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Abstract. Let Ω ⊆ RN be a bounded domain. In this article, we investigate

the existence of entropy solutions to the nonlinear elliptic problem

− div
( |∇u|(p−2)∇u+ c(x)uγ

(1 + |u|)θ(p−1)

)
+

b(x)|∇u|λ

(1 + |u|)θ(p−1)
= µ, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where µ is a diffuse measure with bounded variation on Ω, 0 ≤ θ < 1 is a

positive constants, 1 < p < N , 0 < γ ≤ p − 1, 0 < λ ≤ p − 1, c(x) and b(x)
belong to appropriate Lorentz spaces.

1. Introduction and statement of main results

1.1. Model problem. Let Ω ⊆ RN be a bounded domain. We are interested in
existence of entropy solutions of quasilinear elliptic problems with principal part
having degenerate coercivity. The model case is

−div
( |∇u|(p−2)∇u+ c(x)uγ

(1 + |u|)θ(p−1)

)
+

b(x)|∇u|λ

(1 + |u|)θ(p−1)
= µ, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(1.1)

where p is a real number such that 2 − 1/N < p < N , c(x) ∈ L
N
p−1 ,r(Ω) with

N
p−1 ≤ r ≤ +∞, b(x) ∈ LN,1(Ω), µ is a diffuse measures. 0 ≤ θ < 1 is a positive

constants, it is worth pointing out that the ranges of θ lead to different qualitative
properties of solutions.

Existence results for noncoercive elliptic problem (1.1) with θ = 0 are well-known
when the Radon measure datum µ with bounded variation on Ω. Nonlinear problem
of the type (1.1) have been studied by Del Vecchio and Posteraro[20, 21], in all these
papers the existence of solution was proved when ‖c(x)‖Lr1 (Ω) or ‖b(x)‖Lr2 (Ω) small
enough for some ri, i = 1, 2 and p > 2− 1/N . The results of [20, 21] was developed
by Betta et al. [6] for 1 < p < N and b(x) ≡ 0, where renormalized solution be
introduced. Droniou [23] studied regularity properties of solutions to (1.1)with
θ ≡ 0 and b(x) ≡ 0 with the help of some new local estimates on sets far from the
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support of the singular part of the right-hand side data µ. Both influence of terms
− div(c(x)uγ) and b(x)|∇u|λ were considered in [25, 26]. Some other related results
of noncoercive elliptic equations, we refer to [33, 22, 24, 15, 27] and the references
therein.

Note that the case θ > 0 is noticeable different from the case θ = 0, since in this
case, problem (1.1) is strongly noncoercive even c(x) ≡ 0 and b(x) ≡ 0. There are
a lot of papers devoted to the study of the existence, regularity and uniqueness of
solutions to the problem

−div
( a(x,∇u)

(1 + |u|)θ(p−1)

)
+ cu = µ, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(1.2)

Some surprising results, proved by Boccardo and Brezis [12], shown that problem
(1.2) with p = 2 have solutions provided θ > 1 and µ ∈ Lm(Ω) for some appropriate
m, which extended in [1] for p > 1. Note that nonexistence result for problem (1.2)
with c ≡ 0 was proved in [1], even for µ ∈ L∞(Ω). Another nonexistence results
of problem (1.2) with µ is a bounded Radon measure concentrated on a set of zero
harmonic capacity were established in [13]. The surprising results of [12] relies on
the fact that the lower order term u provides a regularizing effect on problem (1.2).
We refer to [3, 8, 2, 32, 34] and the references therein for regularizing effect of lower
order term.

Recently, Porzio and Smarrazzo[36] proved the existence of suitably defined weak
Radon measure-valued solutions to problem (1.2) with finite Radon measure data
µ. In the same paper, the authors also investigated the uniqueness of very weak
solutions to problem (1.2) with p = 2 if µ is a diffuse measure with respect to the
2-capacity. Our interest in this article is to investigate the existence of entropy so-
lutions to problem (1.1) and the combined effects of lower order term −div(c(x)uγ)
and b(x)|∇u|λ.

It is worth to point out that problem (1.2) is a generalization of the model
problem

−∆(φ(u)) + cu = µ, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.3)

where

φ(s) =

∫ s

0

1

(1 + |t|)θ(p−1)
dt, (1.4)

correspondence with 0 ≤ θ < 1. Define v = φ(u), and rewrite problem (1.3)
formally as

−∆v + cg(v) = µ, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.5)

where

η(p− 1))s]
1

1−θ(p−1) − 1.

Recently, great attention has been devoted to nonlinear problem of the type (1.5)
involving absorption and measures as boundary data[7, 19, 28, 29, 17]. A funda-
mental contribution to this problem is due to Brezis[16], see also [18, 5].
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1.2. The general problem and main results. In this article, we do not consider
only the model problem (1.1), but we prove the existence of positive weak entropy
solutions to the general nonlinear elliptic problem

−div
(a(x, u,∇u) +K(x, u)

(1 + |u|)θ(p−1)

)
+H(x, u,∇u) +G(x, u) = µ, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.6)

where Ω is bounded domain in RN , N ≥ 3, with sufficiently smooth boundary ∂Ω,
1 < p < N and 0 < θ < 1− N−p

N(p−1) .

The function a : Ω×R×RN → RN is a Carathéodory function (that is, a(·, s, ξ)
measurable on Ω for every (s, ξ) in R×RN , and a(x, ·, ·) continuous on R×RN for
almost every x in Ω) satisfying the following assumptions:

a(x, s, ξ)ξ ≥ α1|ξ|p, α1 > 0,

|a(x, s, ξ)| ≤ α2[|ξ|p−1 + sp−1 + a0(x)], a0(x) ∈ Lp
′
(Ω), α2 > 0,

〈a(x, s, ξ)− a(x, s, η), ξ − η〉 > 0, ξ 6= η,

(1.7)

for almost every x ∈ Ω and for every s ∈ R, ξ ∈ RN , η ∈ RN , p′ is the Hölder
conjugate exponent of p, i.e. 1/p+ 1/p′ = 1.

The function K : Ω× R→ RN is a Carathéodory function satisfying

|K(x, s)| ≤ c0(x)|s|γ + c1(x), 0 < γ ≤ (p− 1),

c0(x) ∈ L
N
p−1 ,r(Ω),

N

p− 1
≤ r ≤ +∞, c1(x) ∈ Lp

′
(Ω),

(1.8)

for almost every x ∈ Ω and for every s ∈ R.
The function H : Ω× R× RN → R is a Carathéodory function satisfying

|H(x, s, ξ)| ≤ b0(x)|ξ|λ

(1 + |s|)θ(p−1)
+

b1(x)

(1 + |s|)θ(p−1)
, 0 ≤ λ ≤ p− 1,

b0(x) ∈ LN,1(Ω), b1(x) ∈ L1(Ω),

(1.9)

for almost every x ∈ Ω and for every s ∈ R and ξ ∈ RN .
The function G : Ω× R→ R is a Carathéodory function satisfying

G(x, s)s ≥ 0, |G(x, s)| ≤ d0(x)|s|t + d1(x),

d0(x) ∈ Lz
′,1(Ω), d1(x) ∈ L1(Ω),

(1.10)

for almost every x ∈ Ω and for every s ∈ R and ξ ∈ RN , where

0 ≤ t < N(p− 1)(1− θ)
N − p

, z =
N(p− 1)(1− θ)

N − p
1

t
,

1

z
+

1

z′
= 1. (1.11)

Finally, µ is diffuse measures on Ω with bounded total variation, denoted by
M0(Ω), which is decomposed as

µ = f − div(g), (1.12)

with f ∈ L1(Ω), g ∈
(
Lp
′
(Ω)
)N

, more details see Sections 2 below.

It is worth pointing out that problem (1.6) has two main features:

Firstly, the left-hand of (1.6) is defined on W 1,p
0 (Ω), but it is not coercive on the

same space. On the one hand, 1
(1+|u|)θ(p−1) tends to zero as u tends to infinity, which
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produces a saturation effect, that is, the diffusion goes to zero when u goes to infin-
ity. On the other hand, this differential operator has two lower order terms, which
also produce a lack of coercivity even for θ = 0. Therefore standard Leray-Lions
surjectivity theorem for solutions to nonlinear elliptic equations cannot be applied.
To overcome this problem, we will reason by approximation, introduced in [30, 4],
cutting by means of truncatures the nonlinearity a(x, s, ξ) in order to get a pseu-

domonotone and coercive differential operator on W 1,p
0 (Ω). Then establish some a

priori estimates on |∇u|p−1, which be obtained by the estimate of |∇Tk(u)|p−1 and
a result in [6]. Thus, a technical result of almost everywhere convergence for the
gradients leads to pass the limit of the approximate solutions.

Secondly, the right-hand side of problem (1.6) is µ, which is a measure, not

an element of the dual space of W−1,p′(Ω). Therefore, the solution cannot be

expected to belong to the energy space W 1,p
0 (Ω), it is necessary to change the

functional setting in order to prove existence results. To overcome this problem,
we define a concept of entropy solution and show that problem (1.6) with measure
data is well-posed in this generalized class. It is interesting to note that when
p > N , the Sobolev embedding theorem and a duality argument imply that the
space of measures with bounded variation on Ω is a subspace of W−1,p′(Ω), which
reconduces the problem (1.6) to a classical one. Here and elsewhere in the paper,
We will consider the case that 2− 1/N < p < N .

Definition 1.1. Under hypotheses (1.7)-(1.12), for µ ∈ M0, a function u is an
entropy solution for problem (1.6) if the following conditions hold:

(1) H(x, u,∇u) ∈ L1(Ω), G(x, u) ∈ L1(Ω),

(2) Tk(u) ∈W 1,p
0 (Ω) for every k > 0,

(3) For every ω ∈W 1,p
0 (Ω)

⋂
L∞(Ω) and k > 0, it holds∫

Ω

(a(x, u,∇u) +K(x, u)

(1 + |u|)θ(p−1)

)
· ∇Tk(u− ω)

+

∫
Ω

H(x, u,∇u)Tk(u− ω) +

∫
Ω

G(x, u)Tk(u− ω)

≤ 〈µ, Tk(u− ω)〉.

(1.13)

Remark 1.2. Every terms in (1.13) is well defined. In fact, for the right hand
side of (1.13), since µ = f − div(g), where f belongs to L1(Ω) and Tk(u− ω) is in

L∞(Ω), and g belongs to (Lp
′

0 (Ω))N while Tk(u− ω) is in W 1,p
0 (Ω).

The left-hand side is well defined since the integral is only on the set |u−ω| ≤ k,
and on this set |u| ≤ k + ‖ω‖L∞(Ω) := M , it is equal to∫

Ω

(a(x, u,∇u) +K(x, u)

(1 + |u|)θ(p−1)

)
· ∇Tk(u− ω)

=

∫
{|u−ω|≤k}

(a(x, u,∇u) +K(x, u)

(1 + |u|)θ(p−1)

)
cdot∇(u− ω)

=

∫
{|u−ω|≤k}

(a(x, TM (u),∇TM (u)) +K(x, TM (u))

(1 + |TM (u)|)θ(p−1)

)
· ∇(TM (u)− ω),

which is finite by the growth assumptions (1.7) on a(x, u,∇u).
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Remark 1.3. The definition of entropy solution is not suitable to deal with general
measure, since ∫

Ω

Tk(u− ω)dµ

may not be well defined when µ is a Radon measure.
The concept of entropy solution for µ ∈M0 can be extended to measure-valued

solution for µ ∈Mb. We quote [36] for measure-valued solution to elliptic equations
and [38, 35, 37, 39] for measure-valued solution to parabolic equations. The effort to
understand the proper concept of measure-valued solution is still work in progress,
and further work is needed if we want to apply it to problem (1.6). We leave the
subject at this point.

The main results of this paper is the following theorem.

Theorem 1.4. Under assumptions (1.7)–(1.12). there exists at least one entropy
solution u to (1.1) if one of the following conditions holds:

(1) γ = λ = p− 1, c0(x) ∈ L
N
p−1 ,r(Ω), N

p−1 ≤ r ≤ +∞, ‖b0(x)‖LN,1(Ω) is small

enough,

(2) γ = p− 1, λ < p− 1, c0(x) ∈ L
N
p−1 ,r(Ω), N

p−1 ≤ r ≤ +∞,

(3) γ < p− 1, λ ≤ p− 1, c0(x) ∈ L
N
p−1 ,r(Ω).

The plan of this article is as follows. In Section 2, we briefly recall some notation
and known results about measures and Lorentz spaces, then we give some technical
results to be used in this paper. Section 3 is devoted to the study an approximate
problem. Section 4 contains the proof of Theorem 1.4

2. Preliminaries

2.1. Notation. In this section, we first recall some notation and definitions. In
the following, C will be a constant that may change from an inequality to another,
to indicate a dependence of C on the real parameters N, p, α, γ, λ, we shall write
C = C(N, p, α, γ, λ).

For k > 0, denote by Tk : R→ R the usual truncation at level k, that is,

Tk(s) = max{−k,min{k, s}}. (2.1)

The remainder of the truncation Tk(s) is defined as Gk(s) = s− Tk(s).
Note that we deal with functions u that may not belong to Sobolev spaces. Thus,

we need to give a suitable definition of gradient. Consider a measurable function
u : Ω→ R which is finite almost everywhere and satisfies Tk(u) ∈W 1,p

0 (Ω) for every
k > 0. According to [4, Lemma 2.1], there exists an unique measurable function

v : Ω→ RN such that, for each k > 0,

∇Tk(u) = vχ|u|≤k almost everywhere in Ω.

where χ|u|≤k is the characteristic function of {|u| ≤ k}. We define the gradient ∇u
of u as this function v, and denote ∇u = v.

Remark 2.1. The gradient defined in this way is not, in general, the gradient used
in the definition of Sobolev spaces. However, v is the distributional gradient of u
provided v belongs to (L1

loc(Ω))N , which also implies that u belongs to W 1,1
loc (Ω).
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Remark 2.2. As point out in [4], the set of function u such that Tk(u) belongs to

W 1,p
0 (Ω) for every k > 0 is not a linear space. That is, if u and v are such that

both Tk(u) and Tk(v) belong to W 1,p
0 (Ω) for every k > 0, while ∇(u+ v) may not

be well defined.

Denote by |Ω| the N -dimensional Lebesgue measure of a measurable set Ω. Let
f(x), g(x) are functions defined in RN and a, b are constants, we set

{f(x) > a} := {x ∈ RN : f(x) > a}, {g(x) ≤ b} := {x ∈ RN : g(x) ≤ b},
{f(x) > a, g(x) ≤ b} := {f(x) > a} ∩ {g(x) ≤ b}.

2.2. Measures. Let Ω be a bounded open subset of RN , N ≥ 2. We denote
by Mb(Ω) the set of all Radon measures with bounded variation on Ω. Denote
by M0(Ω) the set of all measures in Mb(Ω) which are absolutely continuous with
respect to the capacity cap1,p(·,Ω), i.e., which satisfy µ(K) = 0 for every Borel set
K ⊂ Ω such that cap1,p(K,Ω) = 0. Denote Ms(Ω) as the set of all measures µ
in Mb(Ω) which are singular with respect to the cap1,p(·,Ω), i.e., the measures for
which there exists a Borel set E ⊂ Ω, with cap1,p(K,Ω) = 0, such that µbµE , where
µbµE is defined by µbµE(B) = µ(E ∩ B) for any Borel set B ⊆ Ω. Note that if a
measure µ in Mb(Ω) is such that µ = µbµE for a certain Borel set E, the measure
µ is said to be concentrated on E, where cap1,p is defined by

cap1,p(K,Ω) = inf
{∫

Ω

|∇φ|pdx : φ ∈ C∞0 (Ω), φ ≥ χE
}
,

for any compact set E ⊂ Ω.

Proposition 2.3. For every measure µ in Mb(Ω) there exists a unique pair of
measures (µ0, µs), with µ0 in M0(Ω) and µs in Ms(Ω), such that

µ = µ0 + µs.

The following decomposition results were given in [14, Theorem 2.1].

Proposition 2.4. Let µ be a measure in Mb(Ω). Then µ belongs to M0(Ω) if and

only if it belongs to L1(Ω) + W−1,p′

0 (Ω). Thus if µ belongs to M0(Ω), there exists

f in L1(Ω) and g in (Lp
′
(Ω))N such that

µ = f − div(g),

in the sense of distributions. Moreover every function v ∈ W 1,p
0 (Ω) is measurable

with respect to µ and belongs to L∞(Ω, µ) if v further belongs to L∞(Ω), and one
has ∫

Ω

vdµ =

∫
Ω

fv +

∫
Ω

g∇v, ∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Note that decomposition (2.2) is not unique since L1(Ω) ∩W−1,p′(Ω) 6= {0}.

Definition 2.5. We say that a sequence of measures {µk} in Mb(Ω) converges in
the narrow topology to µ ∈Mb(Ω) if

lim
k→∞

∫
Ω

ϕdµk =

∫
Ω

ϕdµ,

for every bounded and continuous function ϕ on Ω.

The following technical proposition will be used to prove the stability result.
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Proposition 2.6. Let Ω be a bounded open subset of RN . Assume that ρε is a
sequence of L1(Ω) functions converging to ρ weakly in L1(Ω) and assume that σε
is a sequence of L∞(Ω) functions which is bounded is L∞(Ω) and converges to σ
almost everywhere in Ω. Then

lim
ε→0

∫
Ω

ρεσε =

∫
Ω

ρσ.

2.3. Lorentz spaces. For 0 < p < ∞ and 0 < q ≤ ∞, the Lorentz space Lp,q(Ω)
is the set of measurable functions f on Ω such that

‖f‖Lp,q(Ω) :=
[
p

∫ ∞
0

(αp|{x ∈ Ω : |f(x)| > α}|)q/p dα
α

]1/q
<∞,

for q 6= ∞. For q = ∞ the space Lp,∞(Ω) is set to be the usual weak Lp or
Marcinkiewicz space with quasinorm

‖f‖Lp,∞(Ω) := sup
α>0

α|{x ∈ Ω : |f(x)| > α}|1/p.

It is easy to see that when p = q, the Lorentz space Lp,p(Ω) is nothing but the
Lebesgue space Lp(Ω).

We recall here only few properties of the Lorentz spaces which will be used
later. As regards the other values of the second index q, the Lorentz spaces are
intermediate spaces between the Lebesgue spaces in the sense that the following
inclusions hold

Lp,1(Ω) ⊂ Lp,p(Ω) = Lp(Ω) ⊂ Lp,∞(Ω) ⊂ Lp1,1(Ω),

when Ω is bounded, 1 < p1 < p <∞.
A generalized version of the Hölder inequality and the Sobolev embedding hold

true in the Lorentz spaces Lp,q(Ω). More precisely,

‖fg‖Lp,q(Ω) ≤ ‖f‖Lp1,q1 (Ω)‖g‖Lp2,q2 (Ω),

holds for each f ∈ Lp1,q1(Ω) and g ∈ Lp2,q2(Ω), where

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
.

Especially, ∫
Ω

|fg| ≤ ‖f‖Lp,∞(Ω)‖g‖Lp′,1(Ω), (2.2)

holds for f ∈ Lp,∞(Ω) and g ∈ Lp′,1(Ω).
Sobolev’s embedding

‖f‖Lp∗,p(Ω) ≤ SN,p‖f‖W 1,p(Ω), (2.3)

holds for

p∗ =
Np

N − p
, SN,p =

(Γ(1 + N
2 ))

1
N

√
π

p

N − p
. (2.4)
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2.4. Technical results. The following technical lemma plays an important role in
the proof of our main theorem, which is a generalization of corresponding results
in [6, 23, 4, 31].

Proposition 2.7. Assume that Ω is an open subset of RN with finite measure and
that 1 < p < N . Let ϑ be a positive, not necessarily finite, measure on Ω and u
be a measurable function satisfying Tk(un) ∈ W 1,p

0 (ϑ,Ω), for every positive k and
0 < σ < p, such that ∫

Ω

|∇Tk(u)|pdϑ < Mkσ + L, ∀k > 0, (2.5)

where M and L are given constants. Then |u|p−σ belongs to L
p∗
p ,∞
ϑ (Ω), |∇u|p−σ

belongs to L
N

N−σ ,∞
ϑ (Ω) and

‖|u|p−σ‖
L
p∗
p
,∞

ϑ (Ω)

≤ C(N, p)
[
M + ϑ(Ω)

σ
p∗ L1−σp

]
, (2.6)

‖|∇u|p−σ‖
L

N
N−σ ,∞
ϑ (Ω)

≤ C(N, p)
[
M + ϑ(Ω)σ( 1

p−
1
N )L

p−σ
p
]
, (2.7)

where C(N, p) is a constant depending only on N and p. Here and elsewhere in

this paper, p∗ = Np
N−p is the critical Sobolev exponent.

Proof. The proof of this proposition is essentially the same as the proof of [6,
Lemma A.1], in which σ = 1, but, for the sake of completeness, we sketch it here.
Thanks to (2.5), we can find C1, depending on Ω, p,N , such that

kp
∗
ϑ(|{x ∈ Ω : |u| > k}|) ≤

∫
Ω

|Tk(u)|p
∗
dϑ

≤ C1‖∇Tk(u)‖p
∗

Lpϑ(Ω)

≤ C1(Mkσ + L)p
∗/p,

(2.8)

which gives

k
p∗
p−σ ϑ({x ∈ Ω : |u|p−σ > k}) ≤ C2

(
Mk

σ
p−σ + L

)p∗/p
,

equivalently

kϑ({x ∈ Ω : |u|p−σ > k})p/p
∗
≤ C3

(
M + Lk−

σ
p

)
.

Thus

‖|u|p−σ‖
L
p∗
p
,∞

ϑ (Ω)

= sup
k>0

kϑ({x ∈ Ω : |u|p−σ > k})p/p
∗

= sup
0<k≤k0

kϑ({x ∈ Ω : |u|p−σ > k})p/p
∗

+ sup
k>k0

kϑ({x ∈ Ω : |u|p−σ > k})p/p
∗

≤ k0ϑ(Ω)p/p
∗

+ C3

(
M + Lk−

σ
p−σ
)
.

(2.9)

Choose k0ϑ(Ω)p/p
∗

= Lk
− σ
p−σ

0 , that is

k0 =
( L

ϑ(Ω)p/p∗

) p−σ
p

. (2.10)
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Substituting (2.10) into (2.9), leads to (2.6).
Obviously, for every k > 0,

ϑ
(
{x ∈ Ω : |∇u|p−σ > h}

)
≤ ϑ

(
{x ∈ Ω : |∇u|p−σ > h, |u| < k}

)
+ ϑ

(
{x ∈ Ω : |∇u|p−σ > h, |u| ≥ k}

)
.

(2.11)

For the first term of the right-hand side of (2.11), it can be easily seen that

hpϑ ({x ∈ Ω : |∇u| > h, |u| < k}) ≤
∫
|u|<k

|∇u|pdϑ =

∫
Ω

|∇Tku|pdϑ ≤Mkσ + L,

which implies

ϑ
({
x ∈ Ω : |∇u|p−σ > h, |u| < k

})
≤ Mkσ + L

h
p

p−σ
. (2.12)

Thus, taking into account (2.8), (2.11) and (2.12), we obtain

ϑ
({
x ∈ Ω : |∇u|p−σ > h

})
≤ Mkσ + L

h
p

p−σ
+ C1

(Mkσ + L)p
∗/p

kp∗
. (2.13)

Decompose k as k = k1 + k2, where k1 and k2 are positive constants, will be made
explicit later. Therefore, (2.13) implies that

ϑ
({
x ∈ Ω : |∇u|p−σ > h

})
≤ Mkσ + L

h
p

p−σ
+ C1

(Mkσ + L)p
∗/p

kp∗

=
M(k1 + k2)σ + L

h
p

p−σ
+ C1

(M(k1 + k2)σ + L)
p∗/p

(k1 + k2)p∗

≤ 2σMkσ1

h
p

p−σ
+

2σMkσ2

h
p

p−σ
+

L

h
p

p−σ
+ C12p

∗/pMp∗/p(k1 + k2)
σp∗
p −p

∗

+ C12p
∗/pLp

∗/p(k1 + k2)−p
∗

≤ 2σMkσ1

h
p

p−σ
+

2σMkσ2

h
p

p−σ
+

L

h
p

p−σ
+ C12p

∗/pMp∗/pk
σp∗
p −p

∗

1 + C12p
∗/pLp

∗/pk−p
∗

2

≤ C4

(Mkσ1

h
p

p−σ
+
Mkσ2

h
p

p−σ
+

L

h
p

p−σ
+Mp∗/pk

σp∗
p −p

∗

1 + Lp
∗/pk−p

∗

2

)
,

here we use the fact that σ < p. Choose

k1 = M
1

N−σ h
N−p

(p−σ)(N−σ) , k2 =
(Lp∗/ph p

p−σ

M

) 1
p∗+σ

.

Therefore,

ϑ
({
x ∈ Ω : |∇u|p−σ > h

})
≤ C

(M N
N−σ

h
N

N−σ
+
(ML

σ
p

h
p

p−σ

) p∗
p∗+σ

+
L

h
p

p−σ

)
,

equivalently,

h
(
meas

{
x ∈ Ω : |∇u|p−σ > h

})N−σ
N

≤ C5

(
M +M

p∗(N−σ)
N(p∗+σ)

( L
N−σ
N

h
σ(N−p)
N(p−σ)

) σp∗
p(p∗+σ)

+
L
N−σ
N

h
σ(N−p)
N(p−σ)

)
.

(2.14)
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Young’s inequality with (N(p∗ + σ)

p∗(N − σ)
,
p(p∗ + σ)

σp∗

)
,

(2.14) implies that

hϑ
({
x ∈ Ω : |∇u|(p−σ) > h

})N−σ
N

≤ C5

(
M +

p∗(N − σ)

N(p∗ + σ)
M +

σp∗

p(p∗ + σ)

L
N−σ
N

h
σ(N−p)
N(p−σ)

+
L
N−σ
N

h
σ(N−p)
N(p−σ)

)
≤ C6

(
M +

L
N−σ
N

h
σ(N−p)
N(p−σ)

)
.

Therefore,

sup
h>0

hϑ
({
x ∈ Ω : |∇u|p−σ > h

})N−σ
N

≤ sup
0<h≤h0

hϑ
({
x ∈ Ω : |∇u|p−σ > h

})N−σ
N

+ sup
h>h0

hϑ
({
x ∈ Ω : |∇u|p−σ > h

})N−σ
N

≤ h0|Ω|
N−σ
N + C

(
M +

L
N−σ
N

h
σ(N−p)
N(p−σ)

)
≤ C7

(
M + h0|Ω|

N−σ
N +

L
N−σ
N

h
σ(N−p)
N(p−σ)

)
.

(2.15)

Now choose

h0 =
( L
|Ω|
) p−σ

p . (2.16)

Thus, taking into account (2.15) and (2.16), we obtain

sup
h>0

hϑ
({
x ∈ Ω : |∇u|p−σ > h

})N−σ
N

≤ C8

(
M + ϑ(Ω)σ( 1

p−
1
N )L

p−σ
p

)
.

This completes the proof of (2.9). �

To the proof of almost everywhere convergence of the gradients of the approxi-
mate solutions un, the following technical result will allow us to pass to the limit
in the approximate equations.

Proposition 2.8. Let un be a sequence of solutions of the problem

−div
( a(x, un,∇un)

(1 + |un|)θ(p−1)

)
= fn − div(g), x ∈ Ω,

un = 0, x ∈ ∂Ω,

with fn strongly convergent to some f in L1(Ω), g ∈
(
Lp
′
(Ω)
)N

,

(1) un is such that Tk(un) belongs to W 1,p
0 (Ω) for every k > 0;
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(2) un converges almost everywhere in Ω to some measurable function u which

is finite almost everywhere, and such that Tk(u) belongs to W 1,p
0 (Ω) for

every k > 0;
(3) un is bounded in Lr1,∞(Ω) for some r1 > 0, and u belongs to the same

Lr1,∞(Ω);
(4) there exists τ > 0 such that |∇un|τ is bounded in Lr2(Ω), for some r2 > 1,

and |∇u|τ belongs to the same Lr2(Ω).

Then, up to a subsequence, ∇un converges almost everywhere in Ω to ∇u, the weak
gradient of u. Furthermore, u satisfies

−div
( a(x, u,∇u)

(1 + |u|)θ(p−1)

)
= f − div(g), x ∈ Ω,

u = 0, x ∈ ∂Ω.

The proof of this proposition is essentially the same as the proof of [1, Theorem
4.1].

3. Approximate problem

In this section, we consider a priori estimate of |∇u|p−1 in LN
′,∞(Ω). For the

convenience of the reader, we consider the following approximate problem firstly,

−div
(a(x, un,∇un) +Kn(x, un)

(1 + |un|)θ(p−1)

)
= µn, x ∈ Ω,

un = 0, x ∈ ∂Ω,

(3.1)

where

Kn(x, s) = K(x, Tn(s)), (3.2)

Gn(x, s) = Tn(G(x, s)), (3.3)

and µn = fn − div(g) ∈W−1,p′(Ω) is a sequence such that

µn
∗−→ µ, ]in M0(Ω), ‖µn‖L1(Ω) ≤ µ(Ω). (3.4)

fn is a sequence of Lp
′
(Ω) functions that converges to f weakly in L1(Ω).

Obviously, by (1.8), Kn(x, s) satisfies

|Kn(x, s)| ≤ |K(x, s)| ≤ c0(x)|s|γ + c1(x),

|Kn(x, s)| ≤ c0(x)nγ + c1(x), γ = p− 1.
(3.5)

Thus, taking into account hypotheses (3.2)–(3.5), µn ∈ W−1,p′

0 (Ω) ∩ L∞(Ω),

there exists at least one solution un ∈ W 1,p
0 (Ω) to problem (3.1) in the sense, for

each ϕ ∈W 1,p(Ω),∫
Ω

(a(x, un,∇un) +Kn(x, un)

(1 + |un|)θ(p−1)

)
· ∇ϕ =

∫
Ω

µnϕ. (3.6)

3.1. Logarithmic estimate. The following estimates will be useful in the proof
of Theorem 3.2. Similar estimate also appears in [9, 10, 11].

Theorem 3.1. Let un ∈W 1,p
0 (Ω) be a weak solution to (3.1) in the sense of (3.6).

Then there exists C, such that

‖ ln
(
Aκ
′/κ + |un|

)
‖W 1,p

0 (Ω) ≤ C, (3.7)
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where A ≥ 1 will be made explicit in (3.14) below, κ = 1 + (p − 1)(1 − θ) and
1/κ′ + 1/κ = 1.

Proof. Define

ϕ(s) =

∫ s

0

1(
Aκ′/κ + |t|

)κ dt. (3.8)

It can be easily seen that

|ϕ(s)| ≤ 1

(p− 1)(1− θ)A
.

Note that ϕ(s) is a Lipschitz function such that ϕ(0) = 0, this fact, combined with
un ∈ W 1,p(Ω), shows that ϕ(un) ∈ W 1,p(Ω). Therefore, choose ϕ(un) as a test
function in (3.6), we find that∫

Ω

a(x, un,∇un)

(1 + |un|)θ(p−1)
· ∇unϕ′(un) +

∫
Ω

Kn(x, un)

(1 + |un|)θ(p−1)
· ∇unϕ′(un)

=

∫
Ω

µnϕ(un).

(3.9)

Using (1.7), we have ∫
Ω

a(x, un,∇un)

(1 + |un|)θ(p−1)
· ∇unϕ′(un)

≥ α1

∫
Ω

|∇un|p

(1 + |un|)θ(p−1)

1(
Aκ′/κ + |un|

)κ
≥ α1

∫
Ω

∣∣∇ ln
(
Aκ
′/κ + |un|

)∣∣p
= α1‖∇ ln

(
Aκ
′/κ + |un|

)
‖pLp(Ω),

(3.10)

where α1 appears in (1.7). Taking into account (3.5), we obtain∫
Ω

Kn(x, un)

(1 + |un|)θ(p−1)
· ∇unϕ′(un)

≤
∫

Ω

c0(x)|un|θ(p−1)

(1 + |un|)θ(p−1)

|un|(1−θ)(p−1)

(Aκ′/κ + |un|)(1−θ)(p−1)

∇un
Aκ′/κ + |un|

+

∫
Ω

c1(x)∇un(
Aκ′/κ + |un|

)κ′
≤
∫

Ω

c0(x)∇un
Aκ′/κ + |un|

+

∫
Ω

c1(x)∇un
Aκ′/κ + |un|

≤ ‖c0(x)‖Lp′ (Ω)‖∇ ln
(
Aκ
′/κ + |un|

)
‖Lp(Ω)

+ ‖c1(x)‖Lp′ (Ω)‖∇ ln
(
Aκ
′/κ + |un|

)∥∥
Lp(Ω)

≤ 3p
′/p

p′α
p′/p
1

‖c0(x)‖p
′

Lp′ (Ω)
+
α1

3p
‖∇ ln

(
Aκ
′/κ + |un|

)
‖pLp(Ω)

+
3p
′/p

p′α
p′/p
1

‖c1(x)‖p
′

Lp′ (Ω)
+
α1

3p
‖∇ ln

(
Aκ
′/κ + |un|

)
‖pLp(Ω)

=
3p
′/p

p′α
p′/p
1

‖c0(x)‖p
′

Lp′ (Ω)
+

3p
′/p

p′α
p′/p
1

‖c1(x)‖p
′

Lp′ (Ω)
+

2α1

3p
‖∇ ln

(
Aκ
′/κ + |un|

)
‖pLp(Ω).
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It is well-known that

‖c0(x)‖Lp′ (Ω) ≤
Np

(p− 1)(N − p)t
|Ω|

(p−1)(N−p)t
Np ‖c0(x)‖

L
N
p−1

,r
(Ω)
,

where r ≥ N
p−1 appears in (1.8) and t satisfies

1

p′
=

1

t
+

1

r
.

Consequently,∫
Ω

Kn(x, un)

(1 + |un|)θ(p−1)
· ∇unϕ′(un)

≤ 3p
′/p

p′α
p′/p
1

( Np

(p− 1)(N − p)t

)p′
|Ω|

(n−p)t
N ‖c0(x)‖p

′

L
N
p−1

,r
(Ω)

+
3p
′/p

p′α
p′/p
1

‖c1(x)‖p
′

Lp′ (Ω)
+

2α1

3p
‖∇ ln

(
Aκ
′/κ + |un|

)
‖pLp(Ω).

(3.11)

Now we consider the right-hand side of (3.9). Obviously, (3.4) leads to∫
Ω

µnϕ(un) ≤ 1

(p− 1)(1− θ)A
‖µn‖L1(Ω) ≤

1

(p− 1)(1− θ)A
µ(Ω), (3.12)

Combining with (3.10)-(3.12), we have

‖∇ ln
(
Aκ
′/κ + |un|

)
‖pLp(Ω)

≤ 3p
′/p

α
p′/p
1

( Np

(p− 1)(N − p)t

)p′
|Ω|

(n−p)t
N ‖c0(x)‖p

′

L
N
p−1

,r
(Ω)

+
3p
′/p

α
p′/p+1
1

‖c1(x)‖p
′

Lp′ (Ω)
+

p′µ(Ω)

α1(p− 1)(1− θ)A
,

(3.13)

Define

A = 1 +
p′µ(Ω)

α1(p− 1)(1− θ)
. (3.14)

This fact, and (3.13) show that

‖∇ ln
(
Aκ
′/κ + |un|

)
‖pLp(Ω)

≤ 3p
′/p

α
p′/p
1

( Np

(p− 1)(N − p)t

)p′
|Ω|

(n−p)t
N ‖c0(x)‖p

′

L
N
p−1

,r
(Ω)

+
3p
′/p

α
p′/p+1
1

‖c1(x)‖p
′

Lp′ (Ω)
+ 1,

(3.15)

which leads to (3.7). �

Secondly, we consider the approximate problem

−div
( a(x, un,∇un)

(1 + |un|)θ(p−1)

)
+Hn(x, un,∇un) = µn, x ∈ Ω,

un = 0, x ∈ ∂Ω,

(3.16)

where

Hn(x, s, ξ) = Tn(H(x, s, ξ)), (3.17)
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and µn = fn − div(g) ∈W−1,p′(Ω) satisfies (3.4). By (1.9),

|Hn(x, s, ξ)| ≤ |H(x, s, ξ)| ≤ b0(x)|ξ|λ

(1 + |s|)θ(p−1)
+

b1(x)

(1 + |s|)θ(p−1)
,

|Hn(x, s, ξ)| ≤ n.
(3.18)

For problem (3.16), through a similar argument as above, we can show that (3.7)
holds. In this case, we also choose ϕ(un) as a test function in (3.16) and use the
following estimates:∫

Ω

Hn(x, un,∇un)ϕ(un)

≤
∫

Ω

b0(x)|∇un|p−1

(1 + |u|)θ(p−1)
ϕ(un) +

∫
Ω

b1(x)

(1 + |u|)θ(p−1)
ϕ(un)

≤ 1

(p− 1)(1− θ)A

∫
Ω

b0(x)
|∇un|p−1

(1 + |u|)θ(p−1)
+

1

(p− 1)(1− θ)A

∫
Ω

b1(x)

≤ 1

(p− 1)(1− θ)A

{
‖b0(x)‖LN,1(Ω)‖

|∇un|p−1

(1 + |u|)θ(p−1)
‖LN′,∞(Ω) + ‖b1(x)‖L1(Ω)

}
,

here we use (2.2). Thus

‖∇ ln
(
Aκ
′/κ + |un|

)
‖pLp(Ω) ≤

p′M1

α1(p− 1)(1− θ)A
, (3.19)

where

M1 = ‖b0(x)‖LN,1(Ω)‖
|∇un|p−1

(1 + |u|)θ(p−1)
‖LN′,∞(Ω) + ‖b1‖L1(Ω) + µ(Ω).

We define

A = 1 +
p′M1

α1(p− 1)(1− θ)
.

This and (3.19) show that

‖∇ ln
(
Aκ
′/κ + |un|

)
‖pLp(Ω) ≤ 1,

which leads to (3.7) again.
Similarly, we can show that (3.7) holds for the more general equation

− div
(a(x, un,∇un) +Kn(x, un)

(1 + |un|)θ(p−1)

)
+Hn(x, un,∇un) +Gn(x, un)

= µn, x ∈ Ω,

un = 0, x ∈ ∂Ω,

(3.20)

where Kn(x, s) satisfies (3.2), Hn(x, un,∇un) satisfies (3.18), and Gn(x, un) =
Tn(G(x, s)) satisfies

Gn(x, s)s ≥ 0, |Gn(x, s)| ≤ |G(x, s)| ≤ d0(x)|s|t + d1(x), |Gn(x, s)| ≤ n.

The details of this case be omitted.
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3.2. Estimate of |∇un|p−1 and |un|p−1. The main result of this subsection is

Theorem 3.2. Let un ∈W 1,p(Ω) be a weak solution to (3.1) in the sense of (3.6).
Let α > 1, then there exists C > 0, such that

‖ |∇un|p−1‖LN′,∞(Ω) ≤ C, (3.21)

‖ |un|(p−1)(1−θ)‖
L

N
N−p ,∞(Ω)

≤ C. (3.22)

Proof. Here we will only give the proof when assumption (1) in Theorem 1.4 is
satisfied. The details of the proofs under the assumption (2) and (3) exactly the
same, and will be omitted. The proof goes in two steps.

Step one. To establish the bound of the second term of the left-hand side of (3.21),
we define

ψ(s) =

∫ s

0

1

(1 + |t|)θ
dt. (3.23)

Using T%(ψ(un))χE2(%) as a test function in (3.6), where % is a positive constant
which will be specified later, χE2(%) is the characteristic function of E2(%), where
E2(%) = {x ∈ Ω : |un| ≥ %}. We find∫

E2(%)

(a(x, un,∇un) +Kn(x, un)

(1 + |un|)θ(p−1)

)
· ∇un

(1 + |un|)θ
=

∫
E2(%)

µnψ(un). (3.24)

Now we evaluate the various integrals in (3.24). From the ellipticity condition
(1.7), we have∫

E2(%)

a(x, un,∇un)

(1 + |un|)θ(p−1)
· ∇un

(1 + |un|)θ
≥ α1

∫
E2(%)

|∇un|p

(1 + |un|)θp
, (3.25)

here we use that ∇un = χE1(%)∇un.
Taking into account the growth assumption (3.5) on Kn, Young inequality, and

Hölder inequality, we derive that∫
E2(%)

Kn(x, un)

(1 + |un|)θ(p−1)
· ∇un

(1 + |un|)θ

≤
∫
E2(%)

c0(x)|un|p−1|∇un|
(1 + |un|)θp

+

∫
E2(%)

c1(x)|∇un|
(1 + |un|)θp

=

∫
E2(%)

c0(x)
|un|p−1

(1 + |un|)θ(p−1)

|∇un|
(1 + |un|)θ

+

∫
E2(%)

c1(x)|∇un|
(1 + |un|)θp

.

(3.26)

For the first term of the right hand side of (3.26), the Hölder inequality and
generalized Sobolev inequality yield∫

E2(%)

c0(x)
|un|p−1

(1 + |un|)θ(p−1)

∇un
(1 + |un|)θ

≤ ‖c0(x)‖
L

N
p−1

,r
(E2(%))

∥∥ |un|
(1 + |un|)θ

∥∥p−1

Lp∗,t(E2(%))

∥∥ |∇un|
(1 + |un|)θ

∥∥
Lp(E2(%))

≤ C‖c0(x)‖
L

N
p−1

,r
(E2(%))

∥∥ ∣∣∇( |un|
(1 + |un|)θ

)∣∣ ∥∥p−1

Lp(E2(%))

∥∥ |∇un|
(1 + |un|)θ

∥∥
Lp(E2(%))

,

(3.27)

where t satisfies
1

r
+
p− 1

t
+

1

p
= 1.
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From

|
( |s|

(1 + |s|)θ
)′
| ≤ 1 + θ

(1 + |s|)θ
,

we have ∥∥|∇( |un|
(1 + |un|)θ

)
|
∥∥
Lp(E2(%))

≤ (1 + θ)
∥∥ |∇un|

(1 + |un|)θ
∥∥
Lp(E2(%))

.

This fact, combining the Sobolev’s inequality and (3.27), implies that∫
E2(%)

c0(x)
|un|(p−1)

(1 + |un|)θ(p−1)2

∇un
(1 + |un|)θ

≤ C‖c0(x)‖
L

N
p−1

,r
(E2(%))

∥∥ |∇un|
(1 + |un|)θ

∥∥p
Lp(E2(%))

.

(3.28)

For the second term of the right hand side of (3.26), using Hölder’s inequality with
exponents p and p′ and Young’s inequality, we derive that∫

E2(%)

c1(x)∇un
(1 + |un|)θp

≤ ‖c1(x)‖Lp′ (E2(%))

∥∥ |∇un|
(1 + |un|)θ

∥∥
Lp(E2(%))

≤ 1

p′
( 1

α1

)p′/p‖c1(x)‖p
′

Lp′ (E2(%))
+
α1

p

∥∥ |∇un|
(1 + |un|)θ

∥∥p
Lp(E2(%))

.

(3.29)

Combining with (3.28)–(3.29), we conclude that∫
E2(%)

Kn(x, un)

(1 + |un|)θ(p−1)
· ∇un

(1 + |un|)θ

≤ C‖c0(x)‖
L

N
p−1

,r
(E2(%))

∥∥ |∇un|
(1 + |un|)θ

∥∥p
Lp(E2(%))

+
1

p′
( 1

α1

)p′/p‖c1(x)‖p
′

Lp′ (E2(%))
+
α1

p

∥∥ |∇un|
(1 + |un|)θ

∥∥p
Lp(E2(%)

.

(3.30)

One easily sees that∫
E2(%)

µnT%(ψ((un))) ≤ %‖µn‖L1(Ω) ≤ %µ(Ω), (3.31)

Combining (3.25)–(3.31), we have∫
Ω

|∇un|p

(1 + |un|)θp

≤ C‖c0(x)‖
L

N
p−1

,r
(E2(%))

∥∥ |∇un|
(1 + |un|)θ

∥∥p
Lp(E2(%)

+ %µ(Ω) + L1,

(3.32)

where

L1 =
1

α1

( 3

α1

)p′/p‖c1(x)‖p
′

Lp′ (Ω)
.
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Step two. In this step, we consider the first integral term of the right hand of
(3.32). To this end, thanks to (3.7), more princely (3.15), we have∫

Ω

[
ln
(

1 +
|un|
Aκ′/κ

)]p ≤ C ∫
Ω

∣∣∇ ln
(

1 +
|un|
Aκ′/κ

)∣∣p
= C

∫
Ω

∣∣∇ ln
(
Aκ
′/κ + |un|

)∣∣p ≤M1,

(3.33)

where

M1 =C
3p
′/p

p′α
p′/p
1

( Np

(p− 1)(N − p)t

)p′
|Ω|

(n−p)t
N ‖c0(x)‖p

′

L
N
p−1

,r
(Ω)

+ C
3p
′/p

α
p′/p+1
1

‖c1(x)‖p
′

Lp′ (Ω)
+ C.

Consequently, for any η > 0, we arrive at

meas{E2(ηAκ
′/κ)} = meas{|un| ≥ ηAκ

′/κ}

=
1

[ln(1 + η)]p

∫
|un|≥ηAκ′/κ

[ln(1 + η)]p

≤ 1

[ln(1 + η)]p

∫
|un|≥ηAκ′/κ

[
ln
(
1 +

un
Aκ′/κ

)]p
≤ 1

[ln(1 + η)]p

∫
Ω

[
ln
(
1 +

un
Aκ′/κ

)]p
≤ M1

[ln(1 + η)]p
.

Equivalently,

meas
{
|un| ≥ exp{ϑM1/p

1 }Aκ
′/κ
}
≤ 1

ϑp
.

Therefore, there exists ϑ0, which is independent on n, such that

C‖c0(x)‖LN/(p−1),r(E2(%0)) <
1

2
,

where

%0 = exp{ϑ0M
1/p
1 }Aκ

′/κ.

With this choice of %0, we rewrite (3.32) as∫
E2(%0)

|∇un|p

(1 + |un|)β
≤ 2µ(Ω)%0 + L2, (3.34)

where L2 = 2L1.
Therefore, for each k ≥ %0, (3.34) leads to∫

E2(k)

|∇Tk(ψ(un))|p ≤ 2µ(Ω)k + L2, (3.35)



18 S. HUANG, T. SU, X. DU, X. ZHANG EJDE-2019/97

where ψ defined as in (3.23). By Proposition 2.7 with σ = 1, we arrive at

‖ |∇ψ(un)|p−1‖
L

N
N−1

,∞
(Ω)

= ‖ |∇un|p−1

(1 + |un|)θ(p−1)
‖
L

N
N−1

,∞
(Ω)

≤ C[2µ(Ω) + |Ω|
1
p−

1
N L

p−1
p ]

≤ C p′

α1
µ(Ω) + C|Ω|

1
p−

1
N
[ 1

α1

( 3

α1

)p′/p‖c1(x)‖p
′

Lp′ (Ω)

] p−1
p .

(3.36)

Therefore, (3.36), combined with the uniform boundedness of un, leads to

‖|∇un|p−1‖
L

N
N−1

,∞
(Ω)

≤ C p′

α1
µ(Ω) + C|Ω|

1
p−

1
N

[ 1

α1

( 3

α1

)p′/p‖c1(x)‖p
′

Lp′ (Ω)

] p−1
p

.
(3.37)

These estimates show that (3.21) holds.
Using (3.35) and Proposition 2.7 with σ = 1 again, we derive that

‖|ψ(un)|p−1‖
L
p∗
p
,∞

(Ω)
≤ Cµ(Ω) + CL

1− 1
p

2 , (3.38)

which, combined with the fact that ψ(un) behaves like |un|(p−1)(1−θ), implies that

‖|un|(p−1)(1−θ)‖
L
p∗
p
,∞

(Ω)
≤ Cµ(Ω) + CL

1− 1
p

2 . (3.39)

This is (3.22). �

4. Proof of Theorem 1.4

In this section, combining the results of Proposition 2.7 and 2.8, we prove The-
orem 1.4. To do this, we will show that the terms Hn(x, un,∇un) and Gn(x, un),
which appears in (3.1), converge strongly in L1(Ω). This following arguments sim-
ilar to these used in [6, 25, 26].

From (1.9), (3.36) and the Hölder inequality (2.2), we find that

‖Hn(x, un,∇un)‖L1(Ω)

=

∫
Ω

|Hn(x, un,∇un)|

≤
∫

Ω

b0(x)|∇un|p−1

(1 + |un|)θ(p−1)
+

∫
Ω

b1(x)

(1 + |un|)θ(p−1)

≤ ‖b0(x)‖LN,1(Ω)‖
|∇un|p−1

(1 + |u|)θ(p−1)
‖
L

N
N−1

,∞
(Ω)

+ ‖b1‖L1(Ω)

≤ ‖b0(x)‖LN,1(Ω)

{
‖b1‖L1(Ω) + µ(Ω) + ‖c1(x)‖Lp′ (Ω)

}
+ ‖b1‖L1(Ω).

(4.1)

Moreover, Gathering (1.10), (3.39) and Hölder’s inequality (2.2) leads to

‖Gn(x, s)‖L1(Ω) ≤
∫

Ω

d0(x)|un|t +

∫
Ω

d1(x)

≤ ‖d0(x)‖Lz′,1(Ω)‖ |un|
t(1−θ)‖Lz,∞(Ω) + ‖d1(x)‖L1(Ω)

≤ C,

(4.2)

where z appears in (1.11).
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Therefore, the solution un of (3.1) satisfies

−div
(a(x, un,∇un) +Kn(x, un)

(1 + |un|)θ(p−1)

)
= fn − Φn − div(g), x ∈ Ω,

un = 0, x ∈ ∂Ω,

(4.3)

where Φn = Hn(x, un,∇un) +Gn(x, un) is bounded in L1(Ω).
Using Tk(un) as test function in (4.3), we easily obtain that, for any n ≥ 1, there

exists some M̃ and L̃ such that∫
Ω

|∇Tk(un)|p ≤ M̃k1+θ(p−1) + L̃. (4.4)

The above estimate and the growth condition (3.5) on Kn(x, un) allow us to use
standard techniques (see for example [1, 4]) to say that a subsequence, still denoted
by un, which is almost everywhere convergent in Ω, to a measurable function u such
that Tk(u) belongs to W 1,p(Ω) This fact, together with (3.37) and Proposition 2.8,
leads to

un → u, almost everywhere in Ω,

∇un → ∇u, almost everywhere in Ω,

∇Tk(un)→ ∇Tk(u), in (Lp(Ω))N weakly.

(4.5)

This implies that

a(x, un,∇un)

(1 + |un|)θ(p−1)
→ a(x, u,∇u)

(1 + |u|)θ(p−1)
almost everywhere in Ω. (4.6)

From (3.17), we deduce that

Hn(x, un,∇un)→ H(x, u,∇u) almost everywhere in Ω. (4.7)

Moreover, using the growth condition (3.18), Proposition 2.7, we derive that
Hn(x, un,∇un) is equi-integrable. Therefore the Vitali Theorem implies that

Hn(x, un,∇un)→ H(x, u,∇u) in L1(Ω) strongly. (4.8)

Similar arguments show that

Gn(x, un)→ G(x, u) in L1(Ω) strongly. (4.9)

Therefore, (4.8) and (4.9) lead to

Φn = Hn(x, un,∇un) +Gn(x, un)→ H(x, u,∇u) +G(x, u) (4.10)

in L1(Ω) strongly.
Note that un is a weak solution of (3.1); this fact together with stability result

Proposition (2.8), leads to Theorem 1.4 in the case (1).

For fixed k > 0 and any ω ∈W 1,p
0 (Ω)

⋂
L∞(Ω), take Tk(u−ω) as a test function

in (3.1), we find∫
Ω

(a(x, un,∇un) +K(x, un)

(1 + |un|)θ(p−1)

)
· ∇Tk(un − ω)

+

∫
Ω

H(x, un,∇un)Tk(un − ω) +

∫
Ω

G(x, un)Tk(un − ω)

= 〈fn, Tk(un − ω)〉+ 〈g,∇Tk(un − ω)〉.

(4.11)
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In view of fn is strongly covergent in (at least) L1(Ω), while Tk(un − ω) converges
both weakly∗ in L∞(Ω) and almost everywhere to Tk(u− ω). Thus

〈fn, Tk(un − ω)〉+ 〈g,∇Tk(un − ω)〉 n→∞−−−−→ 〈f, Tk(u− ω)〉+ 〈g,∇Tk(u− ω)〉.
For the first term of the right-hand side of (4.11), rewrite it as∫

Ω

(a(x, un,∇un) +K(x, un)

(1 + |un|)θ(p−1)

)
· ∇Tk(un − ω)

=

∫
{|un−ω|≤k}

(a(x, un,∇un) +K(x, un)

(1 + |un|)θ(p−1)

)
· ∇un

−
∫
{|un−ω|≤k}

(a(x, un,∇un) +K(x, un)

(1 + |un|)θ(p−1)

)
· ∇ω

=

∫
{|un−ω|≤k}

(a(x, un,∇un) +K(x, un)

(1 + |un|)θ(p−1)

)
· ∇un

−
∫
{|un−ω|≤k}

(a(x, TM (un),∇TM (un)) +K(x, TM (un))

(1 + |TM (un)|)θ(p−1)

)
· ∇ω

(4.12)

where M = k + ‖ω‖L∞(Ω). Taking (1.7) into account, we have

‖a(x, TM (un),∇TM (un)) +K(x, TM (un))

(1 + |TM (un)|)θ(p−1)
‖Lp′ (Ω) ≤ C,

which combined with (4.6), implies that, in
(
Lp
′
(Ω)
)N

,

a(x, TM (u),∇TM (u)) +K(x, TM (u))

(1 + |TM (u)|)θ(p−1)
→ a(x, u,∇u) +K(x, u)

(1 + |u|)θ(p−1)
.

Therefore

lim
n→∞

∫
{|un−ω|≤k}

(a(x, TM (un),∇TM (un)) +K(x, TM (un))

(1 + |TM (un)|)θ(p−1)

)
· ∇ω

=

∫
{|un−ω|≤k}

a(x, u,∇u) +K(x, u)

(1 + |u|)θ(p−1)
· ∇ω.

(4.13)

On the other hand, by Fatou’s lemma, we arrive at∫
{|un−ω|≤k}

(a(x, u,∇u) +K(x, u)

(1 + |un|)θ(p−1)

)
· ∇u

≤ lim inf
n→∞

∫
{|un−ω|≤k}

(a(x, un,∇un) +K(x, un)

(1 + |un|)θ(p−1)

)
· ∇un.

(4.14)

Equaitons (4.12) and (4.13) together with(4.14) lead to Theorem 1.4.
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[7] M. Bidaut-Véron, N. Hung, L. Véron; Quasilinear Lane-Emden equations with absorption

and measure data, J. Math. Pures Appl. , 102 (2014), 315–337.
[8] L. Boccardo; On the regularizing effect of strongly increasing lower order terms, J. Evol.

Equ., 3 (2003), 225–236.

[9] L. Boccardo; Some developments on Dirichlet problems with discontinuous coefficients, Boll.
Unione Mat. Ital., 2 (2009), 285–297.

[10] L. Boccardo; Finite energy solutions of nonlinear Dirichlet problems with discontinuous co-
efficients, Boll. Unione Mat. Ital., 5 (2012), 357–368.

[11] L. Boccardo; Dirichlet problems with singular convection terms and applications, J. Differ-

ential Equations, 258 (2015), 2290–2314.
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[25] O. Guibé, A. Mercaldo; Existence and stability results for renormalized solutions to nonco-
ercive nonlinear elliptic equations with measure data, Potential Anal., 25 (2006), 223–258.
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