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HOMOCLINIC SOLUTIONS OF DISCRETE NONLINEAR

SCHRÖDINGER EQUATIONS WITH PARTIALLY

SUBLINEAR NONLINEARITIES

GENGHONG LIN, JIANSHE YU, ZHAN ZHOU

Abstract. We consider a class of discrete nonlinear Schrödinger (DNLS)

equations in m dimensional lattices with partially sublinear nonlinearity f .
Combining variational methods and a priori estimate, we give a general suffi-

cient condition on f for type (A), that is, a sequence of nontrivial homoclinic

solutions accumulating to zero. By using a compact embedding technique, we
overcome the loss of compactness due to the problem being set on the un-

bounded domain Zm. Another obstacle caused by the local definition of f is

solved by using the cutoff methods to recover the global property of f . To the
best of our knowledge, this is the first time to obtain infinitely many homo-

clinic solutions for the DNLS equations with partially sublinear nonlinearity.
Moreover, we prove that if f is not sublinear, the zero solution is isolated from

other homoclinic solutions. Our results show that the sublinearity and oddness

of f yield type (A). Without the oddness assumption, we still can prove that
this problem has at least a nontrivial homoclinic solution if f is local sublinear,

which improves some existing results.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation serves widely the field of
nonlinear science, ranging from condensed matter physics to biology [12, 18, 24].
Breathers (one kind of solutions with periodic time behavior) exist in the DNLS
equations and have been observed in experiments [7, 13, 14]. In the past decade,
the existence of breathers of the DNLS equations has been a very hot topic [1, 2, 3,
16, 26, 43]. Methods such as the principle of anticontinuity [2, 26], centre manifold
reduction [16] and variational methods [1, 3, 31] were used. It is worth mention-
ing that variational methods are powerful for obtaining the existence of solutions of
difference equations [1, 3, 19, 28, 29, 41]. Based on variational approaches, the exis-
tence and multiplicity results of breathers for the DNLS equations have been proved
under different assumptions on the nonlinearities; see [17, 25, 27, 30, 35, 36, 40] for
the superlinear nonlinearity, [5, 15, 19, 31, 41, 42] for the saturable (asymptoti-
cally linear) nonlinearity and [20, 21, 22] for mixed nonlinearity. However, only
a few results were obtained on the existence of breathers for the DNLS equations
with sublinear nonlinearity [6, 9, 34]. Since it appears in inflation cosmology and
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supersymmetric field theories, quantum mechanics and nuclear physics [4, 8, 10],
the sublinear nonlinearity is of much interest in physics. How does the sublinear
nonlinearity affect the existence of breathers for the DNLS equations remains to be
fully understood.

Assume that m is a positive integer. We consider the DNLS equation in m
dimensional lattices with attractive self-interaction

iψ̇n = −∆ψn + vnψn − fn(ψn), n = (n1, n2, . . . , nm) ∈ Zm, (1.1)

where

∆ψn = ψ(n1+1,n2,...,nm) + ψ(n1,n2+1,...,nm) + . . .

+ ψ(n1,n2,...,nm+1) − 2mψ(n1,n2,...,nm)

+ ψ(n1−1,n2,...,nm) + ψ(n1,n2−1,...,nm) + · · ·+ ψ(n1,n2,...,nm−1)

is the discrete Laplacian in m spatial dimension, and {vn} is a real-valued sequence
satisfying the assumption

(A1) the discrete potential V = {vn}n∈Zm is bounded from below.

Under this condition, the discrete potential V = {vn} is allowed to change sign or
to be unbounded from above. We assume further that the nonlinearity fn(u) is
gauge invariant, i.e.,

fn(eiθu) = eiθfn(u), θ ∈ R. (1.2)

Since breathers are spatially localized time-periodic solutions and decay to zero at
infinity. Thus ψn has the form

ψn = une
−iωt,

and

lim
|n|→∞

ψn = 0,

where {un} is a real-valued sequence, ω ∈ R is the temporal frequency, and |n| =
|n1|+ |n2|+ · · ·+ |nm| is the length of multi-index n. Then (1.1) becomes

Lun − ωun = fn(un), n ∈ Zm, (1.3)

and

lim
|n|→∞

un = 0, (1.4)

where L = −∆ + V is a self-adjoint operator [33] defined by

Lun = −∆un + vnun, n ∈ Zm.

If fn(0) ≡ 0, then un ≡ 0 is a solution of (1.3), which is called the trivial solution.
As usual, we say that a solution u = {un} of (1.3) is homoclinic (to 0) if (1.4) holds.
To find breathers of (1.1), we just need to seek the homoclinic solutions of (1.3).

In this paper, we use the variant of Clark’s theorem posted by Liu-Wang [23] to
the problem above and prove the existence of a sequence of nontrivial homoclinic
solutions converging to the zero solution if the nonlinear term fn(u) is sublinear and
odd with respect to u, i.e., fn(−u) = fn(u). We call fn(u) sublinear if it satisfies

lim
u→0

Fn(u)

u2
= +∞ where Fn(u) =

∫ u

0

fn(s)ds, (1.5)
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meaning roughly that the nonlinear term, like fn(u) = |u|p−2u with 0 < p < 2, has
a growth order less than one in a neighborhood of u = 0. Condition (1.5) is weaker
than the condition

lim
u→0

fn(u)

u
= +∞. (1.6)

It is easy to verify that (1.6) implies (1.5) by using the L’Hospital rule. Moreover,
we prove that if fn(u) is not sublinear, the zero solution is isolated from other
homoclinic solutions. The oddness assumption on fn(u) is important, since it is
necessary for applying the variant Clark’s theorem.

We first introduce some notation. Let

lp ≡
{
u = {un}n∈Zm : un ∈ R, n ∈ Zm, ‖u‖p =

( ∑
n∈Zm

|un|p
)1/p

<∞
}
. (1.7)

Then the following embedding between lp spaces holds,

lq ⊂ lp, ‖u‖p ≤ ‖u‖q, 1 ≤ q ≤ p ≤ ∞. (1.8)

It follows from (A1) that the self-adjoint operator L is bounded from below in l2.
Thus, the spectrum σ(L) of L is also bounded from below. We denote

α = inf σ(L).

In this article, we focus on the homoclinic solutions of (1.3) for the case where
ω < α.

Equation (1.3) with the zero solution can been classified into the following two
types:

(A) the zero solution is an accumulation point of the set of all homoclinic solu-
tions,

(I) the zero solution is an isolated point of the set of all homoclinic solutions.

In the above statement, we adopt the l∞-topology. Then types (A) and (I) are
rewritten as

(A) there exists a sequence of nontrivial homoclinic solutions for (1.3) whose
l∞-norm converges to zero,

(I) there exists a constant C > 0 such that ‖u‖∞ ≥ C > 0 for all nontrivial
homoclinic solutions u of (1.3).

Unlike type (A), many existing results concentrated on the existence of a se-
quence of solutions going to infinity [6, 17, 22, 36, 40]. However, we mainly focus
on types (A) and (I). The most typical example of type (I) is a discrete nonlinear
Emden-Fowler equation,

−∆un + un = γn|un|p−2un, n ∈ Zm, lim
|n|→∞

un = 0, (1.9)

with a superlinear exponent 2 < p < ∞ and 0 < γn < ∞ for n ∈ Zm. In fact, if u
is a nontrivial homoclinic solution of (1.9) in l2, then we take the l2 inner product
(·, ·) of (1.9) with u to obtain

‖u‖22 ≤ ((−∆ + 1)u, u) =
∑
n∈Zm

γn|un|p ≤ γ∗‖u‖p−2∞ ‖u‖22,

where γ∗ = sup{γn}. Dividing both sides by ‖u‖22, we have 1 ≤ γ∗‖u‖p−2∞ , which
is a priori lower estimate of all nontrivial homoclinic solutions. Hence the zero
solution of (1.9) with a superlinear exponent p is isolated from other homoclinic
solutions in l2.
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A typical example of type (A) is (1.9) with 1 < p < 2 and a positive-valued
sequence γ = {γn} ∈ l2/(2−p). To explain this assertion, we have the following
result, which will be proved as a corollary of our main theorem (Theorem 2.1 in
Section 2).

Theorem 1.1. Assume that fn(u) is an odd continuous function with respect to u
on [−ε, ε] with some ε > 0 for n ∈ Zm. Assume further that there exist a constant
1 < ν < 2 and a positive-valued sequence a = {an} ∈ l2/(2−ν) such that

|fn(u)| ≤ an|u|ν−1, u ∈ [−ε, ε], n ∈ Zm. (1.10)

If ω < α and (1.5) holds uniformly for n ∈ Zm, then there exists a sequence of
nontrivial homoclinic solutions for (1.3) whose l∞-norm converges to zero.

As a direct corollary of Theorem 1.1, we have the next result of (1.9) on the
accumulation of the zero solution.

Corollary 1.2. Equation (1.9) has a sequence of nontrivial homoclinic solutions
whose l∞-norm converges to zero if 1 < p < 2 and the positive-valued sequence
γ = {γn} belongs to l2/(2−p).

It is easy to verify that (1.9) with 1 < p < 2 and the positive-valued sequence
γ = {γn} ∈ l2/(2−p) implies (1.5) and (1.10). Hence Corollary 1.2 follows from
Theorem 1.1.

The purpose of this paper is to weaken the assumptions in Theorem 1.1 and to
find a general sufficient condition on fn(u) for type (A). Our results show that the
sublinearity and oddness of fn(u) of (1.3) yield a sequence of nontrivial homoclinic
solutions converging to zero. To the best of our knowledge, this is the first time to
obtain infinitely many homoclinic solutions for (1.3) with partially (local) sublinear
nonlinearity. The oddness assumption on fn(u) is only used for applying the variant
Clark’s theorem, which is a very powerful tool for obtaining the multiplicity results.
Even if there is no oddness assumption on fn(u), we still can prove the existence of
homoclinic solutions of (1.3). Moreover, we will give a criterion to make sure that
(1.3) is of type (I).

The main idea in this paper is as follows. Note that the DNLS equation (1.3) will
face to the loss of compactness due to the problem is set on the unbounded domain
Zm. To overcome this difficulty, a compact embedding technique has been used
according to a rather mild condition (A3) (given in Section 2). Another obstacle
of (1.3) is caused by the local definition of sublinear terms, which may let the
functional J (defined by (3.2) in Section 3) do not make sense. We use a cutoff
method to recover the global property of sublinear terms, allowing us to apply the
critical point theory.

The remaining of this paper is organized as follows: Section 2 is the statement
of our main results and its explanation. In Section 3, we first establish the varia-
tional framework associated with (1.3), transferring the problem of the homoclinic
solutions of (1.3) into that of critical points of the corresponding functional J , and
then present the proof of our main results. Some discussion will be made in Section
4.

To obtain the main results, for the reader’s convenience, we include this section
by citing some basic notations and some known results from the critical point
theory.
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Definition 1.3 ([32]). Let E be a real Banach Space and J ∈ C1(E,R). A sequence
{un} ⊂ E is called a Palais-Smale sequence (P.S. sequence for short) for J if J(un)
is bounded and J ′(un) → 0 as n → ∞. We say J satisfies the Palais-Smale
condition (P.S. condition for short) if any P.S. sequence for J possesses a convergent
subsequence.

Lemma 1.4 ([32]). Let E be a real Banach space and J ∈ C1(E,R) satisfy the
P.S. condition. If J is bounded from below, then c = infE J is a critical value of J .

Lemma 1.5 ([23]). Let E be a real Banach space and J ∈ C1(E,R). Assume J
satisfies the P.S. condition, is even and bounded from below, and J(0) = 0. If for
any k ∈ N, there exists a k-dimensional subspace Ek of E and ρk > 0 such that
supEk∩Sρk

J < 0, where Sρ = {u ∈ X| ‖u‖ = ρ}, then at least one of the following

conclusions holds.

(i) There exists a sequence of critical points {uk} satisfying J(uk) < 0 for all
k and ‖uk‖ → 0 as k →∞.

(ii) There exists r > 0 such that for any 0 < a < r there exists a critical point
u such that ‖u‖ = a and J(u) = 0.

2. Main results

We first present some assumptions in order to establish our results in this paper.

(A2) fn(u) is an odd continuous function with respect to u on [−ε, ε] with some
ε > 0 for n ∈ Zm.

(A3) There exist two constants 1 ≤ ν1 < ν2 < 2 and two positive-valued se-
quences ai = {ai,n} ∈ l2/(2−νi) of i = 1, 2, such that

|fn(u)| ≤ a1,n|u|ν1−1 + a2,n|u|ν2−1 (2.1)

for u ∈ [−ε, ε] and n ∈ Zm.
(A4) There exists an infinite sequence I = {n(i)} ⊆ Zm such that (1.5) holds

uniformly for n ∈ I.

Under the above assumptions, we have the following result.

Theorem 2.1. Assume that (A1) holds, and fn(u) satisfies (A2)–(A4). If ω < α,
then (1.3) is of type (A), that is, there exists a sequence of nontrivial homoclinic
solutions for (1.3) whose l∞-norm converges to zero.

Remark 2.2. Under condition (A1), the discrete potential V = {vn} is allowed
to change sign or to be unbounded from above in this paper. The existence of
a sequence of homoclinic solutions diverging to infinity for (1.3) with unbounded
potential (vn → +∞ as |n| → +∞) has been studied in many papers [6, 17, 22,
36, 40]. Unlike these existing results, we can obtain infinitely many homoclinic
solutions of (1.3) converging to zero, even for the unbounded potential case.

Remark 2.3. We emphasize that in Theorem 2.1, the conditions on the nonlinear
term fn(u) are supposed near u = 0 only and there are no conditions for large
|u|. This is very important. Indeed, this assumption allows us to study equations
having singularity or rapidly-increasing terms as |u| → ∞. For example, let us
consider the equation

−∆un + un =
|un|q−1un

| sinun|(1 + |n|)2
+
|un|r−2un exp(u2n)

(1 + |n|)2
, n ∈ Zm, lim

|n|→∞
un = 0,
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with 1 < q < 2 < r. The first term in the right hand side has singularities at kπ
with k ∈ Z \ {0}, but continuous at u = 0. The second term on the right hand
side grows exponentially as |u| → ∞. Theorem 2.1 asserts that the equation above
is of type (A). Therefore it is important that Theorem 2.1 does not require any
condition on fn(u) for large |u|.

Remark 2.4. Many existing results focused on the existence and multiplicity of
homoclinic solutions for (1.3) with asymptotically or super linear term fn(u) at
both the origin and infinity [5, 15, 17, 19, 25, 27, 30, 31, 35, 36, 40, 41, 42]. The
following condition

(A5) Hn(u) = fn(u)u− 2Fn(u) < 0 if u 6= 0, where Fn(u) =
∫ u
0
fn(s)ds,

plays a very important role in the existence of nontrivial homoclinic solutions for
the asymptotically or super linear cases. In fact, (A5) is used to satisfy that the
associated functional J (defined by (3.2) in Section 3) has u = 0 as the only critical
point with the critical value 0. However, there is no assumption on Hn(u) in our
results. In our setting, J is allowed to has the nontrivial critical point with the
critical value 0, by using the improved Clark’s theorem [23].

The oddness assumption on fn(u) is only used for obtaining multiple results by
using the variant Clark’s theorem. Even if there is no such an oddness assumption,
we still have the following result on the existence of homoclinic solutions of (1.3).

Theorem 2.5. Assume that (A1) holds. The nonlinearity fn(u) satisfies the fol-
lowing condition.

(A2’) fn(u) is a continuous function with respect to u for u ∈ R and n ∈ Zm.
(A3’) There exist two constants 1 ≤ ν1 < ν2 < 2 and two positive-valued sequences

ai = {ai,n} ∈ l2/(2−νi) of i = 1, 2 such that (2.1) holds for u ∈ R and
n ∈ Zm.

(A4’) There exists a n(0) ∈ Zm such that

lim sup
u→0

Fn(0)(u)

u2
=∞. (2.2)

If ω < α, then (1.3) has at least a nontrivial homoclinic solution.

Remark 2.6. There were only a few results of nontrivial homoclinic solutions of
the DNLS equations in one spatial dimension (m = 1) with sublinear nonlinearity
fn [6, 9, 34]. It was assumed in [6, 9, 34] that fn(u) = O(|u|s) as u→ 0 with some
0 < s < 1, which implies (2.2) in our paper. However, there exists some fn which
satisfies (2.2) but fn(u) = O(|u|s) does not hold as u → 0 for any 0 < s < 1. For
example, taking fn(u) = u ln(|u|) gives us that fn(u) = o(|u|s) as u → 0 for any
0 < s < 1 and so (2.2) holds. Thus, Theorem 2.5 is a new result even for one spatial
dimensional case (m = 1).

Now we make some preparations for the proof of our main results. Under the
assumption ω < α, we have

δ ≡ α− ω > 0,

δ‖u‖22 ≤ ((L− ω)u, u), u ∈ l2,

where (·, ·) is the inner product of l2. We define the space

E ≡ {u ∈ l2 : ((L− ω)u, u) <∞} (2.3)
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which is a Hilbert space equipped with the norm

‖u‖ =
√

((L− ω)u, u). (2.4)

It is obviously that

‖u‖∞ ≤ ‖u‖2 ≤
1√
δ
‖u‖, u ∈ E. (2.5)

We end this section by giving a sufficient condition for type (I) in the following
statement.

Proposition 2.7. Assume ω < α. If

lim sup
u→0

(
sup
n∈Zm

fn(u)

u

)
< α− ω, (2.6)

then (1.3) is of type (I) in E.

Proof. According to (2.6), we can pick β > 0 such that

lim sup
u→0

(
sup
n∈Zm

fn(u)

u

)
< β < α− ω. (2.7)

Then we can find a small enough ε > 0 such that

fn(u)u ≤ βu2, |u| ≤ ε, n ∈ Zm. (2.8)

Let u = {un} be any solution of (1.3) in E. Multiplying (1.3) by un and summing
it over Zm, we have

‖u‖2 =
∑
n∈Zm

fn(un)un ≤ β‖u‖22,

provided that ‖u‖∞ ≤ ε. It follows from (2.5) that u ≡ 0. Thus, if ‖u‖∞ ≤ ε, then
u vanishes in E and so type (I) occurs. �

3. Proofs of main results

3.1. Proof of Theorem 2.1. Under condition (A3), for each n ∈ Zm, the non-
linear term fn(u) is defined on [−ε, ε]. To recover the global property of fn(u), we
define a function g ∈ C∞0 (R,R) such that 0 ≤ g(u) ≤ 1, g(−u) = g(u) for u ∈ R,
g(u) = 1 for |u| ≤ ε/2, and g(u) = 0 for |u| ≥ ε. For example,

g(u) =


1, 0 < |u| ≤ ε

2 ,

exp
(

1 + 1(
2|u|
ε −1

)2
−1

)
, ε

2 < |u| < ε,

0, |u| ≥ ε,

meets our requirement. Instead of (1.3), we consider the equation

Lun − ωun = fn(un)g(un), n ∈ Zm, (3.1)

with the boundary condition (1.4). We see from (2.5) that, to prove Theorem 2.1,
it is sufficient to show that (3.1) has a sequence {u(k)} in E with all u(k) 6= 0 such
that E-norm of u(k) converges to zero. Then u(k) belongs to l∞ and the l∞-norm of
u(k) converges to zero. Let the l∞-norm of u(k) be less than ε/2 for k large enough.

Then g(u
(k)
n ) ≡ 1 and (3.1) is reduced to (1.3). Thus Theorem 2.1 follows.

Even if fn(u) is defined on the whole space R in (A2) from the beginning, we
also need the truncation g(u). Otherwise, in case fn(u) grows up to∞ very rapidly
as u→∞, the functional J(u) given in (3.2) later on, is not well defined.
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In (3.1), we rewrite fn(u)g(u) as fn(u). Consider the function J defined on E
by

J(u) =
1

2
((L− ω)u, u)−

∑
n∈Zm

Fn(un). (3.2)

which Fn(u) is given in (1.5).
To apply Lemma 1.5 on the existence of critical points of (3.2), we first show that

the functional J is a well-defined C1 functional on E. Moreover, for the derivative
of J , we have

(J ′(u), v) = ((L− ω)u, v)−
∑
n∈Zm

fn(un)vn, u, v ∈ E. (3.3)

According to (A3), for any u ∈ E, we have∑
n∈Zm

Fn(un) ≤
∑
n∈Zm

1

ν1
a1,n|un|ν1 +

∑
n∈Zm

1

ν2
a2,n|un|ν2

≤ 1

ν1
‖a1‖2/(2−ν1)‖u‖

ν1
2 +

1

ν2
‖a2‖2/(2−ν2)‖u‖

ν2
2

≤ 1

ν1δν1/2
‖a1‖2/(2−ν1)‖u‖

ν1 +
1

ν2δν2/2
‖a2‖2/(2−ν2)‖u‖

ν2 .

Hence J is well defined on E. Next, we prove that (3.3) holds. For any u, v ∈ E
and any sequence {θn} with θn ∈ (0, 1) for n ∈ Zm, we have∑

n∈Zm
max
h∈(0,1)

|fn(un + hθnvn)vn|

≤
∑
n∈Zm

a1,n
(
|un|ν1−1 + |vn|ν1−1

)
|vn|+

∑
n∈Zm

a2,n
(
|un|ν2−1 + |vn|ν2−1

)
|vn|

≤ ‖a1‖2/(2−ν1)(‖u‖
ν1−1
2 + ‖v‖ν1−12 )‖v‖2

+ ‖a2‖2/(2−ν2)(‖u‖
ν2−1
2 + ‖v‖ν2−12 )‖v‖2

≤ 1

δν1/2
‖a1‖2/(2−ν1)(‖u‖

ν1−1 + ‖v‖ν1−1)‖v‖

+
1

δν2/2
‖a2‖2/(2−ν2)(‖u‖

ν2−1 + ‖v‖ν2−1)‖v‖ < +∞.

Combining the above inequality and (3.2), we have

(J ′(u), v) = lim
h→0+

J(u+ hv)− J(u)

h

= lim
h→0+

1

2h
[((L− ω)(u+ hv), u+ hv)− ((L− ω)u, u)]

− lim
h→0+

1

h

∑
n∈Zm

[Fn(un + hvn)− Fn(un)]

= lim
h→0+

[
((L− ω)u, v) +

h‖v‖2

2
−
∑
n∈Zm

fn(un + hθnvn)vn

]
= ((L− ω)u, v)−

∑
n∈Zm

fn(un)vn.
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This shows that (3.3) holds. Thus, (1.3) is the corresponding Euler-Lagrange equa-
tion for J . To find nontrivial homoclinic solutions of (1.3), we need only to look
for nonzero critical points of J in E.

Now let us prove that J ′ is continuous. Let u(k) → u ∈ E as k → +∞. Then
{‖u(k)‖} is bounded, which follows that {‖u(k)‖2} is also bounded. Note that
ai ∈ l2/(2−νi) for i = 1, 2. For any ε > 0, there exists an integer Aε such that( ∑

|n|>Aε

a
2/(2−νi)
i,n

)(2−νi)/2
< ε, i = 1, 2. (3.4)

For any v ∈ E, we have

|(J ′(u(k))− (J ′(u), v)|

≤
∣∣∣((L− ω)(u(k) − u), v

)∣∣∣+
∑
n∈Zm

∣∣fn(u(k)n )− fn(un)
∣∣ |vn|

≤ ok(1) + ‖v‖∞
∑
|n|>Aε

∣∣∣fn(u(k)n ) + fn(un)
∣∣∣

≤ ok(1) + ‖v‖∞
∑
|n|>Aε

(
a1,n

(
|u(k)n |ν1−1 + |un|ν1−1

))
+ ‖v‖∞

∑
|n|>Aε

(
a2,n

(
|u(k)n |ν2−1 + |un|ν2−1

))
≤ ok(1) + ‖v‖∞

(
‖u(k)‖ν1−12 + ‖u‖ν1−12 + ‖u(k)‖ν2−12 + ‖u‖ν2−12

)
ε,

where ok(1) means ok(1)→ 0 as k → +∞. This implies that J ∈ C1(E,R).
Next we prove that J is bounded from below. According to (A3), we have

J(u) =
1

2
((L− ω)u, u)−

∑
n∈Zm

Fn(un)

≥ 1

2
‖u‖2 − 1

ν1

∑
n∈Zm

a1,n|un|ν1 −
1

ν2

∑
n∈Zm

a2,n|un|ν2

≥ 1

2
‖u‖2 − 1

ν1δν1/2
‖a1‖2/(2−ν1)‖u‖

ν1 − 1

ν2δν2/2
‖a2‖2/(2−ν2)‖u‖

ν2 .

It follows from 1 ≤ ν1 < ν2 < 2 that J(u) → +∞ as ‖u‖ → +∞. Thus J is
bounded from below.

Now we claim that J satisfies the P.S. condition. Assume that {u(k)} ⊂ E is a
P.S. sequence. The coerciveness of J gives us that both {‖u(k)‖} and {‖u(k)‖2} are
bounded. Hence, passing to a subsequence if necessary, we have u(k) ⇀ u in E as
k → +∞ and

(J ′(u(k))− J ′(u), u(k) − u)→ 0 as k → +∞. (3.5)

It is easy to see that for each n ∈ Zm, u
(k)
n converges to un pointwise as k → +∞.

For any ε > 0, there exist two positive integers Aε and kε such that (3.4) holds and∑
|n|≤Aε

‖fn(u(k)n )− fn(un)| |u(k)n − un| < ε, k ≥ kε.
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In addition, we have∑
|n|>Aε

|fn(u(k)n )− fn(un)| |u(k)n − un|

≤
∑
|n|>Aε

[
a1,n(|u(k)n |ν1−1 + |un|ν1−1)

]
(|u(k)n |+ |un|)

+
∑
|n|>Aε

[
a2,n(|u(k)n |ν2−1 + |un|ν2−1)

]
(|u(k)n |+ |un|)

≤ 2
∑
|n|>Aε

[
a1,n(|u(k)n |ν1 + |un|ν1) + a2,n(|u(k)n |ν2 + |un|ν2)

]
≤ 2
(
‖u(k)‖ν12 + ‖u‖ν12 + ‖u(k)‖ν22 + ‖u‖ν22

)
ε,

which implies that∑
n∈Zm

(
fn(u(k)n )− fn(un)

)(
u(k)n − un

)
→ 0 as k → +∞. (3.6)

Note that

(J ′(u(k))− J ′(u), u(k) − u) = ‖u(k) − u‖ −
∑
n∈Zm

(
fn(u(k)n )− fn(un)

)(
u(k)n − un

)
.

It follows from (3.5) and (3.6) that

u(k) → u in E, as k → +∞. (3.7)

Hence, J satisfies the P.S. condition.
We are in a position to show that J satisfies the last part of Lemma 1.5. Assume

that n(i) ∈ I where I is given in (A4). Define e(i) = {e(i)j } by

e
(i)
j =

{
1, j = n(i),
0, j 6= n(i).

Let
Ek = span{e(i) : i = 1, 2, . . . , k}, k ∈ {1, 2, 3, . . . },

and Lk be the operator L acting in Ek. Denote Ik = {n(i) : n(i) ∈ I, i =
1, 2, . . . , k}. According to (A4), for a given Mk = ‖Lk − ω‖2, there exists a εk
such that

Mk|u|2 ≤ Fn(u), |u| ≤ εk, n ∈ Ik.
Denote ρk = min{εk, εk/

√
δ}. For u ∈ Ek with ‖u‖ = ρk, we have ‖u‖∞ ≤ εk and

J(u) =
1

2
‖u‖2 −

∑
n∈Zm

Fn(un)

=
1

2
‖u‖2 −

∑
n∈Ik

Fn(un)

≤ 1

2
‖u‖2 −Mk

∑
n∈Ik

|un|2

≤ 1

2
‖u‖2 − Mk

‖Lk − ω‖2
‖u‖2

= −1

2
ρ2k < 0.
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We have verified the conditions in Lemma 1.5. It follows that (3.1) has a sequence
{u(k)} in E with all u(k) 6= 0 such that ‖u(k)‖ → 0 as k → 0. According to (2.5),
‖u(k)‖∞ → 0 as k → 0. Let k large enough such that ‖u(k)‖∞ < ε/2. Then

g(u
(k)
n ) ≡ 1 and (3.1) becomes (1.3). The desired result follows.

3.2. Proof of Theorem 2.5. Under the assumptions of Theorem 2.5, it is easy to
show that (1.3) is the corresponding Euler-Lagrange equation for J defined by (3.2).
To find nontrivial homoclinic solutions of (1.3), we just need to look for nonzero
critical points of J in E. Similar to the proof of Theorem 2.1, we can prove that
J ∈ C1(E,R) is bounded from below and satisfies the P.S. condition. By Lemma
1.4, J possesses a critical value c = infE J(u). Hence, there exists u∗ ∈ E such that
J(u∗) = c with J ′(u∗) = 0. We claim that u∗ 6= 0. According to (f ′2), there exist
0 < ε0 < 1 and M0 > 0 with 2m+ vn(0) − ω − 2M0 < 0 such that

Fn(0)(ε0) ≥M0ε
2
0.

Taking u = u(0) = {u(0)n } with

u(0)n =

{
ε0, n = n(0),

0, n 6= n(0),

we have

J(u(0)) =
1

2
((L− ω)u(0), u(0))−

∑
n∈Zm

Fn(u(0)n )

≤ 1

2
(2m+ vn(0) − ω)ε20 −M0ε

2
0

=
1

2
(2m+ vn(0) − ω − 2M0)ε20 < 0.

It follows that J(u∗) ≤ J(u(0)) < 0, which implies that u∗ is a nontrivial solution
of (1.3) in E. Thus, Theorem 2.5 follows.

4. Discussion

The discrete nonlinear Schrödinger (DNLS) equation is one of the most im-
portant nonlinear lattice models in the field of nonlinear science [11, 12, 18, 24].
Breathers that have been observed in experiments can exist in the DNLS equations
[7, 13, 14]. Indeed, breathers admit one special kind of homoclinic solutions. In
the past decade, the existence of homoclinic solutions of the DNLS equations has
drawn a great deal of interest [1, 2, 3, 16, 26, 43]. See [17, 25, 27, 30, 35, 36, 40] for
the superlinear nonlinearity, [5, 15, 19, 31, 41, 42] for the saturable (asymptotically
linear) nonlinearity and [20, 21, 22] for mixed nonlinearity. However, only some re-
sults considered the existence of homoclinic solutions for the DNLS equations with
sublinear nonlinearity [6, 9, 34]. Considering its importance in physics [4, 8, 10],
there needs a further study on the existence of homoclinic solutions for the DNLS
equations with sublinear nonlinearity.

In this paper, we consider the DNLS equation (1.3) in m dimensional lattices
with attractive self-interaction and give a partially sublinear condition on fn(u)
for type (A), i.e., a sequence of nontrivial homoclinic solutions accumulating to
zero. Our results assert that the sublinearity and oddness of fn(u) admit type
(A) for (1.3). The oddness of fn(u) is only used for applying the variant Clark’s
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theorem. Without this oddness assumption, we still can prove that (1.3) has at
least a nontrivial homoclinic solution if fn(u) is sublinear.

Now, we discuss what we may do for the homoclinic solutions of sublinear DNLS
equation (1.3) in the future. We have focused on the homoclinic solutions of (1.3) for
the case where ω < α. Under this condition, (1.3) is a positively definite problem,
allowing us to find the nonzero critical points with mountain pass geometry. If
ω ≥ α, this problem is strongly indefinite. It will be of interest to obtain the
nontrivial homoclinic solutions with type (A) for the strongly indefinite problem
(1.3). Another interesting direction may be the connection between superlinear and
sublinear nonlinearities in (1.3). We have shown that the sublinear DNLS equation
(1.3) has at least a nontrivial homoclinic solution without any oddness assumption.
How do the combined effects of superlinear and sublinear nonlinearities affect the
existence of homoclinic solutions for (1.3) needs to be fully understood. Last but
not least, we may consider an extension of this topic to a more general equation.
For example, it is worth considering the homoclinic solutions of sublinear difference
equations with either p-Laplacian [21] or Jacobi operator [33], since these equations
have attracted a lot of attentions [5, 15, 17, 19, 20, 21, 22, 25, 27, 30, 31, 35, 36,
37, 38, 39, 40, 41, 42].
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