 5 and using the first integral H to obtain possible saddle connections, we
conclude that the possible global phase portraits are topologically equivalent to the
following ones of Figures 1–4 (again, we have included in parenthesis the possible
values of a and b for which these global phase portraits are attained): 30 (b = 3/2);

31 (b =
√

3); 32 (b = 18/10); 19 (b = 2); 33 (b = 3).

4.6.11. Case c = c∗ with b+3a 6= 0 and 1+a2 +ab > 0. Note that c∗ > 0 and there
are two cusps outside the y-axis. If 4+a(a+6b+2ab2) > 0 there are no more finite
singular points. If 4 + a(a + 6b + 2ab2) = 0 there is a cusp in the y-axis while if
4+a(a+6b+2ab2) < 0 there is a saddle and a center. Taking this into account, the
information on the infinite singular points given in Table 5, we conclude that the
possible global phase portraits are topologically equivalent to the following ones of
Figures 1–4 (we have included in parenthesis the possible values of a and b for which
these global phase portraits are attained): 7 (a = −1/2, b = 2); 34 (a = −1/2,

b = 3− 1/
√

2) and 35 (a = −1/2, b = 24/10).

4.6.12. Case c > 1 so that if c = c∗ then 1 + a2 + ab ≤ 0 and if b2 − 4c = 0 then
ab 6= 1. We recall that in this case there are no infinite singular points. First we
consider the case in which b2 − 4c < 0. Among the finite singular points we only
know that the origin is a center. Hence the known singular points have total index
2 on the Poincaré sphere. By Theorem 2.4, the remaining finite singular points
must have total index 0. Since systems (VI) have at most four finite singular points
in addition to the origin outside the y-axis, and since c 6= c∗, none of them are
non-elementary (see Proposition 4.1), we have the following possibilities: (i) no
more finite singular points, or (ii) two saddles and two centers. In case (i) the
global phase portrait is topologically equivalent to 2 in Figure 1 and is attained
for instance for c = 2, b = 1 and a = −1/2. In case (ii) the global phase portrait
is topologically equivalent to 8 in Figure 1 and is attained for instance for c = 2,
b = 1 and a = 1/2.

Now we consider the case in which b2− 4c = 0. Among the finite singular points
we only know that the origin is a center and there is a cusp in the y-axis. Hence the
known singular points have total index 2 on the Poincaré sphere. By Theorem 2.4,
the remaining finite singular points must have total index 0. Since systems (VI)
have at most four finite singular points in addition to the origin, and none of them
are non-elementary, we have the following possibilities: (i) no more finite singular
points, or (ii) two saddles and two centers. In case (i) the global phase portrait
is topologically equivalent to 9 in Figure 1 and is attained for instance for c = 4,
b = 4 and a = 1/2. In case (ii) the global phase portrait is topologically equivalent
to 13 in Figure 1 and is attained for instance for c = 4, b = 4 and a = −1/2.

Finally, we consider the case in which b2 − 4c > 0. If a∗ ≤ a ≤ a there are
two saddles in the y-axis. Hence the known singular points have total index -2 on
the Poincaré sphere. By Theorem 2.4, the remaining finite singular points must
have total index 4. Since the systems (VI) have at most four finite singular points
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in addition to the origin, and non of them are non-elementary, we have that they
must be two centers. The global phase portrait is topologically equivalent to 36 in
Figure 3 and it is attained, for instance, when c = 4, b = 5 and a = −1/4. If a > a∗

or a < a, there is one saddle and one center in the y-axis. So, the known singular
points have total index 2 on the Poincaré sphere. By Theorem 2.4, the remaining
finite singular points must have total index 0. Since systems (VI) have at most four
finite singular points in addition to the origin, and none of them are non-elementary,
we have the following possibilities: (i) no more finite singular points, or (ii) two
saddles and two centers. In case (i) the global phase portraits are topologically
equivalent to 11 in Figure 1 for instance when a = −1/2, b = 3, c = 2. In case (ii)
using the first integral H to obtain possible saddle connections, we conclude that
the possible global phase portraits are topologically equivalent to the following ones
of Figures 1–4 (we have included in parenthesis the possible values of a, b and c for
which these global phase portraits are attained): 37 (a = 1/2, b = 35/10, c = 3);
38 (a = 1/2, b = 3.66965166.., c = 3 here b is a root of the polynomial

− 1411344− 256608λ+ 2485107λ2 + 181412λ3 − 1427428λ4

− 883552λ5 − 21744λ6 + 59200λ7 + 8512λ8);

and 10 (a = 1/2, b = 4 and c = 3).

4.6.13. Case c ∈ (0, 1) with c 6= c∗ and if b2 − 4c = 0 then ab 6= 1. We recall
that in this case there are four nodes in the local chart U1. First we consider the
case in which b2 − 4c < 0. Among the finite singular points we only know that
the origin is a center. Hence the known singular points have total index 10 on
the Poincaré sphere. By Theorem 2.4, the remaining finite singular points must
have total index -8. Since systems (VI) have at most four finite singular points
in addition to the origin outside the y-axis, and none of them are non-elementary,
they must be four saddles. Using the first integral H to obtain possible saddle
connections, we conclude that the possible global phase portraits are topologically
equivalent to the following ones of Figure 3: 39 (a = 1/2, b = 1, c = 1/2) and 40
(a = −1/3, b = 1, c = 1/2).

Now assume that b2 − 4c = 0. Among the finite singular points we only know
that the origin is a center and there is a cusp in the y-axis. Hence the known
singular points have total index 10 on the Poincaré sphere. By Theorem 2.4, the
remaining finite singular points must have total index -8. Since the systems (VI)
have at most four finite singular points in addition to the origin outside the y-axis,
and none of them are non-elementary, they must be four saddles. Using the first
integral H to obtain possible saddle connections, we conclude that the possible
global phase portraits are topologically equivalent to the following ones of Figure
3: 41 (a = −1/2, b =

√
2, c = 1/2); 42 (a = −

√
2/3, b =

√
2, c = 1/2) and 43

(a = −1/3, b =
√

2, c = 1/2).
Finally, we consider the case in which b2 − 4c > 0. If a∗ ≤ a ≤ a there are

two saddles in the y-axis. Hence the known singular points have total index 6 on
the Poincaré sphere. By Theorem 2.4, the remaining finite singular points must
have total index -4. Since systems (VI) have at most four finite singular points
in addition to the origin, and none of them are non-elementary, they must be
two saddles. Using the first integral H to obtain possible saddle connections, we
conclude that the possible global phase portraits are topologically equivalent to the
following ones of Figure 3: 44 (a = −63/100, b = 2, c = 1/2); 45 (a = −1/3, b = 2,
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c = 1/2); 46 (a = −0.61646555.., b = 2, c = 1/2 here a is a root of the polynomial

54
√

2− 59 + (142
√

2− 148)λ+ (132
√

2− 168)λ2 − (20
√

2 + 32)λ3

− (6
√

2 + 17)λ4 + (18
√

2 + 12)λ5 + 18λ6).

If a < a∗ < a or a∗ < a > a there is one saddle and one center in the y-axis.
So, the known singular points have total index 10 on the Poincaré sphere. By
Theorem 2.4, the remaining finite singular points must have total index −8. Since
systems (VI) have at most four finite singular points in addition to the origin,
and none of them are non-elementary, they must be four saddles. Using the first
integral H to obtain possible saddle connections, we conclude that the possible
global phase portraits are topologically equivalent to the following ones of Figures
3–4: 47 (a = −7/30, b = 7/10, c = 1/10); 48 (a = −1/5, b = 7/10, c = 1/10); 49
(a = −4/15, b = 7/10, c = 1/10); 50 (a = −1/4, b = 1, c = 0.23213904.. here c is a
root of the polynomial

− 2064384 + 28744704λ− 148561920λ2 + 344888192λ3

− 34882836λ4 + 115789500λ5 + 4100625λ6);

51 (a = −1/4, b = 1, c = 6/25); 52 (a = −1/2, b = 1/2, c = 0.05730830.. here c
is a root of the polynomial

333− 12564λ+ 132318λ2 − 266296λ3 + 245881λ4

− 121500λ5 + 26244λ6);

53 (a = −1/2, b = 1/2, c = 3/50); 54 (a = −71/150, b = 71/50, c = 1/2).

4.6.14. Case c < 0. We note that there are two nodes in the local chart U1 and
that b2−4c > 0. If a < a < a∗ then among the origin there are two centers. So, the
known singular points have total index 10 on the Poincaré sphere. By Theorem 2.4,
the remaining finite singular points must have total index -8. Since systems (VI)
have at most four finite singular points in addition to the origin, and none of them
are non-elementary, they must be four saddles. Using the first integral H to obtain
possible saddle connections, we conclude that the possible global phase portraits are
topologically equivalent to the following ones of Figure 4: 55 (a = −1/4, b = 3/4,
c = −1); 56 (a = −1/4, b = 17/20, c = −1).

If a < a or a > a∗ then among the origin there is a center and a saddle. So, the
known singular points have total index 6 on the Poincaré sphere. By Theorem 2.4,
the remaining finite singular points must have total index -4. Since systems (VI)
have at most four finite singular points in addition to the origin, and none of them
are non-elementary, they must be two saddles. Using the first integral H to obtain
possible saddle connections, we conclude that the possible global phase portraits
are topologically equivalent to the following ones of Figures 1–4: 3 (a = −40/100,
b = 1, c = −1); 57 (a = −1/3, b = 1, c = −1); 14 (a = −48/150, b = 1, c = −1).

4.7. Global phase portrait of systems (VII). Without loss of generality we
can assume that b ≥ 0 (otherwise changing (x, y, a, b, c) → (−x,−y,−a,−b, c) we
obtain the same system with b ≥ 0). We recall that the Hamiltonian of system
(VII) is

H =
1

2
y2 + ax2y +

b

3
y3 +

1

4
x4 +

1

2
x2y2 +

c

4
y4.
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We now study the infinite singular points of these systems. We distinguish
between the cases c > 0, c = 0 and c < 0.

4.7.1. Infinite singular points. In the local chart U1 systems (VII) can be written
as

u′ = −1− 2u2 − cu4 − v(3au+ u2v + bu3),

v′ = −v(u+ av + uv2 + bu2v + cu3).

When v = 0, the candidates for singular points are the roots of the polynomial
−1− 2u2 − cu4, i.e.,

±

√
c(−1 +

√
1− c)

c
and ±

√
c(−1−

√
1− c)

c
, c 6= 0.

In the local chart U2 systems (V II) can be written as

u′ = c+ bv + v2 + 3au2v + 2u2 + u4, v′ = uv(2av + u2 + 1).

4.7.2. Case c ≥ 0. When c > 0 there are no infinite singular points on the local
charts U1 and U2. When c = 0 there are no infinite singular points on the local
chart U1. Hence, the origin of U2 is a singular point. When b 6= 0 the origin is
nilpotent, using [11, Theorem 3.5] together with blow-up techniques we obtain that
the phase portrait of the origin consists of one hyperbolic, one elliptic and two
parabolic sectors, see Figure 6. When b = 0, on the other hand, the origin is an
infinite singular point, whose linear part is zero, hence we need to do a blow-up to
characterize the local dynamics at this point. Doing the blow-up (u, v) → (u,w)
with w = v/u and eliminating the common factor u we obtain the system

u′ = 2u+ u(u2 + 3auw + w2)

w′ = −w − w(auw + w2).
(4.11)

When u = 0 the only singular point of system (4.11) is the origin, and it is a saddle.
The blow-up of the origin gives the same information as in the case of systems (II),
hence the origin of U2 has two hyperbolic sectors, see Figure 5.

4.7.3. Case c < 0. In this case the systems (V II) have only two singular points

±

√
c(−1−

√
1− c)

c
.

These points are nodes. Finally, the origin of chart U2 is not a singular point. In
summary we have Table 7.

4.7.4. Finite singular points. The candidates for singular points of systems (V II)
other than its origin are

E1,2 =
(

0,
−b±

√
b2 − 4c

2c

)
, c 6= 0

E3,4 =
(
±
√
−y3(y3 + 2a), y3

)
, E5,6 =

(
±
√
−y5(y5 + 2a), y5

)
, c 6= 1

where

y3,5 =
(−b+ 3a)±

√
(b− 3a)2 + 4(1− c)(1− 2a2)

2(c− 1)
.
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Table 7. Infinite singular points in the charts U1 and U2.

Parameters Infinite singular points in chart U1 and U2

c > 0 There are no infinite singular points
c < 0 In the chart U1 there are one attracting node and one repelling

node. In the chart U2 there are no infinite singular points
c = 0 b 6= 0 In the chart U1 there are no infinite singular points. In the

chart U2 the origin has a one hyperbolic, one elliptic and two
parabolic sectors

b = 0 In the chart U1 there are no infinite singular points. In the
chart U2 the origin has two hyperbolic sectors

As in previous cases we need to study only the singularities E1,2 which are the
singularities that are on the y-axis. These singularities occur only when b2−4c ≥ 0.
The calculations in this case are very similar to the systems (V ) and systems (VI).
So we will only present the final result in the Table 8.

Lemma 4.2. We recall that when c < 0 there are at most two singular points are
outside the y-axis.

Proof. Since c < 0 and a ∈ (−1/
√

2, 1/
√

2) we have that y3y5 < 0. In order that the
four points E3,4 and E5,6 exist we must have y3(y3 + 2a) < 0 and y5(y5 + 2a) < 0.

If y3 > 0 then in order that E3,4 exist we must have y3 + 2a < 0 which implies
a < 0. But then since y3y5 < 0 we have that y5 < 0 and since a < 0 then also
y5 + 2a < 0. This yields y5(y5 + 2a) > 0 and so E5,6 do not exist.

On the other hand if y3 < 0 then in order that E3,4 exist we must have y3+2a > 0
which implies a > 0. But then since y3y5 < 0 we have that y5 > 0 and since a > 0
then also y5 + 2a > 0. This yields y5(y5 + 2a) > 0 and so E5,6 do not exist. This
concludes the proof of the lemma. �

Table 8. Finite singular points, on the y–axis, of systems (V II).

In this table a∗1 = b−
√
b2−4c
4c and a1 = b+

√
b2−4c
4c .

Parameters Finite singular points on y–axis except
the origin.

b2 − 4c < 0 There are no singular points
b2 − 4c > 0 c > 0 a∗1 < a1 < a One center and one saddle

a < a∗1 < a1
a∗1 ≤ a ≤ a1 Two centers

c < 0 a1 < a∗1 < a One center and one saddle
a < a1 < a∗1
a1 ≤ a ≤ a∗1 Two saddles

c = 0 ab ≤ 1/2 One saddle
ab > 1/2 One center

b2 − 4c = 0 b 6= 0 ab 6= 1 One cusp
ab = 1 One singular point with 2 hyperbolic sec-

tors
b = 0 There are no singular points
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Again the next step is to count the indices of the finite and infinite singular points
of systems (V II) on the Poincaré sphere. First we need the following proposition.
We take the notation

c = −4 + a2 − 6ab+ b2

4(2a2 − 1)
.

Proposition 4.3. System (VII) has non-elementary points with x 6= 0 if and only
if c = c. They exist when b− 3a 6= 0, 1 + a2 − ab < 0 and they are two cusps.

Proof. We compute the Groebner basis between x′, y′ and the determinant of the
Jacobian matrix. The first component of the Groebner basis is

(2a2 − 1)2(b2 − 4c)(−1 + 2ab− 4a2c)2(4 + a2 − 6ab+ b2 − 4c+ 8a2c)y.

Note that if y = 0 the unique singular point is the origin. Moreover, since a ∈
(−1/

√
2, 1/
√

2) we have that 2a2 − 1 6= 0. When c = b2/4 the singular point which
is not hyperbolic is (0,−2/b) and belongs to the y-axis. If −1 + 2ab − 4a2c = 0,
that is, c = (1 − 2ab)/(4a2) we obtain the values a1 and a∗1 given in Table 8 and
the non-hyperbolic singular point is (0,−2a) which again lyes in the y-axis.

Finally, when

4 + a2 − 6ab+ b2 − 4c+ 8a2c = 0, i.e. c = c

we obtain that the non-hyperbolic finite singular points are, whenever they exist,(
±

2
√

(2a2 − 1)(1 + a2 − ab)
3a− b

,
2(2a2 − 1)

b− 3a

)
.

They exist when b− 3a 6= 0 and 1 + a2 − ab ≤ 0. Note that when 1 + a2 + ab = 0

then c = 5a2−b2+2
4(2a2−1) and both points lye on the y-axis.

Hence, in order that they exist and are outside the y-axis we must have b−3a 6= 0
and 1 + a2 − ab < 0. Computing the eigenvalues of the Jacobian matrix at these
points we see that they are nilpotent and using Theorem 3.5 in [11] we conclude
that they are cusps. This concludes the proof of the proposition. �

We will study the different global phase portraits on the Poincaré sphere as
follows: c = 0 (that we will distinguish between the cases b = 0 and b 6= 0); b2 = 4c
with ab = 1; c = c with b − 3a 6= 0 and 1 + a2 − ab < 0 (otherwise there are no
non-hyperbolic singular points outside the y-axis), will be studied in full detail. We
recall that c > 0 and c = b2/4 > 0. Later, we will study the cases c > 0 (so that
if c = c then either b − 3a = 0 or 1 + a2 − ab ≥ 0 and if b2 − 4c = 0 then ab 6= 1)
and c < 0. These last two cases will be studied using the information on the index
taking into account the detailed information on the infinite singular points and on
the finite singular points lying in the y-axis done above.

In the following subsections we will determine the different local phase portraits
in the different cases mentioned above.

4.7.5. Case c = 0. If b = 0 the only finite singular point is the origin. Taking into
account the information on the infinite singular points given in Table 7 we obtain
that the global phase portrait is topologically equivalent to 1 in Figure 1.

On the other hand, if b 6= 0 then among the origin there always exist the finite
singular point (0,−1/b) studied in Table 8. If a ≤ 1/(2b) there are no finite singular
points outside the y-axis, and if a > 1/(2b) there are two saddles outside the y-
axis. Taking this into account, the information on the infinite singular points
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given in Table 7 and the fact that the saddles outside the y-axis are connected by
symmetry, we conclude that the global phase portraits are topologically equivalent
to the following ones of Figure 1 (we have included in parenthesis the possible values
of a and b for which these global phase portraits are attained): 6 (a = 1/2, b = 1)
and 5 (a = 1/2, b = 2).

4.7.6. Case b2 − 4c = 0 and ab = 1. In this case among the origin there only
exists the finite singular point (0,−2/b) which is formed by two hyperbolic sectors.
Since there are no infinite singular points the global phaser portrait is topologically
equivalent to 13 of Figure 1.

4.7.7. Case c = c with b − 3a 6= 0 and 1 + a2 − ab < 0. Note that c > 0 and
so there are two cusps outside the y-axis. Moreover there are no infinite singular
points. If 4 + a(a − 6b + 2ab2) > 0 there are no more finite singular points. If
4 + a(a− 6b+ 2ab2) = 0 there is a cusp in the y-axis while if 4 + a(a− 6b+ 2ab2) <
0 there is a saddle and a center. Taking this into account, the information on
the infinite singular points and the symmetry, we conclude that the global phase
portraits are topologically equivalent to the ones of Figures 1–4: 7 (when a = 1/2

and b = 4), 58 (when a = 1/2 and b = 3 + 1/
√

2); and 59 (when a = 7/10 and
b = 2.22438).

4.7.8. Case c > 0 so that if c = c then either b − 3a = 0 or 1 + a2 − ab ≥ 0
and if b2 − 4c = 0 then ab 6= 1 or c 6= c. We recall that in this case there are no
infinite singular points. First we consider the case in which b2−4c < 0. Among the
finite singular points we only know that the origin is a center. Hence the known
singular points have total index 2 on the Poincaré sphere. By Theorem 2.4, the
remaining finite singular points must have total index 0. Since systems (V II) have
at most four finite singular points in addition to the origin outside the y-axis (see
Proposition 4.3), none of them are non-elementary. Note that in this case we have
exactly the same infinite and finite singular points as in the case c > 1 for system
(VI) and so we obtain the same topologically equivalent global phase portraits: 2
(when a = 1/2 and b = c = 1); and 8 (when a = 1/2, b = 5 and c = 7).

Now we consider the case in which b2− 4c = 0. Among the finite singular points
we only know that the origin is a center and there is a cusp in the y-axis. Hence
the known singular points have total index 2 on the Poincaré sphere. By Theorem
2.4, the remaining finite singular points must have total index 0. Since systems
(V II) have at most four finite singular points in addition to the origin, and none
of them are non-elementary, we have exactly the same infinite and finite singular
points as in the case c > 1 for system (VI) and so we obtain the same topologically
equivalent global phase portraits: 9 (when a = 1/2 and b = c = 4); and 13 (when
a = 1/2, b = 3 and c = 9/4).

Finally, we consider the case in which b2−4c > 0. If a > a∗1 or a < a1, there is one
saddle and one center in the y-axis. So, the known singular points have total index
2 on the Poincaré sphere. By Theorem 2.4, the remaining finite singular points
must have total index 0. Since systems (V II) have at most four finite singular
points in addition to the origin, and none of them are non-elementary, we have the
same finite singular points as in the case c > 1 for system (VI) and so we obtain the
same topologically equivalent global phase portraits: 11 (when a = −7/10, b = 1
and c = 1/5); 60 (when a = 1/2, b = 2.9 and c = 2); 10 (when a = 1/5, b = 7 and
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c = 11.5); 38 (when a = 1/5, b = 7 and c = 11.99722984.. here c is the root of the
polynomial

− 3333909112734375 + 10575417764843750λ− 11748870462834375λ2

+ 2482717923483000λ3 − 192679718006000λ4 + 5112897914880λ5

+ 429981696λ6);

and 37 (when a = 1/5, b = 7 and c = 12).
On the other hand, if a∗1 ≤ a ≤ a1 there are two centers in the y-axis. Hence the

known singular points have total index 6 on the Poincaré sphere. By Theorem 2.4,
the remaining finite singular points must have total index -4. Since the systems
(V II) have at most four finite singular points in addition to the origin, and non
of them are non-elementary, we have that they must be two saddles. Hence, the
possible global phase portraits are topologically equivalent to 61 of Figure 4 and it
is attained for example when a = 1/2, b = 3 and c = 1.

4.7.9. Case c < 0. We note that there are two nodes in the local chart U1 and that
b2 − 4c > 0. If a1 ≤ a ≤ a∗1 then among the origin there are two saddles. So, the
known singular points have total index 2 on the Poincaré sphere. By Theorem 2.4,
the remaining finite singular points must have total index 0. In view of Lemma
4.2 and Proposition 4.3 we know that system (V II) has at most two finite singular
points outside the y-axis, and none of them are non-elementary. By symmetry they
cannot exist. Using the first integral H to obtain possible saddle connections, we
conclude that the possible global phase portraits are topologically equivalent to the
following ones of Figure 1: 12 (a = 0, b = 1, c = −1); 4 (a = 0, b = 0, c = −1).

On the other hand, if a < a∗1 < a1 or a∗1 < a1 < a then among the origin
there is a center and a saddle. So, the known singular points have total index 6
on the Poincaré sphere. By Theorem 2.4, the remaining finite singular points must
have total index -4. Since systems (V II) have at most four finite singular points
in addition to the origin, and none of them are non-elementary, we have the same
finite singular points as in the case c < 0 for system (VI) and so we obtain the
same topologically equivalent global phase portraits: 3 (when a = −1/2, b = 1 and
c = −25); 57 (when a = −1/2, b = 1 and c = −17.86185044.. here c is the root of
the polynomial

− 7200 + 106560λ− 619776λ2 + 1436966λ3 − 691358λ4

+ 73872λ5 + 6561λ6);

and 14 (when a = −1/2, b = 1 and c = −14).
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[4] J. Chavarriga, J. Giné; Integrability of a linear center perturbed by a fifth degree homogeneous

polynomial, Publ. Mat. 41 (1997), 335–356.
[5] I. E. Colak, J. Llibre, C. Valls; Hamiltonian linear type centers of linear plus cubic homoge-

neous polynomial vector fields, J. Differential Equations 257 (2014), 1623 – 1661.

[6] I. E. Colak, J. Llibre, C. Valls; Hamiltonian nilpotent centers of linear plus cubic homogeneous
polynomial vector fields, Advances in Mathematics 259 (2014), 655–687.

[7] I. E. Colak, J. Llibre, C. Valls; Bifurcation diagrams for Hamiltonian linear type centers

of linear plus cubic homogeneous polynomial vector fields, J. of Differential Equations, 258
(2015), 846–879.

[8] I. E. Colak, J. Llibre, C. Valls; Bifurcation diagrams for Hamiltonian nilpotent centers of

linear plus cubic homogeneous polynomial vector fields, J. of Differential Equations, 262
(2016), 5518–5533.

[9] F. S. Dias, J. Llibre, C. Valls; Polynomial Hamiltonian systems of degree 3 with symmetric

nilpotent centers, Mathematics and Computers in Simulation, 144 (2018), 60–77.
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