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EXISTENCE OF QUASI-PERIODIC INVARIANT TORI FOR

COUPLED VAN DER POL EQUATIONS

LIN LU, SHUJUAN LIU, JUN WU

Abstract. This work focuses on the existence of quasi-periodic invariant tori

for coupled van der Pol equations. Using averaging method, a series of re-
versible transformations and KAM techniques, we prove that there exist quasi-

periodic invariant tori for most parameters. The results in this article can be
regarded as a generalization of those in [22].

1. Introduction

The van der Pol oscillators have been investigated by the authors in the areas of
mechanics [15, 24] and biology [29, 33, 35], and were extensively discussed as a host
of a rich class of dynamical behavior [8, 31, 36, 38, 39, 42]. Feng and Gao studied
the first integrals of the Duffing-van der Pol equations in [10, 11, 14]. By homotopy
perturbation method, Chen and Jiang [5] investigated the periodic solution of the
Duffing-van der Pol oscillator. Hirano and Rybicki [16], by S1-degree theory, dis-
cussed the existence of limit cycles of coupled van der Pol system. Pastor et al. [28]
analyzed the ordered and chaotic behavior of two coupled van der Pol equations.
Rand and Holmes [34], by perturbation methods, considered the bifurcations of
phase-locked periodic motions in two weakly coupled van der Pol oscillators. Dieci
et al. [9] presented the numerical results for two weakly linearly coupled van der
Pol systems. Gilsinn [13] constructed the invariant tori for two weakly nonlinearly
coupled van der Pol equations. Beregov and Melkikh [2] considered two inductively
coupled van der Pol generators and established the presence of metastable chaos, a
strange non-chaotic attractor, and several stable limiting cycles. Zhang and Gu [42]
investigated the dynamics of two weakly coupled van der Pol equations with time
delay, and derived the explicit expression for determining the direction of the Hopf
bifurcations and the stability of the bifurcating periodic solutions by the theory of
normal form and the center manifold theorem.

In this article, we consider the coupled van der Pol equations

ẍ1 + ε(x2
1 − 1)ẋ1 + bx1 = a(x1 − x2) + µ(x3

1 − x3
2),

ẍ2 + ε(x2
2 − 1)ẋ2 + bx2 = a(x2 − x1) + µ(x3

2 − x3
1),

(1.1)

where the dot denotes the derivative with respect to the time t, ε and µ are small
parameters, a and b are linear couple parameters, b > 2a and b > 0.
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Many authors have considered some special forms of (1.1). For the case of
a = µ = 0 and b = 1, Equation (1.1) has been studied in [37]. When µ = 0 and
b = 1, using a perturbation method, Storti and Rand [35] studied the steady state
behavior of the strongly coupled van der Pol equations

ẍ1 + ε(x2
1 − 1)ẋ1 + x1 = a(x1 − x2),

ẍ2 + ε(x2
2 − 1)ẋ2 + x2 = a(x2 − x1) + ∆x2,

where ε � 1, a and ∆ are small parameters. When µ = 0 and b = 1, Nohara and
Arimoto [27] considered the existence of the out-of-phase and in-phase solutions of
the coupled system (1.1). Recently, by the homotopy analysis method (HAM), Li
et al. [22] further discussed series solutions of (1.1) with b = 1, and obtained that
there exist either in-phase or out-of-phase periodic solutions.

Since a periodic motion is a special case of a quasi-periodic one, possessing just
one basic frequency, inspired by the above works, we can speculate that (1.1) should
have quasi-periodic solutions with frequency depending on some parameters. Our
aim is, by Kolmogorov-Arnold-Moser (KAM) theory, theoretically to prove that
(1.1) has quasi-periodic solutions with the frequency depending on the parameters
a and b. The above result can be regarded as a generalization of [22]. Since µ is
a small real parameter, we may set µ = ε2µ̃. With µ̃ again denoted by µ, letting
ẋ1 = x3, ẋ2 = x4, we can easily write (1.1) as

ẋ1 = x3,

ẋ3 = (a− b)x1 + εx3 − ax2 + ε2µ(x3
1 − x3

2)− εx3x
2
1,

ẋ2 = x4,

ẋ4 = −ax1 + (a− b)x2 + εx4 + ε2µ(x3
2 − x3

1)− εx4x
2
2,

(1.2)

and prove that for sufficiently small ε, the autonomous system (1.2) has quasi-
periodic solutions (i.e., invariant tori) for most values of the parameters a and b.

It is well known that KAM theory can be used to study quasi-periodic motions
in nearly integrable Hamiltonian Systems [23, 32, 40], dissipative systems [4, 7,
17, 41] and mapping systems [3, 12]. By now KAM theory has blossomed into
an enormous and somewhat complicated collection of ideas and methods where
small divisors, degeneracy, reducibility, quasi-periodicity and invariant tori are the
critical concepts. For instance, Li, Llave and Yuan considered the existence of
quasi-periodic solutions of delay differential equations in [19, 20]. Several general
surveys on the degenerate KAM theory were presented in [1, 6, 25]. Li [21] discussed
the persistence of quasi-periodic invariant 2-tori and 3-tori for the double Hopf
bifurcation and obtained that under appropriate conditions, the full system has
quasi-periodic invariant 2-tori and 3-tori for most of the parameters in a sufficiently
small neighborhood of the bifurcation point. The reducibility of nonlinear systems
under quasi-periodic perturbations was studied by Jorba and Simo [15] for the
case of suitable hypothesis of analyticity, non-resonance and non-degeneracy with
respect to a small real parameter ε.

In this context, we shall write equation (1.2) as a quasi-periodic system un-
der small perturbations, where frequencies are non-degenerate and depend on pa-
rameters a and b. Then we obtain quasi-periodic solutions by KAM techniques.
Some ideas seeking for the quasi-periodic solutions in this paper could be found in
[7, 18, 20, 41].
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This paper is arranged as follows. In Section 2, by a series of transformations, the
system (1.2) is changed into the normal form, some ideas of KAM steps and main
result are outlined. Section 3 contains an iterative lemma which is very important
in the proof of KAM theory. We present a KAM theorem in Section 4, which is
devoted to obtaining the quasi-periodic solutions of (1.2). Some technical lemmas
are provided in the appendix.

2. Normal form and Main result

2.1. Normal form. Let

A =


0 1 0 0

a− b ε −a 0
0 0 0 1
−a 0 a− b ε

 .

Since the eigenvalues of A are

λ1 =
ε

2
+
i
√

4b− 8a− ε2

2
, λ2 =

ε

2
− i
√

4b− 8a− ε2

2
,

λ3 =
ε

2
+
i
√

4b− ε2

2
, λ4 =

ε

2
− i
√

4b− ε2

2
,

we can make a complex linear transformation such that the coefficient matrix A is
diagonal. Let 

x1

x3

x2

x4

 =


−1 −1 1 1
−λ1 −λ2 λ3 λ4

1 1 1 1
λ1 λ2 λ3 λ4



y1

y2

y3

y4

 .

Then system (1.2) is transformed into

ẏ1 = λ1y1 + g1(y1, y2, y3, y4),

ẏ2 = λ2y2 + g2(y1, y2, y3, y4),

ẏ3 = λ3y3 + g3(y1, y2, y3, y4),

ẏ4 = λ4y4 + g4(y1, y2, y3, y4),

(2.1)

where

g1(y1, y2, y3, y4) =
[
− 2ε2µ(y1 + y2)3 − 6ε2µ(y1 + y2)(y3 + y4)2

+ ε(λ1y1 + λ2y2)(y1 + y2)2

+ 2ε(λ3y3 + λ4y4)(y1 + y2)(y3 + y4)

+ ε(λ1y1 + λ2y2)(y3 + y4)2
]
(λ2 − λ1)−1,

g2(y1, y2, y3, y4) =
[
2ε2µ(y1 + y2)3 + 6ε2µ(y1 + y2)(y3 + y4)2

− ε(λ1y1 + λ2y2)(y1 + y2)2

− 2ε(λ3y3 + λ4y4)(y1 + y2)(y3 + y4)

− ε(λ1y1 + λ2y2)(y3 + y4)2
]
(λ2 − λ1)−1,
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g3(y1, y2, y3, y4) =
[
2ε(y1 + y2)(λ1y1 + λ2y2)(y3 + y4) + ε(λ3y3 + λ4y4)(y1 + y2)2

+ ε(λ3y3 + λ4y4)(y3 + y4)2
]
(λ4 − λ3)−1,

g4(y1, y2, y3, y4)

=
[
− 2ε(y1 + y2)(λ1y1 + λ2y2)(y3 + y4)− ε(λ3y3 + λ4y4)(y1 + y2)2

− ε(λ3y3 + λ4y4)(y3 + y4)2
]
(λ4 − λ3)−1.

We set
y1 = r1e

iθ1 , y2 = y1, y3 = r2e
iθ2 , y4 = y3. (2.2)

Then (2.1) can be expressed as

ṙ1 = εA1(r, θ, ε, a, b) = ε
r1(1− r2

1 − 2r2
2)

2
+ εf1(r, θ, ε, a, b),

ṙ2 = εA2(r, θ, ε, a, b) = ε
r2(1− r2

2 − 2r2
1)

2
+ εf2(r, θ, ε, a, b),

θ̇1 = Ω1 + εB1(r, θ, ε, a, b)

= Ω1 +
3ε2 − 12ε2µ

4Ω1
r2
1 +

3ε2 − 12ε2µ

2Ω1
r2
2 + εf3(r, θ, ε, a, b),

θ̇2 = Ω2 + εB2(r, θ, ε, a, b) = Ω2 +
3ε2

4Ω2
r2
2 +

3ε2

2Ω2
r2
1 + εf4(r, θ, ε, a, b),

(2.3)

where

Ω1 =

√
4b− 8a− ε2

2
, Ω2 =

√
4b− ε2

2
,

r = (r1, r2), θ = (θ1, θ2), fi(r, θ, ε, a, b) satisfies fi(r, θ, ε, a, b) = O(r3) and

1

(2π)2

∫ 2π

0

∫ 2π

0

fi(r, θ, ε, a, b)dθ1dθ2 = 0, i = 1, 2, 3, 4.

Here O(rk) denotes a function which is analytic in r and θ, sufficiently smooth in
parameters a and b in some bounded closed set and vanishes with r-derivatives up
to order k − 1 for r = 0.

Obviously, the averaged system of (2.3) is

ṙ1 = ε
r1(1− r2

1 − 2r2
2)

2
,

ṙ2 = ε
r2(1− r2

2 − 2r2
1)

2
,

θ̇1 = Ω1 +
3ε2 − 12ε2µ

4Ω1
r2
1 +

3ε2 − 12ε2µ

2Ω1
r2
2,

θ̇2 = Ω2 +
3ε2

4Ω2
r2
2 +

3ε2

2Ω2
r2
1.

(2.4)

It is easy to see that system (2.4) has an equilibrium solution r1 = r2 =
√

3/3, and
that

r1 =

√
3

3
,

r2 =

√
3

3
,
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θ1 = θ10 +
(
Ω1 +

ε2 − 4ε2µ

4Ω1
+
ε2 − 4ε2µ

2Ω1

)
t,

θ2 = θ20 +
(
Ω2 +

ε2

4Ω2
+

ε2

2Ω2

)
t

are quasi-periodic solutions of (2.4), where θ10 and θ20 represent initial values.
We want to look for quasi-periodic solutions of the perturbed system (2.3) using

KAM theory. To do this, we have to introduce some notation. We shall denote
by C a universal positive constant which is independent of the KAM iteration and
may be different in different places.

(i) Let T2 = R2/(2πZ)2 and T̂2 = C2/(2πZ)2;
(ii) For σ > 0 and s > 0, let

U(σ) = {ϕ ∈ T̂2 : | Imϕ| := max
1≤i≤2

| Imϕi| ≤ σ},

W (s, σ) = {(h, ϕ) ∈ C2 × T̂2 : |h| ≤ s, | Imϕ| ≤ σ};

(iii) Let Π ⊆ R2 be a parameter set with positive Lebesgue measure. Define
Πη = {ξ ∈ R2 : dist(ξ,Π) < η};

(iv) For given 0 < ε � 1, if a map F : W (s, σ) × Πη → C2 is real analytic in
(h, ϕ) ∈W (s, σ) and C1-smooth in ξ ∈ Πη, and satisfies

‖F‖s,σ,η := max
i=0,1

sup
W (s,σ)×Πη

|∂iξF (h, ϕ, ξ)| ≤ Cε,

then we write F = Os,σ,η(ε), where the notation ∂ξ denotes the partial
derivative with respect to ξ;

(v) If a map H : W (s, σ) × Πη → C2 is real analytic in (h, ϕ) ∈ W (s, σ) and
C1-smooth in ξ ∈ Πη, vanishes with its h-derivative for h = 0, and satisfies

sup
W (s,σ)×Πη

|∂jh∂
i
ξH(h, ϕ, ξ)| ≤ C, i = 0, 1, j = 0, 1, 2,

then we write H = Os,σ,η(h2).

Let

a = ξ1, b = ξ2, ξ = (ξ1, ξ2)T . (2.5)

Since b > 2a and b > 0, we can assume that (ξ1, ξ2) ∈ [1, 2] × [5, 6] := Π without
loss of generality.

We expand Ai(ρ, ϕ, ε, ξ) and Bi(ρ, ϕ, ε, ξ) into Fourier series in ϕ and truncate
them by the operator ΓK0 :

ΓK0Ai(ρ, ϕ, ε, ξ) =
∑
|k|≤K0

Âi(k)(ρ, ε, ξ)e
√
−1(k,ϕ),

ΓK0
Bi(ρ, ϕ, ε, ξ) =

∑
|k|≤K0

B̂i(k)(ρ, ε, ξ)e
√
−1(k,ϕ), i = 1, 2,

where k ∈ Z2, |k| = |k1|+ |k2| and K0 is a suitable positive integer satisfying

‖(Id− ΓK0
)Ai(ρ, ϕ, ε, ξ)‖

s′0,
σ′0
2 ,Π

η0
≤ Cε,

‖(Id− ΓK0)Bi(ρ, ϕ, ε, ξ)‖
s′0,

σ′0
2 ,Π

η0
≤ Cε,

(2.6)

here s′0, σ′0 and η0 are positive constants, Id denotes the identity operator.
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Using the transformation

r1 = ρ1 + εu1(ρ, ϕ, ε, ξ),

r2 = ρ2 + εu2(ρ, ϕ, ε, ξ),

θ1 = ϕ1 + εw1(ρ, ϕ, ε, ξ),

θ2 = ϕ2 + εw2(ρ, ϕ, ε, ξ)

(2.7)

in (2.3), we deduce the homological equations

∂ϕui · ω = ΓK0Ai(ρ, ϕ, ε, ξ)− Âi(0)(ρ, ε, ξ),

∂ϕwi · ω = ΓK0
Bi(ρ, ϕ, ε, ξ)− B̂i(0)(ρ, ε, ξ), i = 1, 2,

(2.8)

where ω = (Ω1,Ω2)T , ρ = (ρ1, ρ2), ϕ = (ϕ1, ϕ2), and ‘·T ’ represents the transposi-
tion of a vector ‘·’. Note that there is a small divisor in (2.8). Letting

Π0 =
{
ξ ∈ Π : |

(
k, ω(ξ)

)
| ≥ γ

|k|τ
, 0 < |k| ≤ K0

}
,

where 0 6= k ∈ Z2 and τ ≥ 3, by Lemma 4.4, we have

meas Π0 = meas Π−O(γ).

Solving equation (2.8), we obtain the estimates

‖ui‖
s′0,

3σ′0
4 ,Π

η0
0

≤ Cγ−2‖Ai‖s′0,σ′0,Πη0 ,

‖∂ϕui‖
s′0,

σ′0
2 ,Π

η0
0

≤ Cγ−2‖Ai‖s′0,σ′0,Πη0 ,

|wi‖
s′0,

3σ′0
4 ,Π

η0
0

≤ Cγ−2‖Bi‖s′0,σ′0,Πη0 ,

‖∂ϕwi‖
s′0,

σ′0
2 ,Π

η0
0

≤ Cγ−2‖Bi‖s′0,σ′0,Πη0 ,

‖∂ρui‖
s′0,

3σ′0
4 ,Π

η0
0

≤ Cγ−2‖∂ρAi‖s′0,σ′0,Πη0 ,

‖∂ρwi‖
s′0,

3σ′0
4 ,Π

η0
0

≤ Cγ−2‖∂ρBi‖s′0,σ′0,Πη0 .

(2.9)

Similar homological equations will be solved in Lemma 3.1. From (2.3), we obtain

Ai(ρ, ϕ, ε, ξ) = O(ρ), Bi(ρ, ϕ, ε, ξ) = O(ρ2),

B̂i(0)(ρ, ε, ξ) = O(ε), B̂i(0)(ρ, ε, ξ) = O(ρ2), i = 1, 2.
(2.10)

Using (2.6)–(2.8), (2.10) and Taylor’s formula, we can rewrite equation (2.3) as

(1 + ε
∂u1

∂ρ1
)ρ̇1 + ε

∂u1

∂ρ2
ρ̇2 + ε

∂u1

∂ϕ1
(ϕ̇1 − Ω1) + ε

∂u1

∂ϕ2
(ϕ̇2 − Ω2)

= εÂ1(0)(ρ, ε, ξ) + ε
[
A1(ρ+ εu, ϕ+ εv, ε, ξ)−A1(ρ, ϕ, ε, ξ)

+ (Id− ΓK0
)A1(ρ, ϕ, ε, ξ)

]
=: εÂ1(0)(ρ, ε, ξ) + ε2A

(1)
1 (ρ, ϕ, ε, ξ),

ε
∂u2

∂ρ1
ρ̇1 + (1 + ε

∂u2

∂ρ2
)ρ̇2 + ε

∂u2

∂ϕ1
(ϕ̇1 − Ω1) + ε

∂u2

∂ϕ2
(ϕ̇2 − Ω2)

= εÂ2(0)(ρ, ε, ξ) + ε
[
A2(ρ+ εu, ϕ+ εv, ε, ξ)−A2(ρ, ϕ, ε, ξ)

+ (Id− ΓK0
)A2(ρ, ϕ, ε, ξ)

]
=: εÂ2(0)(ρ, ε, ξ) + ε2A

(1)
2 (ρ, ϕ, ε, ξ),
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ε
∂w1

∂ρ1
ρ̇1 + ε

∂w1

∂ρ2
ρ̇2 + (1 + ε

∂w1

∂ϕ1
)(ϕ̇1 − Ω1) + ε

∂w1

∂ϕ2
(ϕ̇2 − Ω2)

= εB̂1(0)(ρ, ε, ξ) + ε
[
B1(ρ+ εu, ϕ+ εv, ε, ξ)−B1(ρ, ϕ, ε, ξ)

+ (Id− ΓK0
)B1(ρ, ϕ, ε, ξ)

]
=: εB̂1(0)(ρ, ε, ξ) + ε2B

(1)
1 (ρ, ϕ, ε, ξ),

ε
∂w2

∂ρ1
ρ̇1 + ε

∂w2

∂ρ2
ρ̇2 + ε

∂w2

∂ϕ1
(ϕ̇1 − Ω1) + (1 + ε

∂w2

∂ϕ2
)(ϕ̇2 − Ω2)

= εB̂2(0)(ρ, ε, ξ) + ε[B2(ρ+ εu, ϕ+ εv, ε, ξ)−B2(ρ, ϕ, ε, ξ)

+ (Id− ΓK0
)B2(ρ, ϕ, ε, ξ)]

=: εB̂2(0)(ρ, ε, ξ) + ε2B
(1)
2 (ρ, ϕ, ε, ξ),

where

A
(1)
i (ρ, ϕ, ε, ξ) = O(ρ), B

(1)
i (ρ, ϕ, ε, ξ) = O(ρ2), i = 1, 2.

Solving the above equations, we obtain

ρ̇1 = εÂ1(0)(ρ, ε, ξ) + ε2X1(ρ, ϕ, ε, ξ),

ρ̇2 = εÂ2(0)(ρ, ε, ξ) + ε2X2(ρ, ϕ, ε, ξ),

ϕ̇1 = Ω1 + ε2Y1(ρ, ϕ, ε, ξ),

ϕ̇2 = Ω2 + ε2Y2(ρ, ϕ, ε, ξ),

(2.11)

where Xi(ρ, ϕ, ε, ξ) = O(ρ), Yi(ρ, ϕ, ε, ξ) = O(ρ2), i = 1, 2. Let

ρ1 =

√
3

3
− ε1/3L1 + ε1/3L2, ρ2 =

√
3

3
+ ε1/3L1 + ε1/3L2,

h = (L1, L2)T , ϕ = (ϕ1, ϕ2)T .

(2.12)

Using (2.9) and Taylor’s formula and dropping the parameter ε from functions for
simplicity, we can rewrite (2.11) as

ḣ = ε[Λh+M(ϕ, ξ) +Q(ϕ, ξ)h+ F (h, ϕ, ξ)],

ϕ̇ = ω(ξ) + ε5/3[N(ϕ, ξ) +G(h, ϕ, ξ)],
(2.13)

where

ω(ξ) = (Ω1,Ω2)T , Λ := diag
(
λ1, λ2

)
= diag

(1

3
,−1

)
,

M = Oσ0,η0(ε1/6), Q = Oσ0,η0(ε1/6), N = Oσ0,η0(ε1/6),

F = ε1/6Os0,σ0,η0(h2), G = ε1/6Os0,σ0,η0(h),

where s0 and σ0 are constants satisfying s0 > 0 and σ0 = σ′0/2.

2.2. Outline of KAM steps. To obtain quasi-periodic solutions of (2.13), we
perform some changes to simplify (2.13) by Newton iteration and KAM techniques.
Firstly, the terms M(ϕ, ξ), Q(ϕ, ξ) and N(ϕ, ξ) will be eliminated by means of
a family of quasi-periodic changes of variables. More precisely, substituting the
change of variables

h = h1 + v1(φ1, ξ) + v2(φ1, ξ)h1, ϕ = φ1 + v3(φ1, ξ) (2.14)



8 L. LU, S. LIU, J. WU EJDE-2019/88

into (2.13) and dropping the parameter ξ from functions for simplicity, we obtain

(Id + v2)ḣ1

= ε
[
Λh1 + Λv1 + Λv2h1 +M(φ1 + v3) +Q(φ1 + v3)h1 +Q(φ1 + v3)v1

+Q(φ1 + v3)v2h1 + F (h1 + v1 + v2h1, φ1 + v3)
]

− ∂φ1v1 · φ̇1 − ∂φ1v2 · φ̇1h1,

(Id + ∂φ1
v3)φ̇1 = ω + ε5/3

[
N(φ1 + v3) +G(h1 + v1 + v2h1, φ1 + v3)

]
.

(2.15)

Denote by Qij(φ1) (i, j = 1, 2) the matrix elements of operator Q(φ1). Denote by

Q̂ii(k) (i = 1, 2) and N̂(k) the kth-Fourier coefficient of Qii(φ1) and N(φ1), respec-
tively. Then the transformation (2.14) will be obtained by solving the homological
equations

∂φ1
v1 · ω = ε(ΓKM + Λv1), (2.16)

∂φ1
v2 · ω = ε

[
Λv2 − v2Λ + ΓKM − diag

(
Q̂11(0), Q̂22(0)

)]
, (2.17)

∂φ1v3 · ω = ε5/3
[
ΓKN − N̂(0)

]
. (2.18)

Once equations (2.16)–(2.18) are solved, using Taylor’s formula for F (h1 + v1 +
v2h1, φ1 + v3) and G(h1 + v1 + v2h1, φ1 + v3), we can rewrite the system (2.15) as

ḣ1 = ε[Λ1(ξ)h1 +M1(φ1, ξ) +Q1(φ1, ξ)h1 + F1(h1, φ1, ξ)],

φ̇1 = ω1(ξ) + ε5/3[N1(φ1, ξ) +G1(h1, φ1, ξ)],

where

Λ1(ξ) = Λ + diag
(
Q̂11(0), Q̂22(0)

)
,

ω1(ξ) = ω(ξ) + ε5/3N̂(0),

N1(φ1, ξ) = (Id + ∂φ1
v3)−1

[
− ∂φ1

v3N̂(0) + (Id− ΓK)N

+G(v1, φ1 + v3) +N(φ1 + v3)−N
]
,

G1(h1, φ1, ξ) = (Id + ∂φ1
v3)−1[G(h1 + v1 + v2h1, φ1 + v3)−G(v1, φ1 + v3)],

M1(φ1, ξ) = (Id + v2)−1
[
(Id− ΓK)M +M(φ1 + v3)−M +Q(φ1 + v3)v1

− ε2/3∂φ1v1(N̂(0) +N1) + F (v1, φ1 + v3)
]
,

Q1(φ1, ξ) = (Id + v2)−1
[
(Id− ΓK)Q− v2(Λ1 − Λ) +Q(φ1 + v3)−Q

+Q(φ1 + v3)v2 − ε2/3∂φ1
v2(N̂(0) +N1) + ∂hF (v1, φ1 + v3)(Id + v2)

− ε2/3∂φ1
v1(Id + ∂φ1

v3)−1∂hG(v1, φ1 + v3)(Id + v2)
]
,
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F1(h1, φ1, ξ)

= (Id + v2)−1
{
− ε2/3∂φ1v1(Id + ∂φ1v3)−1

[
G(h1 + v1 + v2h1, φ1 + v3)

−G(v1, φ1 + v3)− ∂hG(v1, φ1 + v3)(Id + v2)h1

]
− ε2/3∂φ1v2(Id + ∂φ1v3)−1

[
G(h1 + v1 + v2h1, φ1 + v3)−G(v1, φ1 + v3)

]
h1

+ F (h1 + v1 + v2h1, φ1 + v3)− F (v1, φ1 + v3)

− ∂hF (v1, φ1 + v3)(Id + v2)h1

}
.

In this way, after n steps, (2.13) becomes

ḣn = ε[Λn(ξ)hn +Mn(φn, ξ) +Qn(φn, ξ)hn + Fn(hn, φn, ξ)],

φ̇n = ωn(ξ) + ε5/3[Nn(φn, ξ) +Gn(hn, φn, ξ)].

If the norms of Mn, Qn and Nn tend to zero with a super-exponential velocity, then
the composition of transformations is convergent, and the above equation converges
to the form

˙̃
h = ε[Λ∞(ξ)h̃+ F∞(h̃, φ̃, ξ)],

˙̃
φ = ω∞(ξ) + ε5/3G∞(h̃, φ̃, ξ),

where F∞(h̃, φ̃, ξ) = ε1/6O(h̃2) and G∞(h̃, φ̃, ξ) = ε1/6O(h̃). Obviously, h̃ = 0, φ̃ =
φ∗+ω∞(ξ)t is a trivial solution of the above equation, where φ∗ represents an initial
value. It means that for the original system (2.13), there exists a quasi-periodic
solution with the frequency ω∞(ξ).

2.3. Main result. The small divisor conditions∣∣√−1
(
k, ω(ξ)

)
− ελi(ξ)

∣∣ ≥ γ

|k|τ
, i = 1, 2,∣∣√−1

(
k, ω(ξ)

)
+ ελ1(ξ)− ελ2(ξ)

∣∣ ≥ γ

|k|τ
,∣∣(k, ω(ξ)

)∣∣ ≥ γ

|k|τ

are needed in the process of solving equations (2.16)–(2.18), respectively, where
0 6= k ∈ Z2 and τ ≥ 3. Hence, we need to take out some small (in the sense of
Lebesgue measure) parameter sets and control the measure of the resonant sets on
each step of the iteration. Moreover, to estimate the measure of the resonant sets,
we require that the frequency ω(ξ) satisfies the following non-degeneracy condition.

Definition 2.1. Assume that ω(ξ) is continuously differentiable in ξ ∈ Π ⊆ R2.
We say that ω(ξ) satisfies the non-degeneracy condition on the set Π, if there exists
a constant χ > 0 such that

inf
ξ∈Π

∣∣ det
∂ω

∂ξ

∣∣ ≥ χ.
With these preliminaries, we state the main result in this article.

Theorem 2.2. Suppose that ξ = (a, b) ∈ [1, 2] × [5, 6] = Π. Then for given
0 < γ � 1, there is a sufficiently small positive number ε∗0 (ε∗0 = O(γs∗), s∗ ≥ 29),
such that if 0 < ε < ε∗0, then there is a Cantorian subset Π∞ ⊂ Π with Lebesgue
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measure 1−O(γ), and for any ξ ∈ Π∞, the equation (2.13) possesses a real analytic
quasi-periodic solution with the frequency ω∞(ξ) satisfying

sup
ξ∈Π∞

‖ω∞(ξ)− ω(ξ)‖ = O(ε43/24).

Moreover, system (1.2) also possesses a real analytic quasi-periodic solution with
the frequency ω∞(ξ) for ξ ∈ Π∞.

Remark 2.3. Equation (2.13) could not be dealt with Moser theorem [26] directly,
although some ideas are similar to it. Based on modifying terms method and keep-
ing frequencies fixed, Moser [26] discussed the existence of quasi-periodic solutions.
However, the present proofs rest on measure estimates method originated by Pöschel
[30]. We need introduce parameter ξ to the system and the frequency ω∞(ξ) of the

quasi-periodic solution we obtained satisfies supξ∈Π∞ ‖ω∞(ξ) − ω(ξ)‖ = O(ε
43
24 )

compared with [26].

3. Iterative lemma

Theorem 2.2 is proved using an iterative procedure. To state and prove the
iterative lemma, we first introduce some iterative constants and notation. Let
σ0, s0, χ0, ζ0, c0, d0 and τ be positive constants and τ ≥ 3. For all m ≥ 1,

(1) ε0 = ε, εm = ε
5/4
m−1 (εm bounds the size of the perturbation after the m-th

iteration);
(2) ν0 = 0, νm = (1−2 + · · ·+m−2)/(2

∑∞
j=1 j

−2);

(3) σm = (1−νm)σ0 (σm measures the size of the analytic domain in the angle
variables after the mth iteration);

(4) sm = (1−νm)s0 (sm measures the size of the analytic domain in the action
variable after the mth iteration);

(5) χm = χ0 − ε5/3
∑m−1
i=0 ε

1/8
i (χm ≥ χ0/2 if ε is sufficiently small);

(6) ζm = ζ0 +
∑m−1
i=0 ε

1/8
i (ζm ≤ 2ζ0 if ε is sufficiently small);

(7) cm = c0 −
∑m−1
i=0 ε

1/8
i (cm ≥ c0/2 if ε is sufficiently small);

(8) dm = d0 + ε5/3
∑m−1
i=0 ε

1/8
i (dm ≤ 2d0 if ε is sufficiently small);

(9) κm = 1
3 (σm − σm+1) = σ0/[6(m+ 1)2

∑∞
j=1 j

−2];

(10) Km = − 1
σ0

(m + 1)22m+2 ln ε (Km determines the number of Fourier coef-

ficients we must consider at the mth step of the iteration);
(11) γm = γ/(m+ 1)2, γ0 = γ, ε∗0 = O(γs∗), s∗ ≥ 29;
(12) ηm = γm−1

4d0K
τ+1
m

; (ηm is used to extend the closed parameter set Πm to a

small neighborhood at the mth step of the iteration);

Lemma 3.1. Suppose that there is a sequence of closed parameter sets R2 ⊃ Π0 ⊃
Π1 ⊃ · · · ⊃ Πl and a family of equations defined on W (sm, σm) × Πηm

m , for m =
0, 1, . . . , l , by (Eq)m:

ḣm = ε0[Λm(ξ)hm +Mm(φm, ξ) +Qm(φm, ξ)hm + Fm(hm, φm, ξ)],

φ̇m = ωm(ξ) + ε
5/3
0 [Nm(φm, ξ) +Gm(hm, φm, ξ)],

(3.1)

where Λm(ξ) = diag
(
λm1 (ξ), λm2 (ξ)

)
and ωm(ξ) =

(
ωm1 (ξ), ωm2 (ξ)

)T
. Assume that

for m = 0, 1, . . . , l the following conditions are satisfied:
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(A1) for ξ ∈ Πηm
m , the frequency ωm(ξ) satisfies the non-degeneracy conditions

inf
ξ∈Π

η0
0

∣∣det
∂ω0

∂ξ

∣∣ ≥ χ0, inf
ξ∈Πηmm

∣∣det
∂ωm
∂ξ

∣∣ ≥ χm ≥ 1

2
χ0, (3.2)

and ωm(ξ) and λmj (ξ) satisfy

‖ω0(ξ)‖η0 ≤ d0, ‖ωm(ξ)‖ηm ≤ dm ≤ 2d0,

inf
ξ∈Πηmm

|λm1 (ξ)− λm2 (ξ)| ≥ cm ≥
1

2
c0, ‖λm1 (ξ)− λm2 (ξ)‖ηm ≤ ζm ≤ 2ζ0,

inf
ξ∈Πηmm

|λmj (ξ)| ≥ cm ≥
1

2
c0, ‖λmj (ξ)‖ηm ≤ ζm ≤ 2ζ0, j = 1, 2;

(3.3)

(A2) the terms Mm(φm, ξ), Qm(φm, ξ) and Nm(φm, ξ) are real analytic in φm ∈
U(σm) and C1-smooth in ξ ∈ Πηm

m , and satisfy the following estimates

Mm = Oσm,ηm(ε1/6
m ), Qm = Oσm,ηm(ε1/8

m ), Nm = Oσm,ηm(ε1/8
m ); (3.4)

(A3) the terms Fm(hm, φm, ξ) and Gm(hm, φm, ξ) are real analytic in (hm, φm) ∈
W (sm, σm) and C1-smooth in ξ ∈ Πηm

m , and satisfy the following estimates

Fm = ε
1/6
0 Osm,σm,ηm(h2), Gm = ε

1/6
0 Osm,σm,ηm(h); (3.5)

(A4) there is a constant C0 > 0 such that the Lebesgue measure of Πm satisfies

meas Πm+1 ≥ meas Πm(1− C0γm). (3.6)

Then there exists a closed subset Πl+1 ⊂ Πl and a change of variables W (sl+1, σl+1)×
Π
ηl+1

l+1 →W (sl, σl)×Πηl
l of the form Tl:

hl = hl+1 + vl1(φl+1, ξ) + vl2(φl+1, ξ)hl+1, φl = φl+1 + vl3(φl+1, ξ), ξ = ξ, (3.7)

where hl+1 and φl+1 are new variables, vlj (j = 1, 2, 3) are real analytic in φl+1 ∈
U(σl+1) and C1-smooth in ξ ∈ Π

ηl+1

l+1 , and satisfy the following estimates

vl1 = Oσl+1,ηl+1

( ε
1/6
l

γ2
l κ

2τ+3
l

)
, vl2 = Oσl+1,ηl+1

( ε
1/8
l

γ2
l κ

2τ+3
l

)
,

vl3 = Oσl+1,ηl+1

( ε5/3
0 ε

1/8
l

γ2
l κ

2τ+3
l

)
,

(3.8)

such that by the change of variable Tl, equation (Eq)l is transformed into equation
(Eq)l+1:

ḣl+1 = ε0[Λl+1(ξ)hl+1 +Ml+1(φl+1, ξ) +Ql+1(φl+1, ξ)hl+1 + Fl+1(hl+1, φl+1, ξ)],

φ̇l+1 = ωl+1(ξ) + ε
5/3
0 [Nl+1(φl+1, ξ) +Gl+1(hl+1, φl+1, ξ)],

(3.9)
and conditions (A1)–(A4) are satisfied when replacing m by l + 1.

Proof. To simplify notation, we denote quantities referring to l + 1 such as Ml+1

by M+, σl+1 by σ+, and those referring to l without the l such as Nl by N , σl by
σ. By a little abuse of notation, we also denote hl+1 = h1 and φl+1 = φ1 and drop
the parameter ξ from functions whenever there is no confusion.



12 L. LU, S. LIU, J. WU EJDE-2019/88

Substituting (3.7) in (3.1) with m = l, we have

(Id + v2)ḣ1

= ε0[Λh1 + Λv1 + Λv2h1 +M(φ1 + v3) +Q(φ1 + v3)h1 +Q(φ1 + v3)v1

+Q(φ1 + v3)v2h1 + F (h1 + v1 + v2h1, φ1 + v3)]− ∂φ1
v1 · φ̇1 − ∂φ1

v2 · φ̇1h1,

(Id + ∂φ1
v3)φ̇1 = ω + ε

5/3
0 [N(φ1 + v3) +G(h1 + v1 + v2h1, φ1 + v3)].

(3.10)
Suppose that the transformation (3.7) can be solved with the homological equations

∂φ1
v1 · ω = ε0(ΓKM + Λv1), (3.11)

∂φ1
v2 · ω = ε0

[
Λv2 − v2Λ + ΓKQ− diag(Q̂11(0), Q̂22(0))

]
, (3.12)

∂φ1v3 · ω = ε
5/3
0

[
ΓKN − N̂(0)

]
. (3.13)

Plugging (3.11)–(3.13) in (3.10) and using Taylor’s formula for F (h1+v1+v2h1, φ1+
v3) and G(h1 + v1 + v2h1, φ1 + v3), we rewrite (3.10) as

ḣ1 = ε0[Λ+(ξ)h1 +M+(φ1, ξ) +Q+(φ1, ξ)h1 + F+(h1, φ1, ξ)],

φ̇1 = ω+(ξ) + ε
5/3
0 [N+(φ1, ξ) +G+(h1, φ1, ξ)],

(3.14)

where

Λ+(ξ) = Λ(ξ) + diag
(
Q̂11(0), Q̂22(0)

)
, ω+(ξ) = ω(ξ) + ε

5/3
0 N̂(0), (3.15)

N+(φ1, ξ) = (Id + ∂φ1
v3)−1

[
− ∂φ1

v3N̂(0) + (Id− ΓK)N

+G(v1, φ1 + v3) +N(φ1 + v3)−N
]
,

(3.16)

G+(h1, φ1, ξ)

= (Id + ∂φ1v3)−1
[
G(h1 + v1 + v2h1, φ1 + v3)−G(v1, φ1 + v3)

]
,

(3.17)

M+(φ1, ξ) = (Id + v2)−1
[
(Id− ΓK)M +M(φ1 + v3)−M +Q(φ1 + v3)v1

− ε2/3
0 ∂φ1v1(N̂(0) +N+) + F (v1, φ1 + v3)

]
,

(3.18)

Q+(φ1, ξ)

= (Id + v2)−1
[
(Id− ΓK)Q− v2(Λ+ − Λ) +Q(φ1 + v3)−Q

+Q(φ1 + v3)v2 − ε2/3
0 ∂φ1v2(N̂(0) +N+) + ∂hF (v1, φ1 + v3)(Id + v2)

− ε2/3
0 ∂φ1v1(Id + ∂φ1v3)−1∂hG(v1, φ1 + v3)(Id + v2)

]
,

(3.19)

F+(h1, φ1, ξ)

= (Id + v2)−1
{
− ε2/3

0 ∂φ1
v1(Id + ∂φ1

v3)−1
[
G(h1 + v1 + v2h1, φ1 + v3)

−G(v1, φ1 + v3)− ∂hG(v1, φ1 + v3)(Id + v2)h1

]
− ε2/3

0 ∂φ1v2(Id + ∂φ1v3)−1
[
G(h1 + v1 + v2h1, φ1 + v3)

−G(v1, φ1 + v3)
]
h1 + F (h1 + v1 + v2h1, φ1 + v3)− F (v1, φ1 + v3)

− ∂hF (v1, φ1 + v3)(Id + v2)h1

}
.

(3.20)
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To make the proof coherent, we divide the proof of Lemma 3.1 into several parts,
with each part containing several computations and estimates that are based on
the same idea.

3.1. Solutions of (3.11)–(3.13) and estimates. We first solve the equation (3.13).
Let N i and v3i (i = 1, 2) be the ith element of N and v3, respectively. Expand N i

and v3i into Fourier series in φ1 and truncate them by operator ΓK :

ΓKN
i =

∑
|k|≤K

N̂ i(k)e
√
−1(k,φ1), ΓKv3i =

∑
0<|k|≤K

v̂3i(k)e
√
−1(k,φ1),

where k ∈ Z2, the Fourier coefficients N̂ i(k) and v̂3i(k) rely on the parameter ξ.
Then from (3.13), we obtain

v̂3i(k) =
ε

5/3
0 N̂ i(k)√
−1(k, ω)

, 0 < |k| ≤ K, i = 1, 2. (3.21)

Since N(φ1) is real analytic in φ1 ∈ U(σ) and C1-smooth in ξ ∈ Πη, we have

|∂sξN̂ i(k)| ≤ max
s=0,1

sup
U(σ)×Πη

|∂sξN i|e−|k|σ, s = 0, 1. (3.22)

Let

Π+ =
{
ξ ∈ Π : |(k, ω)| ≥ γ

|k|τ
, 0 < |k| ≤ K

}
.

For every ξ ∈ Π
η+
+ , there is a ξ0 ∈ Π+ such that |ξ− ξ0| < η+, and for 0 < |k| ≤ K,

we have

|
(
k, ω(ξ)

)
| =

∣∣(k, ω(ξ0)
)

+
(
k, ω(ξ)

)
−
(
k, ω(ξ0)

)∣∣
≥ γ

|k|τ
− 2d0η+K ≥

γ

2|k|τ

by (3.3). Differentiating (3.21) in ξ and using (3.3) again, we obtain

max
s=0,1

|∂sξ v̂3i(k)| ≤ Cε5/3
0 max

s=0,1
|∂sξN̂ i(k)‖k|2τ+1/γ2 ≤ Cε5/3

0 ‖N i‖σ,ηe−|k|σ|k|2τ+1/γ2,

for ξ ∈ Π
η+
+ . Hence, by (3.4) with m = l and Lemma 4.2, we have

‖v3‖σ−κ,η+ ≤
∑
|k|≤K

(max
s=0,1

sup
ξ∈Π

η+
+

|∂sξ v̂3(k)|)e|k|(σ−κ)

≤ Cε5/3
0 ‖N‖σ,η

∑
k∈Z2

e−|k|κ|k|2τ+1/γ2

≤ Cε5/3
0 ε1/8γ−2κ−(2τ+3).

(3.23)

By using the Cauchy inequality, it follows that

∂φ1
v3 = Oσ+,η+

(
ε

5/3
0 ε1/8γ−2κ−(2τ+4)

)
. (3.24)

Next we solve (3.12). Let Qij and vij2 (i, j = 1, 2) be the elements of Q and v2,

respectively. Expand Qij and vij2 into Fourier series in φ1 and truncate them by
operator ΓK :

ΓKQ
ij =

∑
|k|≤K

Q̂ij(k)e
√
−1(k,φ1), ΓKv

ij
2 =

∑
|k|≤K

v̂ij2 (k)e
√
−1(k,φ1),
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where k ∈ Z2, the Fourier coefficients Q̂ij(k) and v̂ij2 (k) rely on the parameter ξ.
Then by (3.12), we obtain

v̂ij2 (k) =


ε0Q̂

ij(k)

ε0λj−ε0λi+
√
−1(k,ω)

, if i 6= j

ε0Q̂
ii(k)√

−1(k,ω)
, if k 6= 0, i = j

(3.25)

for |k| ≤ K. Since ε0, λ1 and λ2 are real, Q(φ1) and N(φ1) are real analytic in
φ1 ∈ U(σ), from (3.4) and (3.15) it follows that λ+

1 , λ
+
2 and ω+ are real and satisfy

condition (A1) with m = l + 1. Obviously, for ξ ∈ Π+, 0 < |k| ≤ K, we obtain

|
√
−1
(
k, ω(ξ)

)
+ ε0λ1(ξ)− ε0λ2(ξ)| ≥ |

(
k, ω(ξ)

)
| ≥ γ

|k|τ
.

Similarly, for ξ ∈ Π
η+
+ , 0 < |k| ≤ K, by (3.3) we have

|
√
−1
(
k, ω(ξ)

)
+ ε0λ1(ξ)− ε0λ2(ξ)| ≥ γ

2|k|τ
.

Differentiating (3.25) in ξ and using (3.3), we obtain

max
s=0,1

|∂sξ v̂
ij
2 (k)| ≤ Cε0 max

s=0,1
|∂sξ Q̂ij(k)‖k|2τ+1/γ2

≤ Cε0‖Qij‖σ,ηe−|k|σ|k|2τ+1/γ2,
(3.26)

for ξ ∈ Π
η+
+ . Hence, by (3.3) and (3.4) with m = l, (3.25) and Lemma 4.2 again,

we have

‖v2 − v̂2(0)‖σ−κ,η+ ≤
∑
|k|≤K

(max
s=0,1

sup
ξ∈Π

η+
+

|∂sξ v̂2(k)|)e|k|(σ−κ)

≤ Cε0‖Q‖σ,η
∑
k∈Z2

e−|k|κ|k|2τ+1/γ2

≤ Cε0ε
1/8γ−2κ−(2τ+3),

‖v2‖σ−κ,η+ ≤
∥∥ Q̂(0)

λ1 − λ2

∥∥
η+

+ Cε0ε
1/8γ−2κ−(2τ+3) ≤ Cε1/8γ−2κ−(2τ+3).

(3.27)

Then by the Cauchy inequality, it follows that

∂φ1v2 = Oσ+,η+(ε0ε
1/8γ−2κ−(2τ+4)). (3.28)

Finally, we solve (3.11). Let M i and v1i (i = 1, 2) be the i-th elements of M and
v1, respectively. Expand M i and v1i into Fourier series in φ1 and truncate them
by operator ΓK ,

ΓKM
i =

∑
|k|≤K

M̂ i(k)e
√
−1(k,φ1), ΓKv1i =

∑
|k|≤K

v̂1i(k)e
√
−1(k,φ1),

where k ∈ Z2, the Fourier coefficients M̂ i(k) and v̂1i(k) rely on the parameter ξ.
Then by (3.11), we obtain

v̂1i(k) =
ε0M̂

i(k)√
−1(k, ω)− ε0λi

, |k| ≤ K, i = 1, 2. (3.29)
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By similar estimates for equation (3.12), we obtain

‖v1 − v̂1(0)‖σ−κ,η+ = max
s=0,1

sup
U(σ−κ)×Π

η+
+

|∂sξv1|

≤
∑
|k|≤K

(max
s=0,1

sup
ξ∈Π

η+
+

|∂sξ v̂1(k)|)e|k|(σ−κ)

≤ Cε0‖M‖σ,η
∑
k∈Z2

e−|k|κ|k|2τ+1/γ2

≤ Cε0ε
1/6γ−2κ−(2τ+3),

‖v1‖σ−κ,η+ ≤ max
i=1,2

∥∥M̂(0)

λi

∥∥
η+

+ Cε0ε
1/6γ−2κ−(2τ+3)

≤ Cε1/6γ−2κ−(2τ+3).

(3.30)

Using the Cauchy inequality, we obtain

∂φ1
v1 = Oσ+,η+(ε0ε

1/6γ−2κ−(2τ+4)). (3.31)

Obviously, the transformation Tl maps W (s+, σ+) into W (s − κ, σ) ⊂ W (s, σ) by
estimates (3.8) when we choose ε0 sufficiently small.

3.2. Estimates for perturbations (3.16)-(3.20). Since (Id + v2)−1 = Id − v2 +
v2

2 − v3
2 + . . . , we obtain

‖(Id + v2)−1‖σ+,η+ ≤
∞∑
i=0

‖v2‖iσ+,η+ ≤ C (3.32)

by (3.8). Similarly, we have

‖(Id + ∂φ1v3)−1‖σ+,η+ ≤
∞∑
i=0

‖∂φ1v3‖iσ+,η+ ≤ C. (3.33)

From (3.5) with m = l, (3.8), (3.17), (3.20), (3.28) and (3.31), it is easy to see that
G+ and F+ satisfy the condition (A3) with m = l + 1, and

‖G(v1, φ1 + v3)‖σ+,η+ = ε
1/6
0 Oσ+,η+(‖v1‖) = Oσ+,η+(ε

1/6
0 ε1/6γ−2κ−(2τ+3)). (3.34)

From the Cauchy inequality, (3.4) with m = l and (3.8), it follows that

‖N(φ1 + v3)−N‖σ+,η+ ≤ Cκ−1‖N‖σ,η‖v3‖σ+,η+

≤ Cε5/3
0 ε1/4γ−2κ−(2τ+4),

(3.35)

‖M(φ1 + v3)−M‖σ+,η+ ≤ Cκ−1‖M‖σ,η‖v3‖σ+,η+

≤ Cε5/3
0 ε7/24γ−2κ−(2τ+4),

(3.36)

‖Q(φ1 + v3)−Q‖σ+,η+ ≤ Cκ−1‖Q‖σ,η‖v3‖σ+,η+ ≤ Cε
5/3
0 ε1/4γ−2κ−(2τ+4). (3.37)

Now we estimate N+(φ1, ξ), M+(φ1, ξ) and Q+(φ1, ξ). By (3.4) with m = l, (3.16),
(3.24), (3.33)–(3.35) and Lemma 4.3, we obtain

‖N+‖σ+,η+ ≤ ‖(Id + ∂φ1
v3)−1‖σ+,η+

∥∥− ∂φ1
v3N̂(0) + (Id− ΓK)N

+G(v1, φ1 + v3) +N(φ1 + v3)−N
∥∥
σ+,η+

≤ C
(
‖∂φ1

v3‖σ+,η+‖N‖σ+,η+ + ‖(Id− ΓK)N‖σ+,η+

+ ‖N(φ1 + v3)−N‖σ+,η+ + ‖G(v1, φ1 + v3)‖σ+,η+

)
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≤ C
( ε5/3

0 ε1/4

γ2κ2τ+4
+ ‖N‖σ,η+K2e−κK +

ε
1/6
0 ε1/6

γ2κ2τ+3

)
≤ ε1/8

+ .

Using (3.5) with m = l, we obtain

‖F (v1, φ1 + v3)‖σ+,η+ = ε
1/6
0 Oσ+,η+(‖v1‖2σ+,η+)

= Oσ+,η+(ε
1/6
0 ε1/3γ−4κ−(4τ+6)),

(3.38)

‖∂hF (v1, φ1 + v3)‖σ+,η+ = ε
1/6
0 Oσ+,η+(‖v1‖σ+,η+)

= Oσ+,η+(ε
1/6
0 ε1/6γ−2κ−(2τ+3)).

(3.39)

From (3.4) with m = l, (3.8), (3.18), (3.31), (3.32), (3.36), (3.38), Lemma 4.3 and
‖N+‖σ+,η+ it follows that

‖M+‖σ+,η+

≤ ‖(Id + v2)−1‖σ+,η+

(
‖(Id− ΓK)M‖σ+,η+ + ‖M(φ1 + v3)−M‖σ+,η+

+ ε
2/3
0 ‖∂φ1v1(N̂(0) +N+)‖σ+,η+ + ‖Q(φ1 + v3)v1‖σ+,η+

+ ‖F (v1, φ1 + v3)‖σ+,η+

)
≤ C

(
‖M‖σ,η+K2e−κK +

ε7/24

γ2κ2τ+3
+
ε

1/6
0 ε1/3

γ4κ4τ+6

)
≤ ε1/6

+ .

Similarly, by (3.4) and (3.5) with m = l, (3.8), (3.19), (3.28), (3.31)-(3.33), (3.37),
(3.39) and Lemma 4.3, we obtain

‖Q+‖σ+,η+

= ‖(Id + v2)−1‖σ+,η+

(
ε

2/3
0 ‖∂φ1v1(Id + ∂φ1v3)−1∂hG(v1, φ1 + v3)(Id + v2)‖σ+,η+

+ ‖(Id− ΓK)Q‖σ+,η+ + ‖v2(Λ+ − Λ)‖σ+,η+ + ‖Q(φ1 + v3)−Q‖σ+,η+

+ ‖Q(φ1 + v3)v2‖σ+,η+ + ε
2/3
0 ‖∂φ1v2(N̂(0) +N+)‖σ+,η+

+ ‖∂hF (v1, φ1 + v3)(Id + v2)‖σ+,η+

)
≤ C

( ε5/3
0 ε1/6

γ2κ2τ+4
+ ‖Q‖σ,η+K2e−κK +

ε1/4

γ2κ2τ+3
+
ε

1/6
0 ε1/6

γ2κ2τ+3

)
≤ ε1/8

+ .

Thus, we verify condition (A2) with m = l + 1.

3.3. Non-degeneracy condition and measure of the non-resonant set. From
(3.4) and (3.15), it follows that

inf
ξ∈Π

η+
+

∣∣det
∂ω+

∂ξ

∣∣ = inf
ξ∈Π

η+
+

∣∣∣det(
∂ω0

∂ξ
+ ε

5/3
0

l∑
m=0

∂N̂m(0)

∂ξ
)
∣∣∣ ≥ χ+ ≥

1

2
χ0,

the non-degeneracy condition is held with m = l + 1. Let

Rk =
{
ξ ∈ Π : |(k, ω)| < γ

|k|τ
, 0 < |k| ≤ K

}
, R = ∪0 6=|k|≤KRk.
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Then

Π+ = Π\R.
By (A1) with m = l and Lemma 4.4, we obtain

measRk ≤
4γ

χ0|k|τ+1
meas Π,

measR ≤ 4

χ0
γmeas Π

∑
0 6=k∈Z2

|k|−(τ+1) ≤ C0γmeas Π.

Therefore,

meas Π+ ≥ meas Π−measR ≥ meas Π(1− C0γ),

and the condition (A4) is satisfied with m = l + 1. The proof of Lemma 3.1 is
complete. �

4. A KAM theorem and Proof of Theorem 2.2

Theorem 4.1. Suppose that

ḣ0 = ε0[Λ0(ξ)h0 +M0(φ0, ξ) +Q0(φ0, ξ)h0 + F0(h0, φ0, ξ)],

φ̇0 = ω0(ξ) + ε
5/3
0 [N0(φ0, ξ) +G0(h0, φ0, ξ)]

(4.1)

satisfy conditions (A1)–(A4) in Lemma 3.1 with m = 0. Then for any given 0 <
γ � 1, there exists a sufficiently small positive number ε∗0 = O(γs∗) with s∗ ≥ 29,
such that if 0 < ε < ε∗0, then there exists a Cantorian closed subset Π∞ ⊂ Π0

with meas Π∞ = meas Π0 − O(γ) such that for any ξ ∈ Π∞, by the coordinate
transformation

T : h0 = h̃+ V1(φ̃, ξ) + V2(φ̃, ξ)h̃, φ0 = φ̃+ V3(φ̃, ξ), ξ = ξ

in which V1, V2, V3 are real analytic in φ̃ ∈ U(σ0

2 ) and Lipschitz in ξ ∈ Π∞, equation
(4.1) can be transformed into

˙̃
h = ε0[Λ∞(ξ)h̃+ F∞(h̃, φ̃, ξ)],

˙̃
φ = ω∞(ξ) + ε

5/3
0 G∞(h̃, φ̃, ξ),

(4.2)

where

F∞(h̃, φ̃, ξ) = ε
1/6
0 O s0

2 ,
σ0
2 ,Π∞

(h̃2), G∞(h̃, φ̃, ξ) = ε
1/6
0 O s0

2 ,
σ0
2 ,Π∞

(h̃),

sup
ξ∈Π∞

‖Λ0(ξ)− Λ∞(ξ)‖ ≤ Cε1/8
0 , sup

ξ∈Π∞

‖ω0(ξ)− ω∞(ξ)‖ ≤ Cε43/24
0 .

Moreover, h̃ = 0, φ̃ = φ∗ + ω∞(ξ)t is a trivial solution of (4.2), here φ∗ represents
an initial value of angle variables. It means that

h0 = V1(φ∗ + ω∞(ξ)t, ξ), φ0 = φ∗ + ω∞(ξ)t+ V3(φ∗ + ω∞(ξ)t, ξ)

is a real analytic quasi-periodic solution of (4.1). Meanwhile, the functions V1(φ̃, ξ),

V2(φ̃, ξ) and V3(φ̃, ξ) satisfy the estimates

sup
T2×Π∞

‖V1‖ ≤ Cε2/25
0 , sup

T2×Π∞

‖V2‖ ≤ Cε3/58
0 , sup

T2×Π∞

‖V3‖ ≤ Cε41/24
0 .
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Proof. Since conditions (A1)–(A4) with m = 0 are satisfied for equation (4.1), we
obtain a sequence of domains

W (s0, σ0) ⊃W (s1, σ1) ⊃ · · · ⊃W (sl, σl) ⊃ · · · ⊃W (
s0

2
,
σ0

2
)

by induction, a sequence of closed subsets

Π0 ⊃ Π1 ⊃ · · · ⊃ Πl ⊃ . . .

and a sequence of transformations Tl such that (Eq)l ◦ Tl = (Eq)l+1.
For given integer l ≥ 1, using (3.15), we obtain

Λl+1(ξ) = Λ0(ξ) + diag(Q̂11
0 (0), Q̂22

0 (0)) + · · ·+ diag(Q̂11
l (0), Q̂22

l (0)),

ωl+1(ξ) = ω0(ξ) + ε
5/3
0 N̂0(0) + ε

5/3
0 N̂1(0) + · · ·+ ε

5/3
0 N̂l(0).

From (3.4), it follows that {Λl(ξ)} and {ωl(ξ)} are uniformly convergent on Π∞
and

sup
ξ∈Π∞

‖Λ0(ξ)− Λl+1(ξ)‖ ≤ C
l∑
i=0

ε
1/8
i ≤ C

∞∑
i=0

ε
1/8
i ≤ Cε1/8

0 ,

sup
ξ∈Π∞

‖ω0(ξ)− ωl+1(ξ)‖ ≤ Cε5/3
0

l∑
i=0

ε
1/8
i ≤ Cε5/3

0

∞∑
i=0

ε
1/8
i ≤ Cε43/24

0 .

Taking the limit as l→∞, we obtain

sup
ξ∈Π∞

‖Λ0(ξ)− Λ∞(ξ)‖ ≤ Cε1/8
0 , sup

ξ∈Π∞

‖ω0(ξ)− ω∞(ξ)‖ ≤ Cε43/24
0 .

Next we prove that the composition of the transformation (3.7) is convergent.
For ξ ∈ Π

ηl+1

l+1 , if ε is sufficiently small, then by (3.7) and (3.8) we can easily verify

that Tl maps U(σl+1) into U(σl), the composite transformation T̃l = T0 ◦T1 ◦· · ·◦Tl
maps U(σl+1) into U(σ0) and can be explicitly written as

h0 = hl+1 + ṽl1(φl+1, ξ) + ṽl2(φl+1, ξ)hl+1, φ0 = φl+1 + ṽl3(φl+1, ξ), ξ = ξ,

where

ṽl1(φl+1, ξ) = v0
1(φ1, ξ) +

l−1∑
m=0

{( m∏
i=0

(Id + vi2(φi+1, ξ))
)
vm+1

1 (φm+2, ξ)
}
,

ṽl2(φl+1, ξ) =

l∏
i=0

(Id + vi2(φi+1, ξ))− Id, ṽl3(φl+1, ξ) =

l∑
i=0

vi3(φi+1, ξ).

(4.3)

Using (3.23), (3.27), (3.30), (3.32) and (4.3), we obtain

sup
U(σl+1)×Π

ηl+1
l+1

‖ṽl1‖ ≤ C
( ε

1/6
0

γ2
0κ

2τ+3
0

+
ε

1/6
1

γ2
1κ

2τ+3
1

+ · · ·+
ε

1/6
l

γ2
l κ

2τ+3
l

)
≤ Cε

1
6−

2
s∗

0 ≤ Cε
2
25
0 ,

(4.4)

sup
U(σl+1)×Π

ηl+1
l+1

‖ṽl2‖ ≤ C
( ε

1/8
0

γ2
0κ

2τ+3
0

+
ε

1/8
1

γ2
1κ

2τ+3
1

+ · · ·+
ε

1/8
l

γ2
l κ

2τ+3
l

)
≤ Cε

1
8−

2
s∗

0 ≤ Cε
3
58
0 ,

(4.5)
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sup
U(σl+1)×Π

ηl+1
l+1

‖ṽl3‖ ≤ C
( ε5/3

0 ε
1/8
0

γ2
0κ

2τ+3
0

+
ε

5/3
0 ε

1/8
1

γ2
1κ

2τ+3
1

+ · · ·+
ε

5/3
0 ε

1/8
l

γ2
l κ

2τ+3
l

)
≤ Cε

43
24−

2
s∗

0 ≤ Cε41/24
0 ,

(4.6)

where ṽl1, ṽl2 and ṽl3 are real analytic in φl+1 ∈ U(σl+1) and C1-smooth in ξ ∈ Π
ηl+1

l+1 .
Let

V1 = lim
l→∞

ṽl1, V2 = lim
l→∞

ṽl2, V3 = lim
l→∞

ṽl3,

T = lim
l→∞

T̃l, Π∞ = ∩∞m=0Πm.
(4.7)

Then ṽl1, ṽ
l
2 and ṽl3 converge uniformly to V1, V2 and V3, respectively, and

sup
T2×Π∞

‖V1‖ ≤ Cε
2
25
0 , sup

T2×Π∞

‖V2‖ ≤ Cε
3
58
0 , sup

T2×Π∞

‖V3‖ ≤ Cε41/24
0 .

By (3.6), we obtain

meas Π∞ = lim
l→∞

meas Πl = meas Π0 −O(γ).

Now we prove that V1, V2 and V3 are Lipschitz in ξ ∈ Π∞. As liml→∞ ε
1/16
l η−1

l+1 =

0, there exists a constant C such that ε
1/16
l η−1

l+1 ≤ C. For ξ1, ξ2 ∈ Πl+1, if |ξ1−ξ2| ≥
2ηl+1, from (3.8) we obtain

sup
φl+1∈U(σl+1)

‖vl3(φl+1, ξ
1)− vl3(φl+1, ξ

2)‖

≤ Cε5/3
0 ε

1/8
l γ−2

l κ
−(2τ+3)
l ≤ Cε5/3

0 ε
1/16
l γ−2

l κ
−(2τ+3)
l |ξ1 − ξ2|;

if |ξ1 − ξ2| < 2ηl+1, by (3.8) and the mean value theorem, we obtain

sup
φl+1∈U(σl+1)

‖vl3(φl+1, ξ
1)− vl3(φl+1, ξ

2)‖

≤ ‖vl3‖σl+1,ηl+1
|ξ1 − ξ2| ≤ Cε5/3

0 ε
1/16
l γ−2

l κ
−(2τ+3)
l |ξ1 − ξ2|.

Thus, vl3 is Lipschitz with respect to ξ ∈ Πl+1. Similarly, by (3.8) again, we can
obtain that vl1 and vl2 are Lipschitz with respect to ξ ∈ Πl+1. Therefore, by (4.3)
and (4.7), it implies that V1, V2 and V3 are Lipschitz with respect to ξ ∈ Π∞. Then
equation (4.1) can be changed into

˙̃
h = ε0[Λ∞(ξ)h̃+ F∞(h̃, φ̃, ξ)],

˙̃
φ = ω∞(ξ) + ε

5/3
0 G∞(h̃, φ̃, ξ)

by the transformation T , where F∞(h̃, φ̃, ξ) = ε
1/6
0 O s0

2 ,
σ0
2 ,Π∞

(h̃2), G∞(h̃, φ̃, ξ) =

ε
1/6
0 O s0

2 ,
σ0
2 ,Π∞

(h̃). In particular, h̃ = 0, φ̃ = φ∗ + ω∞(ξ)t is a trivial solution of

above equation, and

h0 = V1(φ∗ + ω∞(ξ)t, ξ), φ0 = φ∗ + ω∞(ξ)t+ V3(φ∗ + ω∞(ξ)t, ξ)

is a real analytic quasi-periodic solution of (4.1). �

Proof of Theorem 2.2. We only need to prove Theorem 2.2 for equation (2.13).
Suppose that ξ = (a, b) ∈ [1, 2]× [5, 6], ω0 = (Ω1,Ω2)T ,

Λ0 = diag
(
λ0

1, λ
0
2

)
= diag

(1

3
,−1

)
,
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Ω1 =

√
4b− 8a− ε2

2
, Ω2 =

√
4b− ε2

2
.

Then there exist positive constants c0, ζ0, d0 and χ0 such that

inf
ξ∈Π

η0
0

|λ0
1(ξ)− λ0

2(ξ)| ≥ c0, ‖λ0
1 − λ0

2‖η0 ≤ ζ0, inf
ξ∈Π

η0
0

∣∣∣det
∂ω0

∂ξ

∣∣∣ ≥ χ0

‖ω0(ξ)‖η0 ≤ d0, inf
ξ∈Π

η0
0

|λ0
j (ξ)| ≥ c0, ‖λ0

j‖η0 ≤ ζ0, j = 1, 2

for ξ ∈ Πη0
0 . Hence, the system (2.13) satisfies conditions (A1)–(A4) with m = 0.

By Theorem 4.1, we obtain the result in Theorem 2.2. �

sectionAppendix

Lemma 4.2 ([3, 41]). For δ > 0 and µ > 0, it holds∑
k∈Zn

e−2|k|δ|k|µ ≤
(µ
e

)µ 1

δµ+n
(1 + e)n.

Lemma 4.3 ([30]). Denote by As the space of all functions on Tn bounded and
analytic in the strip {φ : | Imφ| ≤ s}. If v ∈ As and Kσ ≥ 1, then

‖(Id− ΓK)v‖s−σ ≤ CKne−Kσ‖v‖s, 0 ≤ σ ≤ s,
where the constant C depends only on n.

Lemma 4.4. Suppose that Π ⊂ Rn is a bounded closed set with positive Lebesgue
measure and that Πη is a neighborhood of Π, f(x) is continuously differentiable in
x ∈ Πη. If there are two positive constants a and b such that

inf
x∈Πη

∣∣det
∂f

∂x

∣∣ ≥ a, sup
x∈Πη

‖f(x)‖ ≤ b, sup
x∈Πη

∥∥∂f
∂x

∥∥ ≤ b,
then

ameas Π ≤ meas f{Π} ≤ bmeas Π.

Proof of results similar to the one above can be found in [3, 19].
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