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Abstract. In this work, we study the shape optimization of a continuous
bioreactor in which a substrate is degraded by a microbial ecosystem in a

nonhomogeneous environment. The bioreactor considered here is a three-

dimensional vertically oriented cylindrical tank. The behavior of reactants
is described with a spatial chemostat model based on an Advection-Diffusion-

Reaction system while the fluid flow is modeled using incompressible Navier-

Stokes equations. We consider that the reaction rate between biomass and
nutrient shows either monotonic or non-monotonic behavior. We tackle an

optimization problem which aims to minimize the considered total reactor

volume, with an output concentration (at stationary state) maintained below
a desired threshold, by choosing a suitable bioreactor shape. We propose a

methodology to create three different discrete parametrizations of the biore-

actor geometry and obtain the optimized shapes with the help of a Hybrid
Genetic Algorithm. We show that the optimized reactors exhibit height much

larger than width and their exterior wall is concavely curved (the concavity at
the upper part of the exterior wall being more pronounced for non-monotonic

functions).

1. Introduction

Shape optimization has been extensively exploited in design engineering [3, 18,
30, 39, 33, 47, 48], particularly in aeronautical [6, 42, 44] and automotive areas
[43, 68]. Traditionally, finding the optimal geometry of a particular device is based
on a trial and error approach, in which, a number of prospective configurations is
simulated and the results are compared. An alternative strategy relays in perform-
ing the mathematical modeling of the process, carrying out numerical simulations
and solving the desired optimization problem with an appropriate optimization
algorithm. Taking into consideration the exponential growth of the available com-
puting power, this second approach provides a powerful computational tool able to
simulate and analyze the efficiency of different geometry configurations.

In this work, we tackle the shape optimization of a continuous bioreactor. A
bioreactor is a vessel in which microorganisms (e.g., bacteria), called biomass, are
used to degrade a considered diluted substrate (e.g., nitrate). A reactor in which
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substrate is continually added and product continually removed is called continu-
ous bioreactor. The influence of the bioreactor design into the process efficiency
has received considerable attention in the literature [21, 50, 57]. Most of the works
are developed by experimentalists (see, e.g., [5, 7]) and focus on specific biological
reactions occurring in continuous flow systems. Among the different reactor geom-
etry configurations reviewed in literature, the most popular are flat-plate reactors
[59, 64], torus-shaped reactors [49] and tubular reactors [56, 64]. In 2008, Xia et
al. [67] showed that flow conditions (regarding mass transfer, shear stress, mixing,
etc.) are strongly influenced by the reactor geometry, particularly at large scales.
Nevertheless, computational fluid dynamics has not been commonly used to its full
capacity to optimize reactor performance. Of particular interest are the works de-
veloped by Ansoni et al. [2] and Coenen et al. [8]. In [2], the authors consider
a tubular reactor and model its hydrodynamics with 3D Navier-Stokes equations.
They look for the optimal design (configuration of the inlet and the outlet pipes)
of a given bioreactor, so that the dispersion of the residence time and the shear
flow are minimized. These two concepts, related to fluid dynamics, are linked to
the reactor effectiveness. In [8], the authors consider a cylindrical photobioreactor
and model the dynamics of the organic compound with an advection-reaction equa-
tion. They look for the optimal geometry (radius and height) so that the reactant
concentration at the outlet of the bioreactor is minimized.

We aim to solve the following design optimization problem: given the input
reactant concentrations and the flow rate to be processed, what is the minimal
reactor volume (and its shape) so that a desired output reactant concentration is
attained? This problem has been modeled using ordinary differential equations
(see, e.g., [17, 26, 28, 29, 41]) by approximating the behavior of a tubular device
with a bioreactor composed by N well-mixed tanks in series. Then, the aim of the
optimization becomes to find what are the volumes of the N tanks such that the
total volume of the whole process is minimal. However, these studies suffer of two
important drawbacks:

• While the proposed results are valid for small and medium sized systems,
they do not describe the diffusion phenomena or the impact of fluid motions
that may occur in larger tanks.
• The dimensioning parameters were not considered; only the total volume

of the systems was optimized. However, in a real case, design parameters
such as the diameter or the height of any biological or chemical system will
influence its performance.

To overcome these drawbacks, we propose to couple hydrodynamics with biological
phenomena occurring in a diffusive bioreactor. To do so, we use a particular spatial
modeling based on Navier-Stokes equation (describing the fluid dynamics) together
with an Advection-Diffusion-Reaction system (describing the behavior of the reac-
tants in the bioreactor). We give a methodology to create three different discrete
parametrizations of the bioreactor geometry and obtain the optimized shapes with
the help of a Genetic Multi-layer Algorithm (GMA), a global optimization method
based on the hybridization of a Multi-layer Secant method (MSA) [53, 54, 52],
finding suitable initial conditions for a global optimization algorithm, with a given
Genetic Algorithm (GA) [14, 23, 58, 66]. This kind of hybridization has been al-
ready tested for solving different optimization problems [24, 38] and, according to
several numerical experiments, it seems that it achieves better results (in terms
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of computational time and precision) than the GA used alone. The optimization
problem is solved for monotonic and non-monotonic growth rate functions, in order
to analyze the influence of the reaction into the optimal reactor configuration. In
contrast to the previously cited experimental studies [5, 7, 56, 59], here, we do not
specify beforehand a particular type of biological system but describe, in a general
way, a biological substrate-biomass reaction in a continuous reactor. Compared to
the works developed in [2, 8], we couple the fluid flow with the biological phenom-
ena, while in[2, 8] the authors only model one of the two physics. Furthermore,
in this case, the reactor geometry is parametrized with five variables (compared
to the two-dimensional parametrization performed in [2, 8]) to be able to obtain a
broader range of possible bioreactor shapes.

This article is organized as follows: Section 2 we introduce a mathematical model
describing the dynamics of the bioreactor. In Section 3, we state the optimization
problem which aims to minimize the considered reactor volume, with an outflow
substrate concentration maintained to a desired threshold, by choosing a suitable
bioreactor shape. In Section 4, we explain the numerical experiments carried out
for the optimization problem and show the results. Section 5 draws the conclusions
after the comparison between the obtained optimized reactors.

2. Mathematical Modeling

Let a vertical cylinder denoted by Ω∗ be the domain of the bioreactor in consider-
ation. When the problem is initialized, there is a certain amount of biomass inside
Ω∗ that reacts with the polluted water entering the device through the inlet Γ∗in (the
upper boundary of the cylinder). Treated water leaves the reactor through the out-
let Γ∗out (the lower boundary of the cylinder). We denote Γ∗wall = δΩ∗ \ (Γ∗in ∪Γ∗out),
where null flux is considered.

We present the following model to describe the dynamics in the reactor, which
includes advection-diffusion-reaction phenomena (see [10, 11, 12, 15]):

dS

dt
= ∇ · (DS∇S − uS)− µ(S)B in Ω∗ × (0, T ),

dB

dt
= ∇ · (DB∇B − uB) + µ(S)B in ∈ Ω∗ × (0, T ),

S(x, 0) = S0(x), B(x, 0) = B0(x) x ∈ Ω∗,

n · (−DS∇S + uS) = Sinu3 in Γ∗in × (0, T ),

n · (−DB∇B + uB) = 0 in Γ∗in × (0, T ),

n · (−DS∇S) = n · (−DB∇B) = 0 in Γ∗out × (0, T ),

n · (−DS∇S + uS) = n · (−DB∇B + uB) = 0 in Γ∗wall × (0, T ),

(2.1)

where T > 0 (s) is the length of the time interval for which we want to model
the process, S (kg/m3), B (kg/m3) are the substrate and biomass concentrations
inside the reactor which diffuse throughout the water in the vessel with diffusion
coefficients DS (m2/s) and DB (m2/s), respectively, S0 (kg/m3), B0 (kg/m3) are
the concentrations of substrate and biomass inside the bioreactor at the initial
time, Sin (kg/m3) is the substrate concentration that enters the reactor and n is
the outward unit normal vector on the boundary of the domain Ω∗. Notice that
besides the advection-diffusion terms, we also have a term corresponding to the
reaction of biomass and substrate, governed by the growth rate function µ (s−1).
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We work with the following growth rate functions, which are extensively used in
the literature – the Monod function [61, 27] is defined in [0,+∞) by

µ(S) = µmax
S

KS + S
, (2.2)

where µmax (s−1) is the maximum specific growth rate and KS (kg/m3) is the
half-saturation constant. The Haldane function [1, 27] is defined in [0,+∞) by

µ(S) = µ∗
S

KS + S + S2/KI
, (2.3)

where µ∗ (s−1) is the maximum specific growth rate in the absence of inhibition
and KI (kg/m3) is the inhibition constant. Finally, vector u = (u1, u2, u3) (m/s) is
the flow velocity, which fulfills the following stationary Navier-Stokes equations for
Newtonian incompressible viscous fluids (see, e.g., [22])

−η∆u + ρ(u · ∇)u +∇p = 0 in Ω∗,

∇ · u = 0 in Ω∗,

u = 0 in Γ∗wall,

u = −uin E(x) n ∀x ∈ Γ∗in,

n · (η∇u) = 0 in Γ∗out,

p(x) = patm ∀x ∈ Γ∗out,

(2.4)

where p is the pressure field (Pa); patm is the atmospheric pressure (Pa); η is the
fluid dynamic viscosity (kg/m s); uin (m/s) is the maximum injection velocity;
E is the laminar flow inlet profile (a paraboloid of revolution) equal to 0 in the
inlet border and unity in the inlet center; ρ is the fluid density (kg/ m3), assumed
constant through the reactor (as done, e.g., in [2, 8]).

Remark 2.1. Note that the flow field u has been considered stationary in order to
reduce the computational complexity met when numerically solving system (2.1)-
(2.4). This assumption is supported by numerical experiments, which seem to show
that if we solve a time-dependent version of (2.4) coupled with (2.1), variable u
approximates its stationary state much faster than variables (S,B).

Remark 2.2. According to [10], if Sin ∈ L∞(0, T ), Sin ≥ 0 in (0, T ), S0 ∈ L∞(Ω∗),
S0 ≥ 0 in Ω∗, B0 ∈ L∞(Ω∗) and B0 ≥ 0 in Ω∗, there exists a unique solution
(S,B) ∈ L2(0, T ;H1(Ω∗))2 ∩ C(0, T, L2(Ω∗))2 ∩ L∞(Ω∗ × (0, T ))2 of system (2.1)-
(2.4).

As we will see in Section 4, we aim to find stationary solutions of system (2.1),

which we denote by (Ŝ, B̂). A usual way to get them is to solve numerically (2.1)

and then consider its solution for a time value T̂ (large enough) as the steady-state
solution. This is usually computationally easier (see, e.g., [40]) and allows us to

recover non-trivial stationary solutions (different to (Ŝ, B̂) = (Sin, 0)) by choosing
appropriate initial conditions.

3. Optimization problem

Here, we optimize the main design parameters (reactor shape and total volume)
with respect to the output concentration. More precisely, in Section (3.1) we intro-
duce the general formulation of the considered continuous optimization problem.
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Then, in Section (3.2) we propose three particular discrete implementations of this
problem to be solved numerically in Section 4.

3.1. General problem. Let us consider cylindrical bioreactors Ω∗ which are empty
solids of revolution, and so, they can be described by using a 2D domain Ω ⊂ R2

(similar to the one depicted by Figure 1) by using cylindrical coordinates (r, z),
where r is the distance to the cylinder axis. The simplified domain Ω is described
as follows: H (m) is the bioreactor height; r (m) is the radius of the inlet Γin

and the outlet Γout; h (m) is the height of the inlet and outlet pipes; R1 (m) and
R2 (m) are the radius of the bioreactor wall perpendicular to the inlet and outlet
pipes, respectively; the curve of the exterior wall corresponds to the graph of the
function ψ : [h,H − h] → [r,+∞), which satisfies ψ(h) = R2 and ψ(H − h) = R1.
Since, in practice, the inlet and outlet pipes have standard dimensions (depending
on the desired industrial application), we assume that r and h have fixed values.
Similarly, we take into account that the height and width of the reactor cannot
exceed certain values (for example, due to a limitation of the physical space in an
industrial factory).

Figure 1. Schematic representation of the bioreactor geometries
used to solve problem (3.1). The exterior curve (depicted in blue),
which corresponds to part of the bioreactor exterior wall, is defined
as (z, ψ(z)), where z ∈ [h,H − h].

Given a prescribed output substrate concentration Slim (kg/m3), we state the
following optimization problem

Find φopt ∈ Φ, such that

Vol(φopt) = min
φ∈Φ

Vol(φ),

Ŝout(φ
opt) ≤ Slim,

(3.1)

where φ = (H,R1, R2, ψ) ∈ Φ defines a particular bioreactor shape and Φ =
{[Hmin, Hmax]× [r,R1,max]× [r,R2,max]×C([h,H − h], [r,Rmax])} is the admissible
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space; Vol(φ) (m3) is the volume of the reactor, computed as

Vol(φ) =

∫
Ω∗(φ)

dxdydz, (3.2)

with Ω ⊂ R2 being the (r, z)-domain obtained with the set φ and Ω∗(φ) ⊂ R3

is the corresponding 3D domain; and Ŝout(φ) (kg/m3) denotes an average of the
concentration of substrate that leaves the bioreactor (at steady state), computed
as

Ŝout(φ) =

∫
Γ∗
out
Sφ(x, y, 0, T̂ )|u3(x, y, 0)|dxdy∫

Γ∗
out
|u3(x, y, 0)|dxdy

, (3.3)

with Sφ(·, ·, ·, T̂ ) the solution of system (2.1), obtained with the 3D domain Ω∗(φ),

at time T̂ and u3 the third component of the velocity vector in (2.4).

Remark 3.1. In practice, we aim to improve (in terms of reactor volume) a given
bioreactor which attains the prescribed output substrate concentration and we
choose the admissible space Φ so that it accounts for the geometry of the given
vessel. Therefore, if problem (3.1) does not have a solution is because the min-
imum does not exist (only an infimum value is ensured). For the numerical ex-
periments considered in Section 4, we look for one of the optimal solutions of the
discretized problems (3.5), (3.6) and (3.9), whose existence is guaranteed because

of the compactness of the selected admissible spaces Φ̃i (i = 1, 2, 3).

3.2. Numerical problem. Here, we present three discrete versions of the opti-
mization problem (3.1), related to three different discrete parametrizations of the
bioreactor geometry. The parametrization proposed in Section 3.2.1 allows us to
model tubular shapes (typically used in the industry sector), while the parametriza-
tions in Sections 3.2.2 and 3.2.1 offer the possibility to obtain a wider range of reac-
tor geometries. We solve the discrete optimization problems (3.5), (3.6) and (3.9)
by using the Hybrid Genetic Algorithm, and its parameters, presented in Section
3.2.4.

For the sake of simplicity, the objective function and the restriction in problem
(3.1) are combined into a new objective function J(φ) (m3) as

J(φ) = Vol(φ)
(

1 + β
max(Ŝout(φ)− Slim, 0)

Slim

)
, (3.4)

where β is a free parameter (usually large) and the term multiplied by the coefficient
β is a barrier function used to penalize solutions with Slim smaller than an average of
the substrate concentration exiting the bioreactor. Introducing the penalty term in
(3.4) allows us to solve problem (3.1) with the unconstrained (low-cost) optimization
algorithm proposed in Section 3.2.4. This approach has been previously used in the
literature for solving computationally expensive industrial optimization problems
(see, e.g. [35]). As it is typically done when performing optimization with a penalty
method, the value of the penalty parameter β is usually obtained by performing
several tests (see [45, Chapter 15.1]).

3.2.1. Parametrization 1. As a first approach, we consider bioreactor geometries
as depicted in Figure 2-(a). The exterior wall corresponds to the segment [h,H −
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(a) Domain in problem (3.5) (b) Domain in problem (3.6)

(c) Domain in problem (3.9)

Figure 2. Schematic representation of the bioreactor geometries
used to solve the discrete problems (3.5), (3.6) and (3.9).

h] × {R}, where R ∈ [r,Rmax] (m). The variable φ in problem (3.1) is taken as
φ = (H,R,R, ψ), where ψ : [h,H − h]→ [r,Rmax] with

ψ(z) = R.

In this case, the bioreactor geometry only depends on parameters H and R and the
optimization problem (3.1) can be reformulated as

Find φ̃1,opt ∈ Φ̃1, such that

J(φ̃1,opt) = min
φ̃1∈Φ̃1

J(φ̃1),
(3.5)
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where φ̃1,opt = (Hopt, Ropt) and Φ̃1 := {(H,R) ∈ [Hmin, Hmax]× [r,Rmax]} ⊂ R2 is
the admissible space.

3.2.2. Parametrization 2. As a second approach, we consider bioreactor geometries
as depicted in Figure 2-(b). The exterior wall corresponds to a semi-ellipse with
center (r, H2 ) and with lengths of the semi-axis given by the pair (R − r, H−2h

2 ),
where R ∈ [r,Rmax] (m). The variable φ in problem (3.1) is taken as φ = (H, r, r, ψ),
where ψ : [h,H − h]→ [r,Rmax] with

ψ(z) = r + (R− r)

√
1−

( z −H/2
h−H/2

)2
.

It is straightforward to see that, if R ∈ [r,Rmax], then ψ ∈ C([h,H − h], [r,Rmax]).
As in problem (3.5), the bioreactor geometry only depends on parameters H and

R and the optimization problem (3.1) can be reformulated as

Find φ̃2,opt ∈ Φ̃2, such that

J(φ̃2,opt) = min
φ̃2∈Φ̃2

J(φ̃2),
(3.6)

where φ̃2,opt = (Hopt, Ropt) and Φ̃2 := {(H,R) ∈ [Hmin, Hmax]× [r,Rmax]} ⊂ R2 is
the admissible space.

3.2.3. Parametrization 3. As a third approach, we consider bioreactor geometries
as depicted in Figure 2-(c). The shape of the exterior wall is a quadratic Bézier
curve (see, for example, [19]), associated with the control points P = (R1, H − h),
Q = (R2, h) and E = (E1, E2), where (E1, E2) ∈ [E1,min, E1,max]×[E2,min, E2,max]),
by the formula

B(σ) = (B1(σ), B2(σ)) = (1− σ)2P + 2(1− σ)σE + σ2Q, σ ∈ [0, 1]. (3.7)

The variable φ appearing in problem (3.1) is taken as φ = (H,R1, R2, ψ), where
ψ : [h,H − h]→ [r,Rmax] wiht

ψ(z) = B1(B−1
2 (z)).

To assure that ψ([h,H−h]) ⊆ [r,Rmax], we impose the radius expansions R1 and R2

to lie in the segment [r,Rmax]. Once R1 and R2 have been chosen we take E1,min

and E1,max as in Lemma 3.2 below so that B1 ◦ B−1
2 ∈ C([h,H − h], [r,Rmax]).

Furthermore, we take E2,min = h and E2,max = H − h.
Now, we define two new optimization parameters α1, α2 ∈ [0, 1] such that

E1 = E1,min + α1 · (E1,max − E1,min) and E2 = h+ α2 · (H − 2h). (3.8)

In that case, the bioreactor geometry only depends on parameters H, R1, R2,
α1 and α2. The solution of the optimization problem (3.1) is approximated by
computing

Find φ̃3,opt ∈ Φ̃3, such that

J(φ̃3,opt) = min
φ̃3∈Φ̃3

J(φ̃3),
(3.9)

where φ̃3,opt = (Hopt, Ropt
1 , Ropt

2 , αopt
1 , αopt

2 ) and

Φ̃3 := {(H,R1, R2, α1, α2) ∈ [Hmin, Hmax]× [r,R1,max]× [r,R2,max]× [0, 1]2} ⊂ R5

is the admissible space, with Ri,max ≤ Rmax for i = 1, 2.
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Lemma 3.2. Let us denote E1,min = r−
√

(R1 − r)(R2 − r) and E1,max = Rmax +√
(R1 −Rmax)(R2 −Rmax). If (E1, E2) ∈ [E1,min, E1,max] × [h,H − h], then B1 ◦

B−1
2 ∈ C([h,H − h], [r,Rmax]).

Proof. We divide the proof in four steps:

Step 1. Let us prove that, if E2 ∈ [h,H − h], then B2([0, 1]) = [h,H − h]. To
obtain the minimum and maximum values of B2(σ), σ ∈ [0, 1], we compute the
critical points σ∗2 satisfying the equation dB2

dσ (σ∗2) = 0 on the interior of ]0, 1[.
When considering E2 as a variable, one can see that σ∗2 depends on E2 through the

expression σ∗2(E2) = E2−H+h
2E2−H , with corresponding value B2(σ∗2(E2)) =

E2
2+h2−Hh
2E2−h .

Now, to find the lower and upper bounds for variable E2 (assuring that B2(σ) ∈
[h,H − h] ∀σ ∈ [0, 1]), we respectively solve equations B2(σ∗2(E2,m)) = h and
B2(σ∗2(E2,M)) = H − h. It is easy to prove that the unique solutions of these
equations are E2,m = h and E2,M = H − h. Finally, taking into account that
dB2

2

dσ2 = 2H − 4E2, it follows that d2B2

dσ2

∣∣
E2=h

= 2(H − 2h) > 0 and d2B2

dσ2

∣∣
E2=H−h =

2(2h−H) < 0, and so, one can conclude that E2,min = h and E2,max = H − h.

Step 2. Let us prove that the function B2 : [0, 1] → [h,H − h] is injective. Let
σ, σ̄ ∈ [0, 1] satisfying B2(σ) = B2(σ̄). By definition, this implies that

(1− σ)2(H − h) + 2(1− σ)σE2 + σ2h = (1− σ̄)2(H − h) + 2(1− σ̄)σ̄E2 + σ̄2h.

Easy calculations lead to

(H − h)
(
σ2 − σ̄2 − 2σ + 2σ̄

)
+ 2E2

(
σ − σ̄ − σ2 + σ̄2

)
+ h
(
σ2 − σ̄2

)
= 0.

Denoting x = σ̄ − σ and y = σ̄ + σ, the previous equation can be rewritten as

x(2− y)(H − h) + 2x(y − 1)E2 − xyh = 0

⇔ x (2(H − h)− 2E2 + y(2E2 −H)) = 0.

This implies that either x = 0 or y = 2(H−h−E2)
H−2E2

. In the second case, it is easy to

see that y = 1 + H−2h
H−2E2

and, since we assume that E2 > h, it follows that y > 2,
but this enters in a contradiction with the definition of y. Thus, we can conclude
that x = 0, so σ = σ̄ and the injectivity is proved.

Step 3. Let us prove that, if E1 ∈ [E1,min, E1,max], then B1([0, 1]) = [r,Rmax].
Similarly to step 1, to obtain the minimum and maximum values of B1(σ),

σ ∈ [0, 1], we compute the critical points σ∗1 satisfying the equation dB1

dσ (σ∗1) = 0 on
the interior of the domain. When considering E1 as a variable, one can see that σ∗1
depends on E1 through the expression σ∗1(E1) = R1−E1

R1+R2−2E1
, with corresponding

value B1(σ∗1(E1)) =
R1R2−E2

1

R1+R2−2E1
. Now, to obtain lower and upper bounds for the

variable E1 (assuring that B1(σ) ∈ [r,Rmax] ∀σ ∈ [0, 1]), we respectively solve
equations B1(σ∗1(E1,m)) = r and B1(σ∗1(E1,M)) = Rmax. Each of these equations

has two solutions, given by E±1,m = r ±
√

(R1 − r)(R2 − r) and E±1,M = Rmax ±√
(R1 −Rmax)(R2 −Rmax). Taking into account that d2B1

dσ2 = 2(R1 +R2 − 2E1),

d2B1

dσ2

∣∣
E1=E±

1,m
= 2(R1 +R2 − 2r)∓ 4

√
(R1 − r)(R2 − r)

and

d2B1

dσ2

∣∣
E1=E±

1,M

= 2(R1 +R2 − 2Rmax)∓ 4
√

(R1 −Rmax)(R2 −Rmax),
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and so, one can conclude that E1,min = E−1,m and E1,max = E+
1,M.

Step 4. Let us prove that B1 ◦ B−1
2 ∈ C([h,H − h], [r,Rmax]). Since B1 : [0, 1] →

[r,Rmax] and B2 : [0, 1]→ [h,H−h] are continuous functions and B2 is injective, we
conclude that B1 ◦B−1

2 is well defined and continuous because it is the composition
of continuous functions. �

3.2.4. Optimization algorithm. In this section, we describe in detail the optimiza-
tion algorithm and the parameters used to solve numerical problems (3.5), (3.6) and
(3.9). For the sake of simplicity, here, we consider a general optimization problem

min
x∈Θ

J(x) (3.10)

where J : x→ R is the fitness function; x is the optimization parameter, Θ ⊂ RN ,
with N ∈ N, is the search space. Notice that in order to recover problems (3.5),

(3.6) and (3.9) one should replace x = φ̃i (i = 1, 2, 3), Θ = Φ̃i (i = 1, 2, 3) and
N = 2, 2, 5 in the general problem formulation (3.10).

The proposed algorithm, called Genetic Multi-Layer Algorithm (GMA), is a
global optimization method based on a hybridization between a genetic algorithm
(GA) [14, 23, 58, 66] (which performs a global search of the solution) and a multi-
layer secant method (MSA) [53, 54, 52] (which provides suitable initial populations
for the GA). A complete validation of these algorithms on various industrial prob-
lems can be found in [24, 30, 37, 34, 38, 35, 39, 36, 31] and references therein.
Broadly speaking, GAs are search techniques which try to solve problems similar
to (3.10) through a stochastic process based on a natural selection process that
mimics biological evolution. The GAs have many advantages as, for example, they
can solve complex optimization problems (e.g., with high dimensional search space
or function with various with local minima). However, they exhibit lower accuracy
than other methods, such as gradient algorithms. Before explaining the methodol-
ogy used to enhance these inconveniences, we detail the GA used in this work.

Genetic algorithm scheme:

Step 1. Inputs: The user must define six parameters: Np ∈ N, Ng ∈ N, pc ∈ [0, 1],
pm ∈ [0, 1], λ ∈ R and ĝ ∈ N, the meaning of which is clarified later in the following
steps. In addition, the user needs to provide a first set, called initial population
and denoted by X0 = {x0

j ∈ Φ, j = 1, . . . , Np} ∈ Θ, of Np possible solutions

of the optimization problem (3.10). Each row x0
j in X0 (j = 1, . . . , Np) is called

individual, while each component x0
j,k of an individual (k = 1, . . . , N) is called gene.

In our case Θ =
∏N
k=1[lk, uk], where lk and uk are respectively the lower and upper

bounds of the gene xij,k.

Step 2. Generation of new populations: Starting from the initial population
X0, we recursively create Ng ∈ N new populations, which we call generations,
by applying 4 stochastic steps, called selection, crossover, mutation and elitism,
which are described in Steps 3.1, 3.2, 3.3 and 3.4, respectively. More precisely, let
Xi = {xij ∈ Θ, j = 1, dots,Np} with i = 1, . . . , Ng − 1, denotes the population at
iteration i. Thus, using the following (Np, N)-real valued matrix notation

Xi =

 x
i
1(1) · · · xi1(N)
...

...
...

xiNp
(1) · · · xiNp

(N)

 ,
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Xi+1 is obtained by considering

Xi+1 = (IN − E i)(CiSiXi +Mi) + E iXi (3.11)

where matrices Si, Ci, Mi, E i and IN are described below.

Step 2.1 Selection: This operator is used to select individuals according to their
fitness value. There exist various selection techniques (see, for instance, [23, 58, 66]),
among which we use the Roulette Wheel Selection method. We randomly select Np

individuals from Xi with eventual repetitions. Each individual xij ∈ Xi, with
j = 1, . . . , Np has a probability to be selected during this process which is given by

J(xij)
−1/

∑Np

k=1 J(xik)−1. This step can be summarized as

Xi+1,1 = SiXi,

where Si is a binary valued (Np, Np)-matrix satisfying Sij,k = 1 if the k-th individual

in Xi is the j-th selected individual, and Sij,k = 0 in other case.

Step 2.2 Crossover: This operator is used to create a new individual by combining
the genes of two existing individuals from the population Xi (chosen during the
previous selection process). There are several methods for combining individuals
(see, for instance, [14, 23, 58]), among which we use the Arithmetic Crossover
method. For each pair of consecutive individuals (rows) 2j − 1 and 2j in Xi+1,1,
with 1 ≤ j ≤ floor(Np/2) (where floor(a) is the nearest integer lower than or equal
to a), we determine, with a probability pc, if those rows exchange data or if they are
directly copied into an intermediate population denoted by Xi+1,2. Thus, matrix
Ci is a real valued matrix of size (Np, Np), satisfying

Ci2j−1,2j−1 = λ1, Ci2j−1,2j = 1− λ1, Ci2j,2j = λ2, Ci2j,2j−1 = 1− λ2,

where λ1 = λ2 = 1 with probability 1− pc, or λ1, λ2 are randomly chosen in (0, 1)
considering a uniform distribution, in other case. Other coefficients of Ci are set to
0. If Np is odd, then we also set Ci(Np, Np) = 1, and then the Np-th row of Xi+1,1

is directly copied into Xi+1,2.

Step 2.3 Mutation: This operator randomly modifies the value of one or more
genes of an individual from the population Xi+1,2 (obtained during the previous
crossover process). It provides diversity in the population and intends to avoid
the premature convergence phenomenon (i.e., population concentrated near a local
minimum, see [23]). Each individual can be mutated with a probability pm given
by the user. There exist different techniques to randomly mutate individuals (see,
for instance, [14, 58]), among which we use the Non-Uniform Mutation method.
We decide, with a probability pm, if each row of Xi+1,2 is randomly perturbed or
not. This step is defined by

Xi+1,3 = Xi+1,2 +Mi,

where Mi is a real valued matrix with size (Np, N) and the j-th row satisfies

Mi
j =

{
~0 with probability 1− pm

∆(g, xij) in other case

and the k-th component of the vector ∆(g, xij) is defined as

∆(g, xij) =

{
(uk − xij,k)(1− γ(1− g

Ng
)λ

) if τ = 0

(lk − xij,k)(1− γ(1− g
Ng

)λ
) if τ = 1
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where g is the current generation number, τ is a binary random number, γ is a
uniform random number in [0, 1] and λ is a parameter given by the user, determining
the degree of dependency on the iteration number. This mutation method decreases
the mutation rate as the generation number increases.

Step 2.4 Elitism: This operator ensures that at least one of the best individuals
of the current generation is directly copied to the next generation. The main
advantage of elitism is that a decreasing convergence is guaranteed. For more
details about elitism methods see, for instance, [58, 66].

Let xib, where b ∈ 1, . . . , Np, be the individual in Xi with the lowest value of the
fitness function (or, if there exist various, one of those individuals selected randomly
with a uniform distribution). If xib has a lower fitness value than all the individuals
in Xi+1,3, it is directly copied at the b-th row of Xi+1. This step can be formalized
as

Xi+1 = (IN − E i)(Xi+1,3) + E iXi,

where IN is the identity matrix of size N and E i is a real-valued (Np, Np)-matrix
such that E i(b, b) = 1 if xib has a lower fitness value than all the individuals in
Xi+1,3 and 0 otherwise, E i = 0 elsewhere.

The genetic search is terminated when Ng generations have been computed, or
after a number of generations specified by the user, ĝ, without improvement of the
fitness value (i.e., the fitness of the best element has not decreased).

Step 3. Output: When GA stops, it returns, as an output solution, the individual
who has the lowest value for the objective function J among all the individuals in
all the populations considered during the whole evolving process, i.e.,

GAO(X0;Np;Ng : pm; pc;λ; ĝ)

= argmin
{
J(xji )| x

j
i is the -th row of Xi, i = 1, . . . , Ng, j = 1, . . . , Np

}
.

As said at the beginning of this section, to accelerate the convergence and im-
prove the accuracy of the above-described GA, we combine it with the MSA de-
scribed below to build a hybrid algorithm, called GMA. Its general scheme is as
follows:

Genetic multi-Layer algorithm scheme:

Step 1. Inputs: The user must define seven parameters: smax ∈ N, Np ∈ N,
Ng ∈ N, pc ∈ [0, 1], pm ∈ [0, 1], λ ∈ R and ĝ ∈ N. smax denotes the number of
iterations of the MSA.

Step 2. Initial population: A first family of possible solutions of the optimization
problem (3.10), denoted by X0

1 = {x0
1,j ∈ Θ, j = 1, . . . , Np}, is randomly generated

in the search space Θ considering a uniform distribution.

Step 3. Main loop: For s from 1 to smax:

Step 3.1 We run the GA starting from the initial population X0
s and obtain the

optimal individual os = GAO(X0
s , Np, Ng, pm, pc, λ, ĝ).

Step 3.2 We build a new initial population for the GA, X0
s+1 = {x0

s+1,j ∈ Θ, j =

1, . . . , Np}, by considering a secant method between each element in X0
s and the

optimal individual os, i.e., for all j ∈ {1, . . . , Np}, if J(os) = J(x0
s,j) we set

x0
s+1,j = x0

s,j ,
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else we set

x0
s+1,j = projΘ(x0

s,j − J(os)
os − x0

s,j

J(os)− J(x0
s,j)

),

where projΘ : RN → Θ is the projection function for controlling that the new
individuals fit into the search space Θ, defined as projΘ(x)(k) = min(max(x(k), lk),
uk), with k = 1, . . . , N .

Step 4. Output: After smax iterations, the GMA returns the following output:

GMAO(smax, Np, Ng, pm, pc, λ, ĝ) = argmin{J(os)| s = 1, . . . , smax}.
This algorithm tries to improve, individual by individual, the initial population of
the GA. More precisely, for each individual in the initial population:

• If there is a significant evolution of the cost function between this individual
and os, the secant method generates a new individual close to os that
performs a refined search near the current solution.
• Otherwise, the secant method creates a new individual far from os, to

expand the exploration of the admissible space.

Moreover, when the GMA ends, its solution is improved by performing 10 itera-
tions of the Steepest Descent (SD) algorithm, in which the descent step size ρ is
determined using 10 iterations of a dichotomy method starting from ρ0 = 1. This
last layer of SD is carried out in order to enhance the accuracy of the final solution.
This algorithm has been already tested for solving different computationally ex-
pensive industrial optimization problems (see, e.g., [24, 39, 33, 32]). Furthermore,
it has been compared with other well-known metaheuristic method and it exhibits
better performance for a set of Benchmark problems (see [36]). A Matlab version
of the GMA presented in this paper has been implemented in the free optimization
package “Global Optimization Platform” (GOP), which can be downloaded at http:
//www.mat.ucm.es/momat/software.html.

4. Numerical experiments

In this section, we first introduce the numerical solver used for computing the
solutions of system (2.1)-(2.4). Then, in Section 4.2 we describe the considered
numerical experiments based on the optimization problems (3.5), (3.6) and (3.9).
Section 4.3 presents the optimization results, which are analyzed and compared in
Section 4.4.

4.1. Numerical implementation of the model. The cylindrical version of sys-
tem (2.1)-(2.4) was solved using the software COMSOL Multiphysics 5.0 (http:
//www.comsol.com), based on the Finite Element method (see [51]), with La-
grange P2-P1 elements to stabilize the pressure and to satisfy the Ladyzhenskaya,
Babouska, and Brezzi stability condition. The 2nd-order Lagrange elements model
the velocity and concentration components, while linear elements represent the
pressure. At a first stage, we solve the stationary Navier-Stokes equations (2.4)
using Galerkin least square streamline and crosswind diffusion methods so as to
prevent numerical oscillations. At a second stage, the velocity field (solution of
(2.4)) is introduced as an input value in the transient advection-diffusion-reaction
system (2.1), which is then solved by considering an upwind scheme. We use a di-
rect damped Newton method to solve the corresponding linear systems. A complete
description of those techniques can be found in [22]. The numerical experiments
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were carried out in a 2.8Ghz Intel i7-930 64bits computer with 12Gb of RAM. We
used a triangular mesh with around 3000 elements, which produced significantly
accurate results with respect to finer meshes that turned out to be computation-
ally unreachable. We assumed that the solution of system (2.1) at finite time

T̂ = 107 (s) could be considered as a reasonable approximation the steady state

(Ŝ, B̂) of system (2.1). Model variables (3.2) and (3.3) were estimated using the
functions Domain Integration and Boundary Integration of COMSOL (based on
a trapezoidal approximation of the integral), respectively. Thus, the value of the
cost function (3.4) was an output of the COMSOL model. After performing several
numerical tests (as described in Section 3.1,) we have chosen β = 109 to be the
value of the penalty parameter in the cost function as it has given good results for
the considered numerical experiments. In this work, the GMA has been applied
with (smax, Ng, Np, pc, pm, λ, ĝ) = (100, 10, 10, 0.4, 0.2, 1, 25) for solving numerically
problems (3.5), (3.6) and (3.9). Those parameters had previously been successfully
used for solving similar optimization problems in [9, 24, 39, 33]. Depending on the
considered case (detailed below), each function evaluation in problems (3.5), (3.6)
and (3.9) may take from 15 up to 60 minutes. With a restriction of 3 months of
computational time to run the GMA, the number of function evaluations carried
out to solve problems (3.5), (3.6) and (3.9) ranged between 2000 and 6000.

4.2. Cases considered in this work. Model parameters were set as follows (see
[4, 63]): DS = 4.3 · 10−12(m2/s), DB = 5 · 10−10 (m2/s), Sin = 15 (kg/m3), B0 = 1
(kg/m3), S0 = 15 (kg/m3), patm = 105 (Pa), ρ = 103 (kg/m3), η = 10−3 (kg/m s)
and uin = 2.2 · 10−4 (m/s). We consider four different reaction rate functions µ1,
µ2, µ3 and µ4, which are described in Table 1 (see pages 132, 182 and 187 in [16]).
In Figure 3, we plot those four growth rate functions. We can observe that they
have the same order of magnitude but with different slopes.

Figure 3. Functions µ1(S), µ2(S), µ3(S) and µ4(S) (s−1), de-
tailed in Table 1, with S ∈ [0, 20] (kg/m3).
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Table 1. Considered growth rate functions

µ1(·) µ2(·)
Monod function (2.2) Monod function (2.2)

µmax = 9.17 · 10−5 s−1 µmax = 5.5 · 10−5 s−1

KS = 5 kg/m3 KS = 0.075 kg/m3

µ3(·) µ4(·)
Haldane function (2.3) Haldane function (2.3)

µmax = 1.39 · 10−4 s−1, µmax = 1.11 · 10−4 s−1,

KS = 4 kg/m3, KS = 0.5 kg/m3,

KI = 3 kg/m3 KI = 4 kg/m3

When solving problems (3.5) and (3.6), design parametersHmin = 2 (m), Hmax =

10 (m) and Rmax = 5 (m) were taken to generate the admissible spaces Φ̃1 and

Φ̃2. On the other hand, when solving problem (3.9), the admissible space Φ̃3 was
generated with design parameters Hmin = 2 (m) Hmax = 10 (m) and R1,max =
R2,max = 3.5 (m). In order to compute the values E1,min and E1,max, we chose
Rmax = 5 (m). In all cases we set r = h = 0.5 (m) and Slim = 1 (kg/m3).

4.3. Optimization results. In this section, we present the optimization results
obtained when solving problems (3.5), (3.6) and (3.9). Section 4.3.1 puts together
the numerical results obtained when solving problems (3.5) and (3.6) because sim-
ilar conclusions were obtained. We point out that in all the optimized reactors
obtained in Sections 4.3.1 and 4.3.2, the optimal solutions φ̃i,opt are such that the
second term in (3.4) is zero, and therefore, the value J(φ̃i,opt) corresponds to the

reactor volume Vol(φ̃i,opt) (i = 1, 2, 3).

Remark 4.1. We observe from Tables 2-4 that the value Ŝout(φ̃
i,opt) (i = 1, 2, 3)

is clearly smaller than the prescribed value Slim in all the considered cases, which
seems to indicate that smaller (and therefore better) domains could be obtained
with this value closer to Slim. This inaccuracy may be due to the lack of numerical
precision of the COMSOL model, which in turn is caused by the restriction on
the computational time (see Section 4.1 for more details). This fact highlights the
difficulties tackled during the numerical resolution of our optimization problem.

4.3.1. Parametrizations 1 and 2. Table 2 shows the optimal results when solving
problem (3.5), while the optimized shapes are depicted in Figure 4. Similarly, Table
3 shows the optimal results when solving problem (3.6), while the optimized shapes
are depicted in Figure 5.

From Figures 4 and 5 we observe that the optimal reactors have height larger
than width. This outcome is in line with the results found in [56, 64], where the
authors performed experimental studies to conclude that the most efficient reactor
was a tubular one with its height much greater than its radius. Nevertheless, this
strategy is not always applicable due to the practical restriction on the reactor
height.

When comparing the results obtained with the reaction functions, we observe
that the optimized reactors exhibit similar heights and the main difference lies in
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Table 2. Value of the optimal parameters (Hopt(m) and Ropt(m))

in φ̃1,opt, solution of (3.5) with functions µi, i = 1, . . . , 4; outflow

substrate concentrations (Ŝout(φ̃
1,opt) (kg/ m3); and reactor vol-

umes (Vol(φ̃1,opt) m3).

µ Hopt Ropt Ŝout(φ̃
1,opt) Vol(φ̃1,opt)

µ1 10 0.61 0.9528 11.3063

µ2 9.82 0.66 0.9773 12.8553

µ3 9.92 1.98 0.9718 110.6468

µ4 9.9 1.6 0.9024 72.3634

Table 3. Value of the optimal parameters (Hopt(m) and Ropt (m)

in φ̃2,opt, solution of (3.6) with functions µi, i = 1, . . . , 4; outflow

substrate concentrations (Ŝout(φ̃
2,opt) (kg/ m3); and reactor vol-

umes (Vol(φ̃2,opt) (m3).

µ Hopt Ropt Ŝout(φ̃
2,opt) Vol(φ̃2,opt)

µ1 9.28 0.728 0.9893 12.8479

µ2 9.91 0.73 0.9558 13.8268

µ3 9.98 1.96 0.9538 80.2715

µ4 10 1.36 0.9216 40.6650

the reactor radius. For instance, the value of Vol(φ̃1,opt) (similarly, the value of

Vol(φ̃2,opt)) is higher with µ3 than with µ1. This difference seems to be due to
the fact that function µ3 is qualitatively smaller than function µ1 (see Figure 3)
and thus, the optimal volume must be bigger to ensure that the prescribed value
Slim is reached. The influence of the reactor width on the bioreactor dynamics is
explained in Remarks 4.2 and 4.3 later on.

4.3.2. Parametrization 3. Table 4 shows the optimal results, while the optimized
shapes are depicted in Figure 6.

From Figure 6 we observe that, as stated in Section 4.3.1, the optimal reactors
have height larger than width. Moreover, the exterior wall of the optimized reac-
tors is concave, with a radius expansion observed at least in some limited part of
the reactor (as said previously, the influence of the reactor radius in the bioreactor
dynamics will be explained in Remarks 4.2 and 4.3 below). When comparing reac-
tion functions, Figures 6-(a) and 6-(c) seem to show that, for instance, the radius

expansion of the domain Ω(φ̃3,opt) is wider for growth rate function µ3 than for
µ1, as observed in Section 4.3.1. On the other hand, the main difference between
considering Monod (µ1 and µ2) or Haldane (µ3 and µ4) reaction functions is ob-
served in the concavity at the upper part of the exterior wall (see Remark 4.2 for
a physical interpretation).

4.4. Comparison between the optimized reactors. Here, we compare the so-
lutions obtained when solving the optimization problems (3.5), (3.6) and (3.9).
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(a) µ1 (b) µ2 (c) µ3 (d) µ4

Figure 4. Shape of the optimized reactors, Ω(φ̃1,opt), where φ̃1,opt

is the solution of problem (3.5).

(a) µ1 (b) µ2 (c) µ3 (d) µ4

Figure 5. Shape of the optimized reactors, Ω(φ̃2,opt), where φ̃2,opt

is the solution of problem (3.6).

Figures 4, 5 and 6 seem to show that the optimized reactors have height larger
than width (indeed, Hmax set to 10 (m) limits the optimal shape height and the
optimal heights in all the considered cases approach this limit) and generally, the
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Table 4. Value of the optimal parameters
(Hopt(m), Ropt

1 (m), Ropt
2 (m), αopt

1 and αopt
2 ) in φ̃3,opt, solu-

tion of (3.9) with functions µi, i = 1, . . . , 4; exterior control point

coordinates (E1 (m) and E2 (m)), associated with φ̃3,opt and
computed using equation (3.8) and Lemma 3.2; outflow substrate

concentrations (Ŝout(φ̃
3,opt)(kg/m3)); and reactor volumes

(Vol(φ̃3,opt)(m3)).

µ Hopt Ropt
1 Ropt

2 αopt
1 αopt

2

µ1 9.6359 0.5931 0.9214 1.6358 · 10−5 0.0059

µ2 9.0814 0.5730 1.1024 0.0064 0.0922

µ3 9.8879 2.0432 1.2402 0.0093 0.9940

µ4 9.6401 1.0410 2.0805 1.9301 · 10−4 0.0273

µ E1 E2 Ŝout(φ̃
3,opt) Vol(φ̃3,opt)

µ1 0.3022 0.5512 0.9540 10.0790

µ2 0.4111 1.2451 0.8923 12.0855

µ3 −0.3928 8.8376 0.9545 27.1679

µ4 −0.421 0.736 0.9962 22.3042

(a) µ1 (b) µ2 (c) µ3 (d) µ4

Figure 6. Shape of the optimized reactors, Ω(φ̃3,opt), where φ̃3,opt

is the solution of problem (3.9).

optimal widths approach its lower bound (the minimum reactor radius allowed was
r = 0.5 (m)). However, in some of the considered cases (see Figures 4-(c), 4-(d),
5-(c), 5-(d), 6-(c) and 6-(d)), a radius expansion (at least in some limited part of
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the reactor) is observed. We interpret that increasing the reactor width favors the
reaction due to two main reasons:

(1) It helps that the vertical flow velocity decreases (in absolute value), and so
the time that the biomass and the substrate remain in contact for react-
ing increases (see Remark 4.2 for a more detailed analysis of the relation
between the reactor width and the vertical flow).

(2) It originates an area of biomass storage. For example, due to the apparition
of Dean vortices in this area (see, e.g., [13]) the biomass located near the
device exterior wall remains more time inside the bioreactor (compared to
the biomass located at the reactor center), and so the amount of reaction
between biomass and substrate increases (see Remark 4.3 for an specific
explanation about the distribution of substances in the reactor).

Remark 4.2. To understand the influence of the bioreactor width on the vertical
flow velocity, we used four different domains, denoted by Ωi, i = 1, . . . , 4. The
first reactor is cylindrical (depicted in Figure 7-(a)) and the other three present
a radius extension on the top, center and bottom parts of the domain, (depicted
in Figures 7-(b) to 7-(d), respectively). We solved system (2.4) with domains Ωi,
i = 1, . . . , 4 and denoted u3,Ωi (m/s) the vertical flow velocity (third component of
the velocity vector) obtained when solving system (2.4) in the domain Ωi, evaluated
at r = 0 (i.e., symmetry streamline). Figure 7-(e) represents |u3,Ωi |, i ∈ {1, . . . , 4},
which can be seen as functions of z. We observe that, in regions where the reactor
radius increases, the absolute value of the vertical velocity decreases. This physical
interpretation may explain, for instance, the optimal domains Ω(φ̃3,opt) obtained
with reactions µ3 and µ4 (see Figures 6-(c) and 6-(d)), since the Haldane function
shows inhibition for large values of substrate (see Figure 3) and the maximum value
of substrate appears at the reactor inlet.

Remark 4.3. Figures 8-(a) and 8-(b) represent the distributions of substrate and

biomass at steady state, respectively, computed with the optimal reactor Ω(φ̃3,opt),
obtained for the growth rate function µ3. One observes that the substrate is mainly
agglomerated in the area originated by the inlet streamlines (see Figure 8-(d)). On
the other hand, the biomass becomes withdrawn from this central area and is mainly
concentrated around the reactor wall (where Dean vortices appear [13], see Figure
8-(d)). Thus, a reaction front is created between the central area and the outer
part of the reactor (as shown in Figure 8-(c)) favoring the reaction between the two
species. Although the optimization problems (3.5), (3.6) and (3.9) have been solved
for a singular pair of diffusion coefficients (DS, DB), numerical experiments seem to
show that the analysis of the distribution of substances in the reactor, performed
above, is suitable in the range of typical diffusion coefficients DS (from 10−10 to
10−7 (m2/s) [46, 62, 65]) and DB (from 10−13 to 10−7 (m2/s) [25, 55, 60]).

Now, it is of interest to compare the optimized reactors obtained when solv-
ing the optimization problems (3.5), (3.6) and (3.9). In this direction, we denote

by dr(φ̃
i, φ̃j) (i 6= j) the relative difference between the optimal reactor volumes

Vol(φ̃i,opt) and Vol(φ̃j,opt), defined as

dr(φ̃
i, φ̃j) = 100× Vol(φ̃j,opt)−Vol(φ̃i,opt)

Vol(φ̃i,opt)
. (4.1)
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(a) Ω1 (b) Ω2 (c) Ω3 (d) Ω4

(e) Vertical velocity profile along the symmetry streamline

obtained for reactor domains Ωi, i = 1, . . . , 4.

Figure 7. Influence of the reactor width into the vertical flow velocity.

Table 5 shows the comparison, in terms of reactor volume, between the optimized
reactors obtained when creating the domain with the three proposed parametriza-

tions. Additionally, values dr(φ̃1, φ̃2) (resp. dr(φ̃1, φ̃3)) are included in Table 5
in order to outline how much can be gained by using non-tubular reactors. One
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(a) Ŝ(r, z) (kg/m3) (b) B̂(r, z) (kg/m3) (c) µ(Ŝ)B̂ (kg/m3 h) (d) Streamlines

Figure 8. (a) substrate concentration (at steady state). (b)
biomass concentration (at steady state). (c) reaction (at steady
state) (d) streamlines. (a)-(d) associated with the optimal reactor
Ω(φ3,opt) obtained for the growth rate function µ3.

observes that for Monod growth rate functions (µ1 and µ2), the relative differ-

ence dr(φ̃
1, φ̃j) (j = 2, 3) is between −10% and 13%, so one can conclude that

the variation (in terms or reactor volume) between tubular and non-tubular reac-
tors is relatively low. On the other hand, for Haldane growth rate functions (µ3

and µ4), one observes that by using non-tubular reactors, one can gain from 27%
up to 75% in terms of reactor volume. Additionally, one may notice that the op-
timized reactor volumes differ substantially depending on the considered reaction
function. Similar results have been obtained in other works focusing on the analysis
of continuous bioreactors modeled through ordinary differential equations (see, e.g.
[17, 26, 28, 29, 41])).

5. Conclusions

We have explored the shape design of a continuous biological reactor. The main
objective was to reduce the reactor volume, ensuring that a prescribed output con-
centration value was reached at stationary state. As a matter of generalization,
we have not imposed a particular type of biological dynamics in the reactor but
proposed a general methodology to be applied and adapted depending on the con-
sidered case. We have used a mathematical model that couples hydrodynamics
(described with the incompressible Navier–Stokes equations in three dimensions)
with biological phenomena (described with an Advection-Diffusion-Reaction sys-
tem). Using the Finite Element Method, we have numerically computed the output
substrate concentration at steady state and the volume of a reactor associated with
a particular set of design parameters. Then, we have defined three discrete opti-
mization problems related to three different parametrizations of the device geome-
try and solved them by using a Genetic Multi-layer Algorithm, a self-implemented
global optimization method based on the search of a suitable initial population for
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Table 5. Comparison, in terms of reactor volume (m3), be-
tween optimized reactors obtained when solving problems (3.5)

(Vol(φ̃1,opt)), (3.6) (Vol(φ̃2,opt)) and (3.9) (Vol(φ̃3,opt)); relative

differences dr(φ̃
1, φ̃j) (%) (j = 2, 3) computed using equation (4.1).

µ Vol(φ̃1,opt) (m3) Vol(φ̃2,opt) (m3) dr(φ̃
1, φ̃2) (%)

µ1 11.3063 12.8479 +13.63

µ2 12.8553 13.8268 +7.56

µ3 110.6468 80.2715 −27.45

µ4 72.3334 40.6650 −43.78

µ Vol(φ̃3,opt) (m3) dr(φ̃
1, φ̃3) (%)

µ1 10.0790 −10.85

µ2 12.0855 −5.98

µ3 27.1679 −75.45

µ4 22.3042 −69.17

a given genetic algorithm. The optimization problem is solved for monotonic and
non-monotonic growth rate functions, in order to analyze the influence of the reac-
tion into the optimal reactor configuration. One of the proposed parametrizations
allows us to model tubular shapes (typically used in the industry sector), while the
other two offer the possibility to obtain a wider range of reactor geometries. We
have taken into account that the reaction between species may be modeled by either
monotonic or non-monotonic growth functions, and we have analyzed the influence
of this factor on the optimization results.

From a general point of view, the optimized reactors exhibit height much larger
than width and their exterior wall is concavely curved, with a radius expansion
observed at least in some limited part of the reactor. The magnitude of the radius
extension appears to be related to the reaction function. The slower is the reaction
the wider should be the device. The advantage of the radius extensions in the
reactor performance could be attributed to two main factors:

• The width of the reactor helps to decrease the absolute value of the vertical
flow velocity, and consequently, increases the time of potential reaction
between substances.
• The reactor corners may act as a biomass storage. The biomass located

near the reactor exterior wall is withdrawn slower from the device than
the biomass located near the device center, favoring the reaction between
species.

When comparing the optimized reactors obtained for both monotonic and non-
monotonic growth rate functions, one observes that, if the reactor is modeled with
non-monotonic kinetics (e.g., Haldane function), the radius expansion located at
the top of the reactor is more pronounced. We interpret that this difference relays
on the fact that for large values of substrate (i.e., at the inlet of the device) the
Haldane reaction shows inhibition, and so the radius expansion should be bigger to
decrease the absolute value of the vertical flow near the reactor inlet.
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An interesting message is that when the degrees of freedom on the shape parame-
trization is large enough, concavely curved reactors are systematically the best ones,
although convexly curved (generated with less degrees of freedom) could already
be better than perfect tubular shapes. The volume of the optimized reactors using
concavely curved geometries (instead of typical tubular geometries) allow us to
reduce the reactor volume between 25% and 90% depending on the considered
case. This study shows to practitioners how much could be gained compared to the
best cylindrical shapes, and how this gain is related to the reaction rate function
(monotonic versus non-monotonic). Of course, the economic cost relative to the
production of non-conventional should be taken into consideration for the best
choice of the reactor geometry. Including this new (or other) criteria into the
design problem should be tackled by using multi-objective approaches instead of
single-objective approaches (see [20]).
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